Deep Reinforcement Learning: portfolio optimization and crisis detection

DSpace/Manakin Repository

Show simple item record

dc.contributor.advisor Corazza, Marco it_IT
dc.contributor.author Tasso, Luca <1999> it_IT
dc.date.accessioned 2023-06-18 it_IT
dc.date.accessioned 2023-11-08T14:55:45Z
dc.date.issued 2023-07-18 it_IT
dc.identifier.uri http://hdl.handle.net/10579/24185
dc.description.abstract The aim of this thesis is to explore the potential of a Deep Reinforcement Learning approach to the Portfolio Optimization problem. Four different types of Reinforcement Learning algorithms – Advantage Actor-Critic (A2C), Proximal Policy Optimization (PPO), Deep Determinist Policy Gradient (DDPG), and Twin-Delayed Deep Deterministic Policy Gradient (TD3) – will be tested on the thirty Dow Jones constituents and compared to the index’s performances as a baseline. We will also assess the capability of such algorithms to detect crisis patterns, and act accordingly. To do so, we will provide, as additional input, indexes that aim at capturing financial stress and volatility: their impact will be assessed contextually with the algorithms’ performances. it_IT
dc.language.iso en it_IT
dc.publisher Università Ca' Foscari Venezia it_IT
dc.rights © Luca Tasso, 2023 it_IT
dc.title Deep Reinforcement Learning: portfolio optimization and crisis detection it_IT
dc.title.alternative Deep Reinforcement Learning: portfolio optimization and crisis detection it_IT
dc.type Master's Degree Thesis it_IT
dc.degree.name Data analytics for business and society it_IT
dc.degree.level Laurea magistrale it_IT
dc.degree.grantor Dipartimento di Economia it_IT
dc.description.academicyear 2022/2023_sessione estiva_10-luglio-23 it_IT
dc.rights.accessrights closedAccess it_IT
dc.thesis.matricno 873300 it_IT
dc.subject.miur SECS-S/06 METODI MATEMATICI DELL'ECONOMIA E DELLE SCIENZE ATTUARIALI E FINANZIARIE it_IT
dc.description.note it_IT
dc.degree.discipline it_IT
dc.contributor.co-advisor it_IT
dc.date.embargoend 10000-01-01
dc.provenance.upload Luca Tasso ([email protected]), 2023-06-18 it_IT
dc.provenance.plagiarycheck None it_IT


Files in this item

This item appears in the following Collection(s)

Show simple item record