dc.contributor.advisor |
Corazza, Marco |
it_IT |
dc.contributor.author |
Tasso, Luca <1999> |
it_IT |
dc.date.accessioned |
2023-06-18 |
it_IT |
dc.date.accessioned |
2023-11-08T14:55:45Z |
|
dc.date.issued |
2023-07-18 |
it_IT |
dc.identifier.uri |
http://hdl.handle.net/10579/24185 |
|
dc.description.abstract |
The aim of this thesis is to explore the potential of a Deep Reinforcement Learning approach to the Portfolio Optimization problem. Four different types of Reinforcement Learning algorithms – Advantage Actor-Critic (A2C), Proximal Policy Optimization (PPO), Deep Determinist Policy Gradient (DDPG), and Twin-Delayed Deep Deterministic Policy Gradient (TD3) – will be tested on the thirty Dow Jones constituents and compared to the index’s performances as a baseline. We will also assess the capability of such algorithms to detect crisis patterns, and act accordingly. To do so, we will provide, as additional input, indexes that aim at capturing financial stress and volatility: their impact will be assessed contextually with the algorithms’ performances. |
it_IT |
dc.language.iso |
en |
it_IT |
dc.publisher |
Università Ca' Foscari Venezia |
it_IT |
dc.rights |
© Luca Tasso, 2023 |
it_IT |
dc.title |
Deep Reinforcement Learning: portfolio optimization and crisis detection |
it_IT |
dc.title.alternative |
Deep Reinforcement Learning: portfolio optimization and crisis detection |
it_IT |
dc.type |
Master's Degree Thesis |
it_IT |
dc.degree.name |
Data analytics for business and society |
it_IT |
dc.degree.level |
Laurea magistrale |
it_IT |
dc.degree.grantor |
Dipartimento di Economia |
it_IT |
dc.description.academicyear |
2022/2023_sessione estiva_10-luglio-23 |
it_IT |
dc.rights.accessrights |
closedAccess |
it_IT |
dc.thesis.matricno |
873300 |
it_IT |
dc.subject.miur |
SECS-S/06 METODI MATEMATICI DELL'ECONOMIA E DELLE SCIENZE ATTUARIALI E FINANZIARIE |
it_IT |
dc.description.note |
|
it_IT |
dc.degree.discipline |
|
it_IT |
dc.contributor.co-advisor |
|
it_IT |
dc.date.embargoend |
10000-01-01 |
|
dc.provenance.upload |
Luca Tasso ([email protected]), 2023-06-18 |
it_IT |
dc.provenance.plagiarycheck |
None |
it_IT |