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IInnttrroodduuccttiioonn  aanndd  TThheessiiss  OOuuttlliinnee  
 

 

Introduction 

 

 Spectroscopy is a field of chemical physics which studies the interaction of the 

electromagnetic radiation with matter. Infrared gas phase molecular spectroscopy uses the infrared 

light, which spans the electromagnetic spectrum from 14300 to 10 cm-1 [1], to probe a molecular 

gas sample. The interactions observed in the IR spectrum involve principally the energies associated 

with molecular structure change, and hence IR spectroscopy is widely used to infer information 

about the molecular structural parameters. Hence in the last decades the study of IR spectra has led 

to a fundamental understanding of molecular structures [2]. 

 Although gas phase molecular spectroscopy dates back to the beginning of the 1800s, when 

it was used to explore the composition of the sun, it remains an active field, which during last years 

has become of essential importance in many disciplines, such as atmospheric chemistry and 

astrophysics [3]. Indeed, since the earlier experiments in the second half of the 1900, the study of 

Earth’s and planetary atmospheres and of the interstellar medium by means of spectroscopic 

techniques has rapidly grown up. Nowadays, remote sensing techniques are widely used to probe 

the atmosphere and retrieve the concentration profiles of a number of species. For instance, the 

satellites used for sounding the terrestrial atmosphere (e.g. AIRS, SCISAT-1) and to explore the 

solar system (Voyager1, Cassini-Huygens, ISO) mount spectrometers which provide large amount 

of spectral information at ever increasing quality in terms of spectral coverage, resolution and 

signal-to-noise ratio [4]. Among the various spectroscopic techniques which cover the whole 

spectral range from microwave to UV-visible, infrared spectroscopy plays a very significant role, in 

particular for remote sensing of the terrestrial atmosphere. Indeed, IR remote sensing permits to 

monitor and accurately retrieve the concentrations of the atmospheric constituents and trace 

pollutants, since almost all these molecules have strong vibration-rotation bands in the infrared 

spectral domain [5]. 

Further,  IR molecular spectroscopy is playing a primary role in the study of the 

atmospheres of the so-called exo-planets, which are planets in solar systems other than the our. By 

using spectral retrieval methods, it is possible to determine aspects such as dayside temperature 
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profiles and atmospheric composition, from which information about their habitability can be 

obtained [6, 7]. Up to now, several exo-planets have already been discovered and their number is 

growing steadily [8]. In the coming decades many space- and ground- based facilities are planned, 

in order to search for new exo-planets of all dimensions, from massive young “hot Jupiters”, 

through large rocky super-Earths, down to the discover of exo-Earths [9]. Very recently, the 

presence of methane and water vapour in the atmosphere of the hot Jupiter HD189733b has been 

detected by infrared spectroscopy [10, 11]. 

On these bases, spectroscopic parameters turn out to be of fundamental importance for the 

remote sensing applications used in atmospheric and climate research, environmental monitoring, 

gas-phase analytics and astronomy. Indeed, only their accurate knowledge allows an accurate 

retrieval of concentrations and distributions of the gas phase molecular species. The spectroscopic 

parameters include either line by line parameters, i.e line positions, line strengths, pressure 

broadening coefficients and pressure induced shifts, or absorption cross sections when a line by line 

approach is not possible [12, 13]. 

On the other hand, the growing concern of scientific communities and international 

politicians about climate changes and environmental degradation related to the human activities has 

even more highlighted the requirements for a deeper knowledge of atmospheric chemistry and 

physics, in order to understand and predict the evolution of the Earth atmosphere. These studies are 

carried out by using radiative transfer models which, in addition to an atmospheric profile, require 

as input a set of spectroscopic data for an increasing number of molecules [14]. The existing 

spectroscopic data are collected into a number of different databases, among which there are 

HITRAN [15], GEISA [16], JPL [17]. Given the absorber amount and the atmospheric pressure and 

temperature profiles, the spectroscopic parameters allow the molecular absorption or emission to be 

computed at any frequency, assuming a reliable line shape function [14]. 

  Within this framework, the aim of laboratory spectroscopy is to provide spectroscopic 

parameters for a wide variety of species of atmospheric, astrophysical and industrial importance. 

Furthermore, given the advances in infrared spectroscopy instrumentation, the spectral parameters 

require to be determined with the highest possible accuracy. This represents a significant amount of 

work, which can be performed by combining laboratory measurements and theoretical models [5, 

18]. 

 Besides, thanks to the increasing sensitivity of modern laboratory measurements, the study 

of spectral line shapes, either in the frequency or in the time domain, allows the investigation of 

smaller and smaller details of the electromagnetic radiation – molecule interaction and of the 

relevant relaxation processes [19 – 21]. From this point of view, the proper modelling of the 
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experimental absorption line shapes requires detailed theoretical models, which take into account a 

number of processes. These experiments, which can benefit of the high resolution and signal-to-

noise ratio offered by laser spectrometers, gives new insight into the identification of the different 

mechanisms that affect the appearance of a spectral line. This requires a constant improvement in 

understanding and modelling the processes which take place in a gas phase sample and are 

intimately related to the kind of molecular collisions, intermolecular potentials, and energy transfers 

occurring during the scattering event. 

 

 

Objectives and Thesis Outline 

 

 The main target of this PhD thesis is the line shape analysis of the infrared ro-vibrational 

absorption lines, arising when a molecular gas sample is investigated by means of infrared 

radiation. As stated in the previous section, the interest in line parameter determinations is twofold. 

First, the line shape parameters represent the basic information needed by remote sensing retrievals; 

second, they constitute a basic tool to investigate the collisional processes and the related relaxation 

rates and interaction potentials. 

 During these three PhD years the entire procedure for line profile analysis and retrieval of 

the line parameters has been set up, both experimentally and computationally. From the 

experimental point of view, the work has been directed to the  definition of a proper operative 

procedure. In order to minimize the instrumental contribution to the spectral line shapes, the 

instrumental function of the tunable diode laser spectrometer has been studied and characterized. In 

addition, the spectrometer has been appropriately adapted for this purpose. From the computational 

point of view, a new software for fitting the experimental absorption profiles has been projected and 

implemented.  

 I have also been involved in some of the research works carried out by my Research Group. 

These ranged from the vibrational study of low and medium resolution spectra to the analysis of 

high resolution spectra. 

Besides, I spent seven months working in the QCL Spectroscopy Group of Professors 

Geoffrey Duxbury and Nigel Langford, at the Physics Department of the University of Strathclyde 

of Glasgow, Scotland. 

Therefore, although the main scope of the present thesis is the line profile analysis, it 

encompasses a variety of aspects in the research field of infrared spectroscopy. In a certain sense, 

the subject of the thesis is the gas phase infrared spectroscopy as a whole. 
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The thesis is subdivided into two main parts: Part I summarizes the theory behind infrared 

spectroscopy, and Part II deals with the experimental and computational work. Concerning the Part 

I, Chapter 1, “Principles of Quantum Mechanics”, gives a brief summary of the Quantum 

Mechanics upon which ro-vibrational spectroscopy is based. Chapter 2 and 3 review the theoretical 

knowledge required for the interpretation and the analysis of the experiments. The rotational and 

vibrational motions are described in Chapter 2, “Molecular Rotations and Vibrations”, together 

with the developments of the effective Hamiltonians, which are used to predict the energies of the 

ro-vibrational transitions of an isolated molecule. Chapter 3, “Molecular Collisions and Spectral 

Line Shapes”, is about the coupling between molecules and IR electromagnetic radiation, and the 

effect of perturbation due to molecular collisions which lead to characteristic spectral line shapes. 

Finally, Chapter 4, “Ab initio Calculations in Infrared Spectroscopy” gives a brief description of the 

computational ab initio approach used to determine the harmonic and anharmonic force fields, from 

which molecular parameters and structures can be calculated. 

 Part II starts with Chapter 5, “Instrumentation”, where the infrared spectrometers which 

have been employed are described. These include both the tunable diode laser spectrometer and the 

Fourier Transform spectrometer of the Molecular Spectroscopy Group of Università Ca’ Foscari 

Venezia, as well as a Quantum Cascade laser based spectrometer used at the University of 

Strathclyde.  

The program implemented to fit the spectral lines is described in Chapter 6, “Visual Line-

Shape Fitting Program”. It performs the fit of the absorption features on the basis of different 

theoretical profiles. Besides the Gaussian and Lorentz functions, the spectral lines can be fitted 

employing the Voigt profile as well as other models, including the collisional narrowing effect. The 

fitting procedure, based on the Levenberg-Marquardt algorithm, allows the user to fit the 

experimental lines individually or simultaneously. The program, written combining C# and Visual 

Basic languages, presents a standard graphical interface, from which the lines to be fitted can be 

specified together with their input parameters.  

The determination of the sulphur dioxide line parameters is the subject of Chapter 7, 

“Sulphur Dioxide Line Parameters in the 9.2 μm Atmospheric Spectral Window”. Self-broadening 

and integrated absorption coefficients have been measured for several lines in the ν1 band spectral 

region around 9.2 μm. Besides the parameters of the lines belonging to the ν1 fundamental of 32SO2, 

also those for some ro-vibrational lines of the ν1 + ν2 – ν2 hot band of the 32SO2 isotopologue and 

the ν1 band of the 34SO2 isotopic species have been determined. The measurements have been 

carried out at 297 K using a tunable diode laser spectrometer. The self broadening parameters have 

also been theoretically determined, employing a semi-classical formalism based on the Anderson – 
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Tsao – Curnutte approximation. The study has been completed with the determination of the 

vibrational cross sections of the three fundamental bands, measured from spectra recorded at a 

resolution of 0.2 cm-1 using a FT-IR spectrometer.  

The line parameter investigations are extended to vinyl fluoride in Chapter 8, “Vinyl 

Fluoride Spectroscopy: Vibrational Analysis, Ab initio calculations and Line parameters 

determination”. The high resolution spectra of CH2CHF, in the ν7 band region around 1123 cm-1,  

have been acquired using a tunable diode laser spectrometer with pressures ranging from 5 to 300 

Pa. In spite of the employed low pressures, the absorptions due to the hot bands heavily contribute 

to the spectra, which appear very crowded. Nevertheless, the integrated line intensities and the self-

broadening parameters for a number of spectral lines have been determined for the first time. The 

line shapes also show deviations from the Voigt profile which can be well modelled by using a 

Dicke narrowed line function. In addition, a detailed analysis of the infrared spectral features of 

vinyl fluoride has been carried out both experimentally and theoretically. Experimentally, the gas-

phase vibrational spectra have been investigated at low and medium resolution in  the range 400 – 

8000 cm-1. The spectra have been recorded using a Fourier transform spectrometer, with a gas 

sample pressure in the range 0.37 – 40 kPa. The integrated absorption cross sections have been 

determined for the first time. Theoretically, ab initio calculations have been performed using the 

coupled cluster theory within the singles and doubles approximations, augmented by a perturbative 

treatment of triple excitations, CCSD(T). The Dunning’s hierarchy of correlation consistent basis 

sets have been used to obtain anharmonic force constants and optimized geometry. 

In Chapter 9, “Jet-Cooled Diode Laser Spectrum and FTIR Integrated Band Intensities of 

CF3Br”, the high resolution infrared diode laser spectrum of CF3Br (Halon 1301) with natural 

isotopic abundance has  been  investigated  in the region 1090 – 1130 cm-1, characterized by the 

presence of the 2ν5 and ν2 + ν3 absorptions and several weaker hot bands. The rovibrational 

analysis of the data, obtained employing a slit-jet system together with those recorded at 200 K, has 

led to a complete and accurate set of spectroscopic constants for the bands of both bromine 

isotopologues. Integrated band intensities have been obtained for all the absorptions in the spectral 

range 450 – 2500 cm-1. 

Chapters 10 and 11 are devoted to the experiments carried out at the University of 

Strathclyde and designed to investigate the physics of the interaction of chirped infrared laser 

radiation with low pressure gases. In these experiments the sweep rate of the laser frequency may 

be faster than the inter-molecular collision frequency, thus allowing the build up of a strong 

molecular alignment within the gas. The obtained results provide a clear evidence for the chirp rate 

dependence of scattering processes. In Chapter 10, “Frequency Down-Chirped QCL Spectroscopy: 
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Time Dependent Measurements of Collisional Processes in a Dicke Narrowed Spectral Line of 

Water Vapour”, the frequency down-chirped radiation, emitted by a Quantum Cascade Laser (QCL) 

spectrometer used in the intra-pulse method, has been employed to investigate the collisional 

processes responsible for the observed line shape of the unresolved K-doublet 150,15 ← 161,16 and 

151,15 ← 160,16, which belong to the ν2 bending mode of water vapour. The study has been carried 

out by analyzing the behaviour of this line using different chirp rates, while collisionally perturbing 

the water molecules by means of a range of atomic and molecular collision partners. The 

experimental results indicate that the frequency down-chirped technique may be employed to infer 

information about the physics of the absorption process itself, as well as that of intermolecular 

collisions. The study about the rapid passage signals and the time dependence of collisional 

processes is extended to nitrous oxide and carbon dioxide in Chapter 11, “Frequency Down-

Chirped QCL Spectroscopy: Time Dependent Measurements of Nitrous Oxide and Carbon Dioxide 

Collisional Relaxations”. The time dependence of the collisional cross sections, which has been 

studied by the use of different chirp rates, has been clearly demonstrated for the strong ν1 transitions 

observed in the 7.8 μm spectral region. The investigation has been carried out by perturbing the 

nitrous oxide molecules with different atomic and molecular collisional partners and using different 

chirp rates, which in turns lead to different observation times. Among the considered collisional 

partners, carbon dioxide shows very unusual behaviour. It induces a much more efficient 

broadening of the absorption lines of nitrous oxide than N2 and noble gas atoms, causing 

symmetrical line shapes to be observed at relatively low partial pressures. These large effects are 

reciprocated in the rapid quenching and broadening of the rapid passage signals of  unsymmetrical 
16O12C18O isotopomer, which have been detected in the same spectral region. The CO2 absorptions 

have been compared with the signals obtained from the solution of the optical Bloch equations. 

Finally, “Conclusions and Outlook” summarizes the work and the obtained results, and it 

also addresses possible future developments and improvements. 
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11..  PPrriinncciipplleess  ooff  QQuuaannttuumm  MMeecchhaanniiccss  

 

 

 Spectroscopy is basically an experimental subject which is concerned with the study of the 

interaction of light with matter. Nevertheless, the interpretation of a spectroscopy experiment seeks 

its basis in quantum mechanics. Spectroscopy and quantum theories are consequently strongly 

interrelated. In a sense, spectroscopy is applied quantum mechanics. 

 Toward the end of the 19th century the success of the classical physics was impressive. All 

the known physical phenomena seemed to found their explanation to the extent that many scientists 

thought that physics was virtually a closed book. In A History of Science, Sir William C. Dampier 

wrote: “It seemed as though the main framework had been put together once for all, and that little 

remained to be done but to measure physical constants to the increased accuracy represented by 

another decimal point”.  

It was rather the beginning of a profound upset of classical physics. Indeed a series of 

experimental observations demonstrated the inadequacy of classical mechanics to describe the 

properties of matter on molecular, atomic and subatomic scale. This revolution promoted the 

development of the quantum mechanics which was born in 1925 – 1926 when Werner Heisenberg 

and Erwin Schrödinger formulate Matrix Mechanics and Wave Mechanics, respectively. Both the 

methods are equivalent and have as their basis the same set of assumptions. Combining the 

elements of the two approaches has proven to be useful for spectroscopists. 

 

 

11..11  WWAAVVEE  EEQQUUAATTIIOONN  AANNDD  AAPPPPRROOXXIIMMAATTIIOONNSS  

 

According to Schrödinger’s wave mechanics, the dynamical state of a quantum system is 

completely identified, by its wave function ( )tN ,,...,, 21 rrrΨ  which is the solution of the proper 

wave equation: 

 

( ) ( )
t

t
i

tH N
N ∂

Ψ∂
−=Ψ

,,...,,,,...,,ˆ 21
21

rrrrrr h       (1.1) 
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where ri denotes the position of the i-th particle and Ĥ  is the Hamiltonian of the system. For 

conservative systems, the Hamiltonian does not explicitly depend upon the time and the quantized 

stationary energy levels of the system are the eigenvalues of the time – independent Schrödinger 

equation: 

 

 ( ) ( )NN EH rrrrrr ,...,,,...,,ˆ
2121 ψψ =        (1.2) 

 

where ( )Nrrr ,...,, 21ψ  is the time – independent wave function. The latter is usually called the wave 

function of the system, although it differs from the true wave function by a phase factor. 

Unfortunately, for “complex” systems such as molecules, the Schrödinger equation has no 

analytical solutions and so it is necessary to adopt approximations. The solution of the wave 

equation is in general simplified by the Born – Oppenheimer approximation which is valid, at least 

as starting point, in the majority of quantum chemical calculations. It states that, since nuclei are 

much heavier than electrons, they move much more slowly. This permits to separate the nuclear and 

electronic motions so that, the total wave function, which is a function of both electronic and 

nuclear coordinates, can be written as the product of an electronic and a nuclear wave function. 

From now on, the validity of the Born – Oppenheimer approximation will always be assumed.  

The allowed ro-vibrational energies, ERV, of a molecule are the eigenvalues of the time – 

independent wave equation: 

 

RVRVRVRV EH ψψ =ˆ          (1.3) 

 

where RVĤ  and RVψ  are the ro-vibrational Hamiltonian and wave function, respectively. Another 

approximation which is usually adopted consists in neglecting the interaction between the rotational 

and vibrational motions. Doing so it is possible to break equation (1.3) into two separated wave 

equations. One of these describes the rotational motion of a rigid rotating body; the other describes 

the vibrational motion of the non-rotating molecule. However, in some circumstances the latter 

approximation lead to very poor results and hence the interaction between rotations and vibrations 

must be treated, usually by means of perturbation methods. 
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11..22  AAPPPPRROOXXIIMMAATTIIOONN  TTEECCHHNNIIQQUUEESS  

 

 There are two principal methods for the approximate determination of the energy levels and 

wave functions of a quantum system: the variational method and the perturbation method.  

 The variation method is a very general one which is based on the variation theorem. The 

latter states that, given a system whose Hamiltonian operator Ĥ  is time independent and whose 

lowest energy eigenvalue is 0E , if φ represents any normalized, well-behaved function of the 

coordinates of the particles of the system that satisfy the boundary conditions of the problem, then 

 

 0*

* ˆ
E

d

dH
E ≥=

∫
∫

τφφ

τφφ
        (1.4) 

 

where E  and φ are called the variation integral and the trial or variation function, respectively. 

 The significance of the variation theorem is that, whatever trial function is used, the energy 

calculated from it is never less than the true energy of the ground state of the system. Put in another 

way, the smaller the value of the energy obtained from φ, the closer it is to the true energy and 

therefore the more closely φ resembles the ground state wave function. 

 A special kind of variation function widely used in quantum chemistry is the linear variation 

function, which is a linear combination of n linearly independent basis functions if : 

 

 ∑
=

=
n

i
ii fc

1

φ           (1.5) 

 

where the coefficients ci are parameters to be determined minimizing the energy, while the 

functions if  are frozen during the calculation. These functions, which constitute what is called the 

basis set,  must satisfy the boundary conditions of the problem. The advantage of the linear 

variation theory is that it is not limited to the ground state energy. The coefficients ci that give a 

minimum energy E   satisfy the secular equation:   

 

 ( ) 0
1

=−∑
=

n

i
kikii ESHc  k = 1, 2,…, n;      (1.6) 
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where kiH  and kiS  are shorthand notations for the following expressions: 

 

 ∫= τdfHfH ikki
ˆ* ;  ∫= τdffS ikki

*      (1.7) 

 

A solution for equation (1.6) exists only if the secular determinant vanishes: 

 

 0det =− ESH kiki ;         (1.8) 

 

solving this equation leads to a set of n roots for the energy,  0E  ≤ 1E  ≤ … ≤  nE . Each of 

these roots represents an upper bound to the energy of the corresponding state, namely iE  ≤ iE . 

For each solution iE , there is a particular set of coefficients that identifies the corresponding 

wave functions iφ . Back substituting the values of iE  into equation (1.6) leads, after 

normalization, to the coefficients ci’s and then to the determination of the wave functions iφ  that 

better approach the true ones. 

 The time-independent perturbation theory makes use of the fact that the Hamiltonian for the 

true system, Ĥ , is only slightly different from an Hamiltonian, ( )0Ĥ , whose eigenvalues and 

eigenfunctions are known: 

 

 ( ) ( ) ( ) ( )0000ˆ
nnn EH ψψ =          (1.9) 

 

where the eigenfunctions ( )0
nψ  form a complete orthonormal basis set.  It is then assumed that the 

Hamiltonian Ĥ  of the perturbed system can be written as the sum of the unperturbed Hamiltonian 
( )0Ĥ  and a perturbation term 'Ĥλ  

 

 ( ) 'ˆˆˆ HHH λ+= 0 ;         (1.10) 

 

λ is just a time-independent parameter used to keep track of the order of perturbation. At the end of 

the calculation it is set to one to turn the perturbation on. The wave equation for the perturbed state 

is  
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 ( )( ) nnn EHH ψψλ =+ 'ˆˆ 0         (1.11) 

 

where nψ  and nE  are the perturbed wave function and energy, respectively. By expanding nψ  and 

nE  as Taylor series in powers of λ: 

 

 ( ) ( ) ( ) ( ) ......2210 +++++= k
n

k
nnnn ψλψλλψψψ  

 ( ) ( ) ( ) ( ) ......2210 +++++= k
n

k
nnnn EEEEE λλλ  

 

equation (1.11) can be written as 

 

 
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ...

...ˆ'ˆˆ'ˆˆ
2011022000100

201210000

++++++=

=+++++

nnnnnnnnnnnn

nnnnn

EEEEEE

HHHHH

ψψψλψψλψ

ψψλψψλψ
  (1.12) 

 

For the two series on each side of equation (1.12) to be equal to each other for all values of λ, the 

coefficients of like powers of λ must be equal. By equating the coefficients of the λk terms and 

solving, one obtains the kth-order corrections to the wave function and energy. 

In the case of perturbation of an energy level whose degree of degeneracy is d, the treatment is 

analogous, but the zeroth-order wave functions are expressed as a linear combination of the 

degenerate wave functions: 

 

 ( ) ( )∑
=

=
d

i
iin c

1

00 ψφ , dn ≤≤1 .       (1.13) 

 

In the latter case the perturbation can remove the degeneracy and hence split the energy levels. In 

some circumstances, it may have no effect or may only partly remove the degeneracy. 

 In order for the perturbation approach to be useful, the series expansions of the wave 

function and energy must converge and the kth-order correction should be larger than the (k + 1)th-

order correction. 
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11..33  TTIIMMEE--DDEEPPEENNDDEENNTT  PPEERRTTUURRBBAATTIIOONN  TTHHEEOORRYY  

 

 A molecule exposed to electromagnetic radiation experiences an oscillating electromagnetic 

field. Time-dependent perturbation theory is the most convenient approximate approach to treat 

such problems and it is used to calculate the transition probabilities and the intensities of spectral 

lines. 

 The time-independent wave equation of the unperturbed system is given by equation (1.9), 

where the ( )0
nE  and ( )0

nψ  are the stationary-state energies and wave functions. These functions are 

related to the time-dependent unperturbed wave functions ( ) ( )tn
0Ψ  by 

 

 ( ) ( ) ( )
( )

h

tE
i

nn

n

et
0

00 −
=Ψ ψ .         (1.14) 

 

The time-dependent wave equation of the perturbed system is 

 

 ( )[ ]
ti

tHH
∂
Ψ∂

−=Ψ+
h'ˆˆ 0         (1.15) 

 

where ( )tH'ˆ  is a time-dependent operator. At any time the true wave function can be expressed as a 

linear combination of the ( )0
nΨ  functions according to: 

 

 ( )
( )

( )∑
−

=Ψ
k

k

tiE

k

k

etb 0

0

ψh         (1.16) 

 

where the expansion coefficients bk are also time-dependent. 

 Upon substitution of equation (1.16) into (1.15), multiplication by ( )( )*0
mψ  and integration 

over the spatial coordinates one gets: 

 

 ( ) ( ) ( )( )
( ) ( )∑

−

−=
k

km

tEE
i

k
m Hebi
t
tb km

00 'ˆ
d

d
00

ψψh

h
.      (1.17) 

 

in which Dirac’s notation jiji HH ψψψψ ∫= ˆˆ *  has been used. 
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 The above expression is simplified by considering that the system is in an initial state n  

and assuming that the perturbation is small and acts only for a short time. Under these conditions, 

the change in the expansion coefficients from their initial values is small and to a good 

approximation at time t' they are given by 

 

 ( )
( )

( ) ( )∫
−

−≈
'

0

00 'ˆ'
00t

nm

tEE
i

mnm dtHeitb
nm

ψψδ h

h
      (1.18) 

 

where mnδ  is the Kronecker’s delta. 

 The time-dependent wave function of the perturbed system is obtained employing the 

coefficients given by the previous expression. At the end of the perturbation, the state function is: 

 

 ( )
( )

( )∑
−

=Ψ
m

m

tiE

m

m

etb 0
0

ψh'         (1.19) 

 

The time-dependent perturbation changes the state of the system from ( )0
nΨ  to a superposition of 

states ( ) ( )∑ Ψ
m

mm tb 0' . The net result is a transition from the stationary state n  to the stationary state 

m , with a probability given by ( ) 2'tbm . 

 

 

11..44  AANNGGUULLAARR  MMOOMMEENNTTUUMM  OOPPEERRAATTOORRSS  

 

 In quantum mechanics, as in classical mechanics, the rotation of a system finds its 

description in the angular momentum, which is a constant of the motion for an isolated system. 

Differences with classical mechanics arise in that the angular momentum is not an ordinary vector 

but a vector operator. Classically, the angular momentum of a system of N particles about an 

arbitrary origin is given by 

 

 ∑
=

∧=
N

n
nn

1
pqL          (1.20) 
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where qn and pn are the position and the instantaneous linear momentum of the n-th particle. In a 

space fixed reference frame, (X, Y, Z), equation (1.20) can be expanded as 

 

 =++= kjiL zyx lll  

 ( ) ( ) ( )[ ]∑
=

−+++−=
N

n
nXYnZXnYZ pYpXpXpZpZpY

1

kji    (1.21) 

 

where ( )nZYX ,,  and ( )nZYX ppp ,,  are the components of qn and pn, respectively. The quantum 

mechanical equivalent of equation (1.20) is obtained upon replacement of q and p with their 

corresponding operators, leading to the following components of the quantum mechanical angular 

momentum operator: 

 

 ∑
=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=
N

n n
X Z

Z
Y

YJ
1 i

ˆ h  

 ∑
=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=
N

n n
Y Z

X
X

ZJ
1 i

ˆ h        (1.22) 

 ∑
=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=
N

n n
Z X

Y
Y

XJ
1 i

ˆ h  

 

where the symbol for the general angular momentum operator, Ĵ , has been used instead of L̂ , 

which is usually employed to denote the orbital angular momentum operator. 

 In the matrix mechanics approach, the basic information is carried in the commutation 

properties, which hold among the various operators representing the observables associated with the 

relevant problem. The commutator of two operators Â  and B̂  is defined as 

 

 [ ] ABBABA ˆˆˆˆˆ,ˆ −=          (1.23) 

 

and two situations are of particular interest:  [ ]BA ˆ,ˆ = 0 and [ ]BA ˆ,ˆ = Bk ˆ  where k is a scalar number. 

In the former case the two operators are said to commute and it follows that functions exist which 

are simultaneous eigenfunctions of both operators. In the latter  case, it is possible to generate 

complete sets of functions which are eigenfunctions of Â , according to 
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 ( ) ( )( )ABkaABA ˆˆˆ +=          (1.24) 

 

where A  is an eigenfunction of Â with eigenvalue a. Equation (1.24) implies that the effect of the 

operation of B̂  on A  is to generate a new eigenfunction of Â  with eigenvalue (a + k). 

 The above defined Cartesian components of Ĵ , satisfy the following commutation relations: 

 

 [ ]YX JJ ˆ,ˆ = ZJi ˆh  [ ]ZY JJ ˆ,ˆ = XJi ˆh  [ ]XZ JJ ˆ,ˆ = YJi ˆh    (1.25) 

 

This commutation relations can be considered as the quantum conditions which define the space 

fixed components of a generalized angular momentum operator, i.e. a general angular momentum 

obeys these commutation rules. 

 Of particular interest for the treatment of rotational motion is the square of the total angular 

momentum: 

 

 2222 ˆˆˆˆ
ZYX JJJ ++=J          (1.26) 

 

whose commutation properties are 

 

 [ ]iĴ,ˆ 2J = 0          (1.27) 

 

with i standing for X, Y or Z. This result is understandable by considering that 2Ĵ  is a scalar 

quantity and thus it is independent of the orientation. Since 2Ĵ  commutes with all the components 

of Ĵ  but these components do no commute with themselves, it follows that only 2Ĵ  and one 

component of Ĵ  (by convention ZĴ ) are simultaneously measurable and there exist functions which 

are simultaneously eigenfunction of both 2Ĵ  and ZĴ .  

 The angular momentum operator of a rotating body can be expressed as well with respect to 

a molecular fixed reference frame, (x, y, z). The two systems of coordinates are related to each other 

by the direction cosine matrix and hence the components of Ĵ  in the two reference systems are 

linked by  
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⎥
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⎥
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⎢
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⎥
⎥
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⎢
⎢

⎣

⎡
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YzYyYx

XzXyXx

Z

Y

X

J
J
J

J
J
J

ˆ
ˆ
ˆ

ˆ
ˆ
ˆ

        (1.28) 

 

with ( )αα ii cos=Φ , where iα represents the angle between the space fixed i axis and the molecule-

fixed α axis. The space- and molecule- fixed components of Ĵ  commute, and the latters obey 

commutation rules similar to that of the space fixed components: 

 

 [ ]yx JJ ˆ,ˆ = zJi ˆh−  [ ]zy JJ ˆ,ˆ = xJi ˆh−  [ ]xz JJ ˆ,ˆ = yJi ˆh− .   (1.29) 

 

 Because ZĴ  and zĴ  commutes each other and both commute with 2Ĵ , there exist functions, 

mkJ , which are simultaneously eigenfunctions of the three operators. It can be shown that  

 

 ( ) mkJJJmkJJ 1ˆ 22 += h  

 mkJkmkJJ z h=ˆ        (1.30) 

mkJmmkJJ Z h=ˆ  

 

from which it follows that ( )12 +JJh , kh  and mh  are the eigenvalues of 2Ĵ , zĴ  and ZĴ , 

respectively, while J, k, m are three quantum numbers such that 

 

 J = 0, 1, 2,… 

 k = J, J – 1, J – 2,…, – J        (1.31) 

 m = J, J – 1, J – 2,…, – J. 

 

Since 2Ĵ , zĴ  and ZĴ  are Hermitian, their eigenfunctions are orthogonal and they can be 

normalized such that  "'"'"'"""''' mmkkJJmkJmkJ δδδ= . 
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11..55  TTHHEE  HHAARRMMOONNIICC  OOSSCCIILLLLAATTOORR  

 

 In classical mechanics, a simple one-dimensional harmonic oscillator is described as a 

particle constrained to move along the x axis and subject to a restoring force given by the Hooke’s 

law, kxF −=  where k is called the force constant. Denoting with xq =  and p the position 

coordinate and the linear momentum of the particle, the Hamiltonian of such system is given by 

 

 ( )2222

2
1 qmp
m

ω+=H ,        (1.32) 

 

where ( ) 2
1

mk=ω  is the angular frequency of the motion and m represents the mass of the particle. 

The corresponding quantum mechanical Hamiltonian can be written as 

 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+== 2

2

ˆˆ
2
1ˆˆ qm

m
pH

hhh

ω
ωω

H .       (1.33) 

 

Defining Q
m

q ˆˆ
2

1

⎟
⎠
⎞

⎜
⎝
⎛=

ω
h  and P

m
p ˆˆ

2
1

⎟
⎠
⎞

⎜
⎝
⎛=

ω
h , the above Hamiltonian can be put in the more 

compact form:  

 

 ( )22 ˆˆ
2
1ˆ QPH +=          (1.34) 

 

where the Hermitian operators Q̂  and P̂  satisfy the commutation relation [ ]PQ ˆ,ˆ = i. The problem 

of finding the eigenvalues of the operator (2.34) can be conveniently tackled by making use of the 

so called annihilation and creation operators, which are respectively defined as  

  

 ( )PiQa ˆˆ
2
2ˆ +=  

 ( )PiQa ˆˆ
2
2ˆ † −=  

     (1.35) 
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where the upper script † is used to denote the complex conjugate transpose. Using these two 

operators, the quantum mechanical Hamiltonian can be rewritten as 

 

 
2
1ˆˆ += NH           (1.36) 

 

with aaN ˆˆˆ †= . The eigenvalue problem associated with the harmonic oscillator is thus equivalent to 

the problem of constructing the eigenvectors of the operator N̂ . By making use of the commutation 

relation between â  and †â , [ ]†,aa = 1, the following equations can be derived: 

 

 ( )1ˆˆˆˆ −= NaaN ; ( )1ˆˆˆˆ †† −= NaaN . 

 

It can be proved that if v  is an eigenvector of N̂  and v is the corresponding eigenvalue, then: 

 (i)  necessarily v ≥ 0;  

(ii)  if v = 0, ;0vˆ =a  if v ≠ 0, vâ  is a non-zero vector of norm vvv  and it is an 

eigenvector of N̂  belonging to the eigenvalue v – 1; 

(iii) vˆ †a  is certainly non-zero with norm equals to ( ) vv1v +  and it is an eigenvector of N̂  

corresponding to the eigenvalue v + 1. 

By normalization of the eigenvectors1, it follows that 

 

 1vvvˆ −=a  1v1vvˆ † ++=a .      (1.37) 

 

which show that the creation operator can be used to generate the infinite set of eigenvectors, each 

separated by an energy quantum of ω.  

The energy levels of the harmonic oscillator can be written as  

 

ωh⎟
⎠
⎞

⎜
⎝
⎛ +=

2
1vvE          (1.38) 

 

                                                 
1 It should be mentioned that the normalization constants are defined within an arbitrary phase. 
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where the quantum number v can assume integer values within the interval [0, +∞[. The relations 

given in (1.37) can be used to derive the matrices of p̂  and q̂ which diagonalize Ĥ  in the basis 

v . This matrices are not diagonal but they are Hermitian.i 

 
 
                                                 
i The chapter has been written by consulting Refs. [22 – 30]. 
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22..  MMoolleeccuullaarr  RRoottaattiioonnss  aanndd  VViibbrraattiioonnss  

 

 
 In the prediction of molecular absorptions and spectral lines in the infrared region it is 

common practice to use an effective Hamiltonian approach. An effective Hamiltonian is one which 

may be derived from the complete Hamiltonian by using a perturbation theory approach. As seen in 

the previous chapter, almost all the effective Hamiltonians are based upon the separation of 

electron, vibrational and rotational motion. Hence, the complete vibration-rotation Hamiltonian is 

expanded in terms of the rotational and vibration Hamiltonians,  

 

 VRRV HHH ˆˆˆ +=           (2.1) 

 

and the complete wave function is expressed as the product 

 

 VRRV ψψψ =           (2.2) 

 

where Rψ  and Vψ  are the rotational and vibrational wave functions, respectively [3]. 

The vibration-rotation Hamiltonian was originally derived by Wilson and Howard [31], but most of 

the theoretical treatment relating it to observed vibration-rotation spectra was developed by Nielsen 

[32]. Further developments were made by Hougen’s work on symmetry classification, Oka’s order 

of magnitude classification of the various terms, and culminated with the Watson’s work on the 

general Hamiltonian [33]. 

 

 

22..11  MMOOLLEECCUULLAARR  VVIIBBRRAATTIIOONNSS  

 

 The motion of a molecule consisting of N atoms is completely described by 3N coordinates, 

i.e. 3N degrees of freedom. The translational motion of the molecule as a whole is described by 3 

coordinates which specify its centre of mass. The remaining 3N – 3 coordinates are sufficient to fix 

the relative position of all the N atoms with respect to the centre of mass: they represent the internal 
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degrees of freedom. The rotation may be described by two or three coordinates, depending on 

whether the molecule is linear or not. The remaining coordinates describe the vibrational motion: 

linear molecules have 3N – 5 vibrational degrees of freedom, whereas non-linear molecules possess 

3N – 6 vibrational degrees of freedom. 

 During the vibrational motions all the atoms are usually displaced to some extent from their 

equilibrium positions. The resulting complex motion is called Lissajous motion. Nevertheless, it can 

be decomposed into simpler vibrations, which are called normal modes of vibration. They are 

characterized by the fact that each atom carries out a simple harmonic motion and that all particles 

have the same frequency of oscillation. The number of normal modes is always equal to the number 

of the vibrational degrees of freedom, that is 3N – 5 and 3N – 6 for linear and non-linear molecules, 

respectively. Any vibrational motion of the system may be represented as a superposition of these 

normal modes. 

 The treatment of molecular vibrations can be conveniently tackled by the so-called normal 

coordinates analysis. A fortunate outcome of this method is an exactly solvable Schrödinger 

equation, provided that the potential is assumed to be harmonic. An alternative, but equivalent 

method is the use of the internal coordinates and of the Wilson’s F and G matrices. 

 Within the normal coordinate analysis approach, with each atom of a molecule is associated 

a Cartesian coordinate system having its origin at the equilibrium position of the atom. At any time, 

the geometry of the molecule can be specified by 3N atomic displacement coordinates: 

 

 ( ) ( ) ( ){ } =ΔΔΔΔΔΔΔΔΔ NNN zyxzyxzyx ,,,...,,,,, 222111  

( ) ( ) ( ){ } { }iNNN qqqqqqqqqq == −− 31323654321 ,,,...,,,,, .     (2.3) 

 

By defining the mass-weighted Cartesian displacements as2, 

 

  iji qm=η           (2.4) 

 

the classical kinetic energy, which comprises the translational, rotational and vibrational degrees of 

freedom, is 

 

 ∑
=

⎟
⎠
⎞

⎜
⎝
⎛=

N

i

i

dt
dT

3

1

2

2
1 η .         (2.5) 

                                                 
2 The masses mj are intended to run over the 3N nuclei and therefore a set of three displacement coordinates, for 
example (q1, q2,q3), is associated with the same mass. 
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If the vibrational displacements are restricted to small amplitudes, the potential energy can be 

expanded around the equilibrium position. Within the harmonic oscillator approximation the series 

is truncated after the quadratic terms, so that the potential energy can be expressed as3 

 

 ∑∑
= ≥

=
N

i ij
jiijbV

3

1
ηη          (2.6) 

 

where ( )
0

2

2
1

1
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂∂
∂

=
jiji

ij qq
V

mm
b  are the elements of the force constant matrix, B. 

 There exists a particular coordinate system in which the matrix B and hence the potential 

energy turn out to be diagonal. This system is called normal coordinate system. A normal 

coordinate can be expressed as a linear combination of the mass weighted Cartesian coordinates, 

 

 ∑
=

=
N

k
kkii lQ

3

1
η ,           (2.7) 

 

where ikl  are the elements of the matrix L which diagonalizes the force constant matrix as follows: 

ΛBLL =T .  Λ is a diagonal matrix whose elements are related to the frequencies of the normal 

vibrations iω  through ii πωλ 2= . It has to be pointed out that two (for linear molecules) or three 

(for non-linear molecules) of these frequencies turn out to be zero, since they correspond to non-

genuine vibrations in which the molecule is simply translating or rotating. 

 The kinetic and the potential energies written as functions of the normal coordinates 

become, respectively 

 

 ∑
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⎟
⎠
⎞

⎜
⎝
⎛

∂
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=
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i

i
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1
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=

=
N

i
iiQV

3

1

2

2
1 λ .         (2.9) 

 

                                                 
3 At the equilibrium position, 0=

∂

∂

iq

V
; the equilibrium value V0 can be taken as reference potential energy, and 

therefore it can be put equal to zero without loss of generality. 
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 The quantum mechanical vibrational Hamiltonian in terms of normal coordinates is 

therefore (for non-linear molecules) 

 

 ∑
−

=
⎟⎟
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⎞
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⎝

⎛
+

∂
∂

−=
63
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2
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ˆ
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i
ii

i
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Q
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which is the sum of one-dimensional harmonic oscillator Hamiltonians. Since for non-genuine 

vibrations iω  = 0, they do not contribute to the vibrational energy and hence they have been 

dropped from the summation. The total wavefunction is the product of the individual harmonic 

oscillator wavefunctions 

 

 ( ) ( )∏
−

=

=
63

1
v

N

i
iv Q

i
φψ Q          (2.11) 

 

and hence the total energy is the sum of the individual energies 

 

 ( ) ∑
−

=
− ⎟

⎠
⎞

⎜
⎝
⎛ +=

63

1
6321 2

1vvvv
N

i
iiNG ν~,...,, ,  ,...,, 210v =i    (2.12) 

 

where G is called vibrational term value and the frequencies iν~  are expressed in wavenumber units 

(i.e. cii νν =~ ). A vibrational state is then designated by specifying all the 3N – 6 (or 3N – 5) 

vibrational quantum numbers iv , each of which varies independently over the range 0 to +∞. 

 It may happen that two or more vibrational frequencies coincide, in which case the 

corresponding vibrations are said degenerate with one another. In this case the vibrational energy 

may be written as 

 

 ( ) ∑ ⎟
⎠
⎞

⎜
⎝
⎛ +=

i

i
ii

d
G

2
v~,...v,v 21 ν ,       (2.13) 

 

where id  is the degree of degeneracy of the vibration iν~  ( id  = 1 means no degeneracy). 

 The concept of normal vibrations rests on the assumption of infinitesimal amplitude 

oscillations when only the quadratic terms in the potential energy need to be considered. Actually, 

the amplitudes of the quantized oscillations are by no means infinitesimal and therefore cubic, 
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quartic (and higher terms) in the potential energy must be considered, meaning that the molecular 

vibrations are anharmonic. For polyatomic molecules, if cubic and quartic order terms are 

introduced into the vibrational wave equation, it no longer resolves into a number of independent 

equations and the resolution of the vibrational motion into normal vibrations is not possible. In 

consequence the energy is no longer a sum of the energies of the individual oscillators, but it has 

cross terms containing the vibrational quantum numbers of two or more normal vibrations.  

The vibrational term values for a polyatomic anharmonic oscillator with only non-degenerate 

vibrations modify from equation (2.12) to 
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where the jix ,  are anharmonic force constants.  

 For an anharmonic oscillator with degenerate vibrations the term values are  
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where jiijg ll  is an additional anharmonic term. 

 

 

22..22  VVIIBBRRAATTIIOONNAALL  SSEELLEECCTTIIOONN  RRUULLEESS  

 

 In general, for a transition to be active (i.e. observable with a given technique) two selection 

rules must be satisfied. The gross selection rules are statements about the properties that a molecule 

must possess in order to be capable of showing a particular type of transition; the specific selection 

rules state the changes in quantum numbers that may occur during such a transition. 

 In the process of absorption or emission of infrared radiation involving transitions between 

two vibrational states of a molecule, the interaction is mainly between the molecule and the electric, 

rather than the magnetic, component of the electromagnetic radiation. For this reason infrared 

selection rules are also referred to as electric dipole, or simply dipole, selection rules. 

 The vibrational transition moment for a v'  ← v" transition is defined by the following 

expression 
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 v"v'v"v' μμ ˆ=          (2.16) 

 

where μ̂  is the dipole moment operator of the molecule in a given electronic state. The transition 

moment is a vector whose components are 

 

 v"v'v"v' α
α μμ ˆ= , zyx ,,=α        (2.17) 

 

where αμ̂  is the component of the electric dipole moment along the α axis. Therefore, the square of 

the transition moment can be written as 
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zyx μμμ ++=μ .       (2.18) 

 

Since the intensity of a transition is proportional to the square of the transition moment, 
2

v"v'μ , it follows that the transition is forbidden if the transition moment vanishes, whereas the 

transition is allowed if the transition moment is non-zero, i.e. at least one of the components among 

the αμ v"v'  is non-zero. 

If the amplitudes of normal vibrations are small, then the components of  v"v'μ  can be 

expanded as a converging series 
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where αμe  is the component of the permanent dipole moment along the α axis and all the partial 

derivatives are referred to the equilibrium configuration of the molecule. To a first approximation, 

the quadratic and higher order terms in the expansion are neglected; they give rise to the so-called 

electrical anharmonicity. Due to the orthogonality of the eigenfunctions, the components of the 

transition moment can be expressed as 
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It follows that the gross selection rule states that for an electric dipole transition to be infrared active 

there must be a change of the dipole moment during the vibrational motion. In addition, the specific 

selection rule requires that the vibrational quantum number changes according to Δv = ±1, and if 

anharmonicity is considered, Δv = ±2, ±3,… is allowed as well. 

 There are symmetry requirements for equation (2.16) to be non-zero and therefore for a 

transition to be infrared allowed. The requirement is that the symmetry species of the integrand 

contains the totally symmetric representation: 

 

 ( ) ( ) ( ) A⊃Γ×Γ×Γ v"v' ψψ μ̂         (2.21) 

 

where vψ  is the vibrational function, Γ stands for “representation of …” and A denotes the totally 

symmetric representation of the point group to which the molecule belongs. The dipole moment 

vector belongs to the same symmetry species as a translation of the molecule in the same direction,  

 

 ( ) ( )ααμ TΓ=Γ , zyx ,,=α ;       (2.22) 

 

therefore, given equation (2.18), it follows that (2.21) can be recast as 

 

 ( ) ( ) ( ) ATx ⊃Γ×Γ×Γ v"v' ψψ  and/or 

 ( ) ( ) ( ) ATy ⊃Γ×Γ×Γ v"v' ψψ  and/or       (2.23) 

 ( ) ( ) ( ) ATz ⊃Γ×Γ×Γ v"v' ψψ , 

 

Fundamental vibrations, or normal modes, are transitions between the ground vibrational 

states and the first excited vibrational state, vi = 1 (Figure 2.1 a). Since the ground vibrational state 

belongs to the totally symmetric representation, ( ) A=Γ v"ψ , a fundamental vibration is infrared 

active if the wave function which describes the excited state belongs to the same representation of 

one or more translations, ( ) ( )αψ TΓ⊃Γ v' . 

The anharmonicity causes vibrations other than the fundamental ones to be observable. The 

classification of these vibrational transitions, and their symmetry species are as follow. 
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Overtone vibrations are transitions in 

which the molecule gains more than one 

vibrational energy quantum within the same 

vibrational mode (Figure 2.1 b). The transition 

v' = 2 ← v" = 0 gives rise to the first overtone, 

the transition v' = 3 ← v" = 0 gives rise to the 

second overtone and so on: the transition v' = n 

← v" = 0 gives rise to the (n – 1)-th overtone. 

The symmetry species of an n-th overtone can 

be determined by taking (n + 1) times the direct 

product of the irreducible representation to which the involved normal mode belongs. 

Combinations bands arise when the molecule gains two or more vibrational quanta over two 

or more normal vibrational modes (Figure 2.1 c). The symmetry species of the combination bands 

can be obtained by taking the direct product of the irreducible representations to which the involved 

normal modes belong. 

Hot bands are due to transitions between an excited vibrational level and another excited 

vibrational level of higher energy (Figure 2.1 d). They are called hot band because their intensity 

increases with the temperature. The symmetry species can be determined as for the combination 

bands. 

 

 

22..33  MMOOMMEENNTTSS  OOFF  IINNEERRTTIIAA  

 

 The rotational properties of molecules can be described according to their principal 

moments of inertia. With respect to any set of Cartesian axes whose origin is at the centre of mass 

of the molecule, the angular momentum is  

 

 ωIJ ⋅=            (2.24) 

 

where J is the angular momentum vector, I is the second order tensor of inertia and ω is the angular 

velocity vector. Written explicitly, equation (2.24) takes on the form 

 

vi = vt = 0

d

cba

vt = 1

(vi = 1) + (vt = 1)

vi = 2

vi = 1

 
Figure 2.1. Schematic representation of vibrational 
transitions: (a) fundamental; (b) overtone; (c) combination 
band; (d) hot band. 
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(Jx, Jy, Jz) and (ωx, ωy, ωz) are the components of the angular momentum and angular velocity, 

respectively; Ixx, Iyy and Izz are the moments of inertia along the axis indicated as subscript, while the 

non-diagonal elements of the tensor of inertia are called products of inertia: 
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        (2.27) 

 

where mi is the mass of the i-th atom whose coordinates are (xi, yi, zi) and the summation is taken 

over all the particles of the body. Among all the various axes going through the centre of mass, 

there are always three mutually perpendicular directions, for which the products of inertia vanish 

and hence the tensor of inertia becomes diagonal, 

 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

z
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I
I

I

00
00
00

I , 

 

and there are a maximum and a minimum value of the moments of inertia. The axes representing 

these directions are called the principal axes, and the corresponding moments of inertia the principal 

moments of inertia. In spectroscopy, this unique set of parameters carry the subscript A, B and C, 

and the order is determined by the convention IA ≤ IB ≤ IC. 
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 There are six possible ways of identifying the axes x, y and z with the principal axes of 

inertia A, B and C. These are listed in Table 2.1 according to the notation of King, Hainer and Cross 

[34]. 

 
Table 2.1. King, Hainer and Cross notation: r and l denotes a Cartesian axes system right- and left- handed, 
respectively. 

 Ir IIr IIIr Il IIl IIIl 
x B C A C A B 
y C A B B C A 
z A B C A B C 

 

According to the values assumed by the principal moments of inertia, molecules are 

subdivided into four different classes of rotors. If one of the principal moments is zero, while the 

remaining two are equal, the molecule is classified as a linear rotor; if two of the principal moments 

of inertia are equal and the third is non zero, it is called a symmetric top; if all the three moments of 

inertia are equal, the molecule is classified a spherical top and if the three moments are all different, 

the molecule is said to be an asymmetric top. This classification is summarized in Figure 2.2.  

 

 
Figure 2.2. Classification of rotators on the basis of the principal moments of inertia. 
 

Each class of rotators is characterized by an its own spectroscopic behaviour. 

 

 

22..44  TTHHEE  RRIIGGIIDD  SSYYMMMMEETTRRIICC  AANNDD  AASSYYMMMMEETTRRIICC  RROOTTOORRSS  

 

 The quantum mechanical Hamiltonian of a rigidly rotating molecule referred to the principal 

axes of inertia is  

 

ROTATORS 

LINEAR 
IA = 0, IB = IC 

SYMMETRIC SPHERIC 
IA = IB = IC 

ASYMMETRIC 
IA ≠ IB ≠ IC 

Prolate 
IA < IB = IC 

Oblate 
IA = IB < IC 
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 2220 ˆˆˆˆ
zzyyxxr JBJBJBH ++=         (2.28) 

 

where xĴ , yĴ , zĴ  are the components of the angular momentum operator and Bx, By, Bz are the 

rotational constants of the molecule, which are given by: 

 

 
cI

hB
α

α π 28
= ;         (2.29) 

 

in which the Bα’s are expressed in cm-1, Iα is the moment of inertia about the α-axis and c is the 

speed of light. Usually, the rotation constants are denoted A, B, C depending on whether they refer 

to the principal moment of inertia IA, IB or IC, respectively.  

The rotational Hamiltonian may conveniently be expressed in terms of the so-called shift 

operators; in the molecule- and space-fixed axis systems these operators are defined respectively as 

 

 yx JJJ ˆiˆˆ ±=m , YX JJJ ˆiˆˆ ±=± .      (2.30) 

 

Rewriting the rotational Hamiltonian (2.28) by using the mĴ  operators, one obtains 

 

 ( ) ( ) ( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ +++⎥⎦

⎤
⎢⎣
⎡ +−++= −+ 22220 ˆˆ

4
1ˆ

2
1ˆ

2
1ˆ JJBBJBBBBBH yxzyxzyxr J . (2.31) 

 

 The eigenvalues of the Hamiltonian operator represent the quantized rotational levels of the 

molecule. If the Hamiltonian operator commutes with the angular momentum operators, then it 

results diagonal in the representation in which those operators are diagonal. 

 The symmetric top rotor has a component of its angular momentum about the internal 

symmetry axis of inertia which is a constant of the motion. The symmetric-top representation is of 

particular importance, since the rotational Hamiltonian commutes with the angular momentum 

operators, which are diagonal in the J, k, m representation. The non-zero elements of the angular 

momentum operators in the molecule-fixed and space-fixed axes are listed in Table 2.2 using the 

symmetric rotor basis function MkJ ,, ; in the expressions K = |k| and M = |m| and the quantum 

numbers J, k and m are given by the relations (1.31). 
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 As can be seen from equations (2.28) and (2.31), in finding the eigenvalues of the rotational 

Hamiltonian, the squared operators 2ˆ
zJ , 2ˆ

xJ  and 2ˆ
yJ  are needed. They can be found from the above 

expressions giving the αĴ  matrix elements by applying the properties of the product of matrices4.  

The matrix associated with 2ˆ
zJ  results diagonal, while matrices 2ˆ

xJ , 2ˆ
yJ  have both diagonal and 

non-diagonal elements. The involved non-zero matrix elements of the three squared operators are 

also given in Table 2.2. 

 
Table 2.2. Non-zero matrix elements of the angular momentum operators of the symmetric rotor basis functions. 

Molecule-fixed axes: x, y, z 
( )1ˆ 22 += JJmkJJmkJ h  

KmkJJmkJ z h=ˆ  

( ) ( )[ ] 2
1

11ˆ1 mm kkJJMkJJMkJ −+=±  
 
Space-fixed axes: X, Y, Z 

( )1ˆ 22 += JJmkJJmkJ h  

MmkJJmkJ Z h=ˆ  

( ) ( )[ ] 2
1

11ˆ1 ±−+=± ± MMJJMkJJMkJ  
 
Squared Operators 

222ˆ kmkJJmkJ z h=  

( )[ ]2
2

22 1
2

ˆˆ kJJmkJJmkJmkJJmkJ yx −+==
h  

=−= mkJJmkJmkJJmkJ yx
22 22 ˆˆ mm  

( ) ( )[ ] ( ) ( )( )[ ] 2121
2

21111
4

±±−+±−+−= kkkJJkkJJh  

 

 As stated above, the rotational Hamiltonian of a symmetric rigid rotor is diagonal in the J, k, 

m representation, with matrix elements given by  

 

 ( ) ( ) 20
, 1ˆ KBBJJBmkJHmkJE xzxrkJ −++==    (2.32) 

 

These diagonal elements are independent of m, in agreement with the classical principle that the 

rotational energy in the absence of torques is independent of the spatial orientation of the angular 

                                                 
4 ∑=

",","

2 ˆ""""""ˆ'''ˆ'''
mkJ

mkJJmkJmkJJmkJmkJJmkJ ααα . 
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momentum vector. Further, states whose only difference is the sign of k have the same energy: 

classically, they correspond to the two opposite direction of rotation. Thus all states with K > 0 are 

doubly degenerate. 

 While for a symmetric rotor the Hamiltonian matrix is already diagonal and there exist 

analytic expressions for the rotational energy levels, the asymmetric rotor Hamiltonian matrix is not 

diagonal and it is not possible to obtain a general closed-form expression for the energy levels. The 

diagonalization of the asymmetric rotor Hamiltonian matrix is usually carried out by using as basis 

functions the symmetric rotor wave-functions, and by factorizing the matrix according to the 

transformation introduced by Wang [35]: 

  

K > 0 ( )[ ]
⎪
⎩

⎪
⎨

⎧

=

−−+=

MJMJ

MkJMkJMKJ

000

1
2

1 γγ

K = 0 
(2.33) 

   

where γ = 0 or 1. The γ = 0 functions are the symmetric Wang functions, while the γ = 1 functions 

are the anti-symmetric Wang functions. By using the Wang’s transformation, the Hamiltonian 

matrix for each value of J other than 0 or 1 may be partitioned into four independent tridiagonal 

matrices labelled E+, E–, O+ and O–, whose dimensions are given in Table 2.3.  

 
Table 2.3. Dimensions of the E±, O± matrices. 

 J = n J = 2n+1 

E+ 1
2

+
J  

2
1+J  

E- 
2
J  

2
1−J  

O+ 
2
J  

2
1+J  

O– 
2
J  

2
1+J  

 

The notation E, O refers to the evenness or oddness of the K values involved in the matrix elements 

and +,– to the evenness or oddness of γ. An example of the form of the four matrices for J = 8 is 

given in Table 2.4. Each of these matrices may be diagonalized independently, thus simplifying the 

problem of finding the rotational energies of an asymmetric rotor. 
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Table 2.4. Form of the E±, O± matrices for J = 8. J,j,MrHJ,i,Mi,jE ˆ=  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=+

8,86,8

6,86,64,6

4,64,42,4

2,42,20,2

0,20,0

EE000
EEE00

0EEE0
00EEE2
000E2E

E  
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=−

8,86,8

6,86,64,6

4,64,42,4

2,42,2

EE00
EEE0

0EEE
00EE

E  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ +

=

−

+

7,75,7

5,75,53,5

3,53,31,3

1,31,11,1

EE00
EEE0

0EEE
00EEE

O  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡ −

=

−

−

7,75,7

5,75,53,5

3,53,31,3

1,31,11,1

EE00
EEE0

0EEE
00EEE

O  

 

 

22..55  TTHHEE  EEFFFFEECCTTIIVVEE  VVIIBBRRAATTIIOONNAALL  ––  RROOTTAATTIIOONNAALL  HHAAMMIILLTTOONNIIAANN  

 

 High order corrections for vibrational-rotational interactions and anharmonicity need to be 

introduced into the Hamiltonian in order to fully describe all the features observable in the 

experimental spectra. The perturbation approach is generally adopted, in which the vibrational-

rotational Hamiltonian is expanded in terms of the normal coordinates, their conjugate momenta 

and the components of the rotational angular momentum. The harmonic oscillator and rigid rotor 

wavefunctions are used as basis functions. This leads to effective rotational Hamiltonians for 

individual vibrational states or “polyads” of vibrational states. The perturbation theory is usually 

applied in the form of the method of contact transformations. By this method it is possible to 

achieve a kind of separation of the vibration-rotation Hamiltonian, which makes it possible to 

discuss the effective rotational Hamiltonian for an individual vibrational level or a block of nearly-

degenerate vibrational levels. 

 The complete quantum mechanical Hamiltonian of a vibrating-rotating molecule following 

Watson’s simplifications [39] can be expressed as  

 

 ( )( ) ( )∑ ∑
=

++−−=
zyx k

k VPJJH
,,,

2
2

vr
ˆ

2
1ˆˆˆˆ

2
ˆ

βα
ββαααβ ππμ Qh .    (2.34) 

 

where kQ  represents the k-th normal coordinate, kk QiP ∂∂−= hˆ  is its conjugate momentum, απ̂  is 

the component of the vibrational angular momentum along the direction α, μαβ represents the 
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component of a modified reciprocal inertia tensor μ and V(Q) is the potential energy. The 

vibrational angular momentum is given by 

 

 ( )∑=
lk

lklk PQ
,

,
ˆˆ α

α ζπh          (2.35) 

 

where ( )αζ lk ,  is the Coriolis zeta constant, coupling the normal coordinates kQ  and lQ  through a 

rotation about the α axis. The reciprocal inertia tensor can be obtained from the following 

expression  

 

 ( ) ( ) 1e1 "" −−= IIIμ , ∑+==
k

kk QaIII αβ
αββααβ 2

1e"" , 
e

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=

k
k Q

I
a αβαβ  

 

where eI  is the inertia tensor in the equilibrium configuration of the molecule. 

 In the perturbation approach, the Hamiltonian (2.34) can be expanded in a power series of 

products of vibrational and rotational operators, by expanding μ and V(Q) in terms of the normal 

coordinates Q about the points of equilibrium configuration of the atomic nuclei. The expanded 

Hamiltonian can then be conveniently arranged using the mnĤ  notation: 

 

∑ ==
nm

mnHH
,

vr
ˆˆ  

++++= ...ˆˆˆ
403020 HHH    (vibrational terms) 

+++++ ...ˆˆˆ
413121 HHH    (Coriolis terms) 

...ˆˆˆ
221202 ++++ HHH    (rotational terms). 

 

(2.36) 

 

The first subscript refers to the degree in the vibrational operators (coordinates and momenta) and 

the second subscript is the degree in the components of the total angular momentum. In the 

expansion, the term 11Ĥ  turns out to be zero; the terms 00Ĥ  and 10Ĥ  give a small contribution, 

which is indistinguishable from the effects of the breakdown of the Born – Oppenheimer 

approximation and hence they can be ignored. The perturbation method procedure takes the 

harmonic oscillator 20Ĥ  as the unperturbed Hamiltonian, and then vrĤ  is reduced to a block 
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diagonal form by a succession of contact transformations5. At each stage of the contact 

transformation procedure, the equation to solve is of the form 

 

 ( ) ( ) [ ]20
1 HSiHH mn

j
mn

j
mn

ˆ,ˆ~~ += −  

 

where ( )1−j
mnH~  results from the previous transformation and mnŜ  is the Hermitian operator that 

performs the unitary transformation. Both mnH~  and mnŜ  can be expressed as power series of the 

vibrational ladder operators defined as 

 

 kk piq ˆˆL̂ σ−= ,  =σ + or – 

 

in which the dimensionless normal coordinate kq̂  and conjugate momentum kp̂  are related to the 

corresponding dimensional operators by 

 

 kkk qQ ˆˆ 2
1−

= γ ,  kkk pP ˆˆ 2
1γh= ,  2h

k
k

hcω
γ = . 

 

By using the commutation relations, it can be shown that ( )1~ −i
mnH  and mnŜ  assume the general forms: 
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( ) ( ) ( ) ( ) ( ) ( )
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= −

−
−

−
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−
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−−−
−−−

*
321

3
3

2
2

1
1

332211

321
L̂L̂L̂

...
;...,;,;,ˆ ik

i
ik

i
ik

i

iiiiii

iii

kkk
kkkkkk

k
i

k
i

k
i

mn

kkkC
S σσσ

ωσωσωσ
σσσ

 

 

where the coefficients ( )
( )

( )
( )

( )
( )( );...,;,;, 321

321
−−−

−−−
iii k

i
k

i
k

i kkkC σσσ  are generally rotational operators 

and the asterisk on the summation means that the terms for which the denominator vanishes, or 

nearly, are omitted. 

 Detailed derivations of the constants appearing in the effective Hamiltonian are given for 

example by Mills [33], Aliev and Watson [36], Papoušek and Aliev [37].  

In particular, the terms nH 0
~  (n = 2, 4, 6,…) in the effective Hamiltonian represent the pure 

rotational and centrifugal contributions to the energy. Among these, the term 02
~H  is the rigid rotor 

                                                 
5 A general description of the contact transformation technique is given in Appendix A. 
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Hamiltonian, while 04
~H  and 06

~H  represent the second and third order contributions to the effective 

Hamiltonian, respectively. They can be put into the form 

 

 ∑=
δγβα

δγβααβγδτ
,,,

04
ˆˆˆˆ

4
1~ JJJJH         (2.37) 

 ∑=
ηεδγβα

ηεδγβααβγδεητ
,,,,,

06
ˆˆˆˆˆˆ

4
1~ JJJJJJH        (2.38) 

 

where  α, β, γ, δ, ε, η can be x, y or z, and the τ’s include the coefficients resulting from the contact 

transformation procedure. 

 The operators 22
~H , 42

~H , 24
~H ,… describe the dependence of the rotational and centrifugal 

constants on the vibrational quantum numbers. In addition, in the case of degenerate or near-

degenerate vibrational states, these terms provide the resonance parameters connecting the 

interacting levels. The leading term 22
~H  describes the dependence of the rotational constants on the 

vibrational quantum numbers. It has the following general form 

 

 ( ) ( )∑ +−=
^

22
ˆˆˆˆˆˆ

2
1~

klrs
sr

rs
kllklk JJppqqH α  

 

where the summation implies a restriction to terms with ωk ≈ ωl and ( ) ( ) ( ) ( )sr
lk

rs
lk

sr
kl

rs
kl αααα === . For 

k = l and r = s, one can derive the α constants which enter into the expression for the vibrational 

dependence of the rotational constants:  

 

 ( ) ∑ ⎟
⎠
⎞

⎜
⎝
⎛ +−=

k
k

r
k

e
r

V
r BB

2
1vα         (2.39) 

 

where e
rB  is the value of the rotational constant in the equilibrium configuration of the molecule. 

When k and l are the components of a degenerate mode, the rotational l-doubling constants are 

obtained. These are the tq  constants of linear molecules, or the ±
tq  and tr  constants of symmetric 

top molecules. 
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 The 40
~H  terms are the principal sources of information on the quartic potential constants. 

The non-resonant contributions to this term give the anharmonic constant xi,j in the formula for the 

vibrational term value given in equation (2.14). 

 By means of the contact transformation method the Hamiltonian is brought to block-

diagonal form and it can be expressed as a power series in the vibrational and rotational operators. 

However, not all the coefficients of the series can unequivocally be determined6 but only some their 

linear combinations can be obtained. These are called determinable combinations of coefficients. 

Watson has shown that it is possible to choose Ŝ  so that particular terms or matrix elements vanish 

[40]. The effective Hamiltonian then takes a special form which is called reduced Hamiltonian or 

“Watsonian”. 

 

 

22..66  IINNTTEERRAACCTTIIOONNSS  

 

 In a polyatomic molecule, it may happen that two or more ro-vibrational states belonging to 

different vibrations may have nearly the same energy.  If the involved vibrations have the proper 

symmetry, an interaction takes place whose effect is to shift the energy levels and change the 

intensity of the spectral absorptions. The levels which have nearly the same energy repel each other 

as shown in Figure 2.3: the level having the higher energy is shifted up whereas the lower energy 

level is shifted down. At the same time a mixing of the eigenfunctions of the two states occurs. 

Consequently, not only the spectral transitions are shifted from their unperturbed positions, but 

there is also a perturbation in their intensity. 

 Two kinds of resonance there exists: (i) anharmonic resonances which arise from the 

anharmonic potential; (ii) Coriolis resonances which are caused by the interaction between the 

rotational and vibrational motions.  

 The magnitude of the perturbation depends on the value of the matrix element ijW  of the 

perturbation operator Ŵ  connecting the accidentally degenerate states: 

 

 ∫= τψψ dWW jiij
0,*0 ˆ          (2.40) 

 

                                                 
6 Because the contact transformation SieHSieH

ˆ~ˆ
'~ −=  has the effect of changing the coefficients of the expansion but it 

leaves the eigenvalues invariant. 
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where 0
iψ  and 0

jψ  are the unperturbed wavefunctions of the involved states. 

  

For anharmonic resonances, the perturbation operator Ŵ  

is related to the anharmonic (cubic, quartic,…) terms in 

the potential energy. Since Ŵ  belongs to the totally 

symmetric representation, 0
iψ  and 0

jψ  must belong to the 

same symmetry representation in order for the matrix 

element ijW  to be non-zero: 

 

 ( ) ( ) Aji ⊃Γ×Γ 00 ψψ .    (2.41) 

 

It follows that anharmonic resonance can occur only 

between vibrational levels which belong to the same 

symmetry species.  

The anharmonic resonance comprises two kinds of 

interactions: Fermi and Darling – Dennison resonances. 

The Fermi resonance takes place between fundamental and 

overtone, or combination, vibrations. The Darling – 

Dennison resonance can exist only between overtone and 

overtone, or combination, vibrations. Both of them involve ro-vibrational levels having the same 

value of J and K (ΔJ = 0, ΔK = 0). In addition, anharmonic resonance may also occur for ΔK = ±2, 

±4, ±6,… These are called high order anharmonic interactions and they can take place between 

fundamental vibrations, as well. 

According to first order perturbation theory, if the resonance is fairly close, the magnitude of 

the shift is given by the secular determinant 

 

00

0

=
−

−
EEW

WEE

jji

iji          (2.42) 

 

where 0
iE  and 0

jE  are the energy of the unperturbed levels. The perturbed energies results to be  

 

l

Eij-1/2(4|Wij|
2+δ2)1/2

Eij+1/2(4|Wij|
2+δ2)1/2

δ

Ej
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Ei
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0+Ej
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-1
]

 
Figure 2.3. Schematic representation of the 
effect on the energy levels caused by 
anharmonic resonances between two 
accidentally degenerate vibrational levels. 
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 22
4

2
1 δ+±= ijij WEE         (2.43) 

 

with ( )00

2
1

jiij EEE +=  is the mean energy and 00
ij EE −=δ  is the energy separation. From equation 

(2.43) two considerations can be drawn: (i) the magnitude of the interaction is stronger the larger is 

the matrix element ijW ; (ii) the shift of the energy levels and the mixing of the wavefunctions is the 

stronger the smaller is the energy difference between the interacting levels. Figure 2.4 shows the 

position of the perturbed levels as a function of their energy separation (for constant values of ijW  

and ijE ). The shift produced by the perturbation is given by the separation between the black curve 

and the nearest green line. 

 

Figure 2.4. Plot of the energy of the perturbed levels (—) with respect to the unperturbed positions (—) as a function 
of their energy separation. The plot has been obtained for constant and arbitrary value of ijW  and ijE . 
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22..77  NNUUCCLLEEAARR  SSPPIINN  SSTTAATTIISSTTIICCAALL  WWEEIIGGHHTT  

 

 The total wave function including the contribution of the nuclear spins is to a first 

approximation expressed by 

 

 nre ψψψψψ v=  

 

where ψe, ψv,  ψr are the electronic, vibrational and rotational wave functions and ψn is the nuclear 

spin wave function.  

 For an exchange of identical nuclei, the overall wave function ψ must either remain 

unchanged or change sign. Those which remain unchanged are designated as symmetric wave 

functions and those which change sign as antisymmetric. In any molecule containing two or more 

identical nuclei of non-integer spin, exchange of any two of them results in a change of sign of the 

total wave function, which is therefore antisymmetric. The nuclei are said fermions. On the other 

hand, when the nuclear spin takes integer values, ψ is symmetric to nuclear exchange and the nuclei 

are bosons. 

 The transition moment between two states i and j vanishes, unless the wave functions 

representing the two states have the same symmetry. Therefore the parity selection rules are7: 

 

symmetric ↔ symmetric; antisymmetric ↔ antisymmetric; 

symmetric ←|→ antisymmetric 

 

 The presence of identical nuclei in a molecule can have important consequences for the 

statistical weights of the energy levels and the relative intensities of spectroscopic transitions. When 

the molecule has no symmetry all the ro-vibrational levels have the same weights. However, there 

are symmetries that cause inequivalent statistical weights, arising from the requirement that the total 

wave functions must be symmetric or antisymmetric with respect to an exchange of two identical 

bosons and fermions, respectively. 

 In general, for molecules in the electronic and vibrational ground states, both the 

corresponding wave functions are symmetric, and hence vψψ e is symmetric. When the nuclear spin 

is zero, the nuclear spin wave functions are all symmetric, and therefore only symmetric rotational 

wave functions give the symmetric overall wave function required for Bose particles. In this 

                                                 
7 The symbols ↔ and ←|→ indicate allowed and forbidden transitions, respectively. 
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instance, the odd rotational levels are entirely missing. This is the case of molecules such as S16O2 

in which a rotation about the symmetry axis exchanges the two atoms of oxygen.  

When the nuclear spin is non-zero, the product nrψψ  can be symmetric or antisymmetric whatever 

the symmetry of ψr. However, in general the number of symmetric and antisymmetric spin 

functions is not the same, and so it is for the number of rotational levels that can be matched with 

them to satisfy the required overall symmetry. For example, in molecules belonging to the point 

group C3v and having three identical atoms of nuclear spin I = ½, there are eight different nuclear 

spin functions corresponding to the eight different orientations of the spins. Of these, four are 

totally symmetric (A) and the remaining form two doubly degenerate spin functions of symmetry E. 

As a consequence, for a non-degenerate vibrational state the rotational levels with K = 3n (≠ 0) have 

a statistical weight which is double with respect to levels K = 3n ± 1; that is, the ratio between the 

statistical weights of the A and E levels is 2:1. 

 

 

22..88  LLIINNEEAARR  MMOOLLEECCUULLEESS  

 

 Linear molecules belong to either the D∞h or C∞v point groups, depending on whether they 

have or not a centre of inversion. A linear molecule with N atoms has 3N – 5 modes of vibration, 

and the bending modes are always double degenerate. In the non-rotating molecule these degenerate 

vibrations take place into perpendicular planes, say the xz and yz planes, respectively. In the rotating 

molecule, the two perpendicular modes of vibration are coupled by the Coriolis force and a 

vibrational angular momentum along the inter-nuclear axis arises.  

The ro-vibrational energy levels of linear molecules in the absence of perturbation and up to 

the sixth power of rotational angular momentum are given by 

 

 ( )[ ] ( )[ ] ( )[ ]32
v

22
v

2
v

0
v 111~ lJJHlJJDlJJB

hc
EVR −++−+−−++=ν   (2.44) 

 

where Dv and Hv are the quartic and sextic centrifugal distortion constants and l, which is the 

quantum number for the vibrational angular momentum, can take the values: 

 

 l = v, v – 2, v – 4,… –v. 
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The double degeneracy associated with the l±  levels is removed by the vibration-rotation 

interaction and, taking into account this l-type doubling, the energy levels modify according to 

 

  ( )[ ] ( ) ( ) +++±−++=
±

11v
4

1 2
v

0 JJ
q

lJJB
hc
E

i
l

i
VR ν  

( )[ ] ( )[ ]32
v

22
v 11 lJJHlJJD −++−+−   (2.45) 

 

where ql is the l-type doubling constant.  

The types of the absorption bands observed depend upon the direction, in the rotating 

molecule, of the oscillating electric dipole moment induced by the electromagnetic radiation. In the 

fundamental vibrational bands the transition dipole moment lies either along or perpendicular to the 

inter-nuclear axis. In the former case the band is said to be a parallel band, whereas in the latter case 

the band is said perpendicular. 

Following the discussion of Section 2.2, the active ro-vibrational transitions are those for 

which the vibrational and rotational selection rules are respectively: 

 

Δl = 0, ±1; +∑ ←|→ −∑ ; g ←|→ g; u ←|→ u; 

 

ΔJ = 0, ±1; (J = 0 ←|→ J = 0); + ↔ –; s ←|→ a. 

 

According to these selection rules the vibrational bands of a linear molecule can be classified as 

follows: 

 

(1) Parallel bands, for which l = 0 and Δl = 0 (∑ – ∑ transitions). For these bands only ΔJ = ±1 

can occur, that is they have only P (ΔJ = –1) and R (ΔJ = +1) branches. 

(2) Perpendicular bands, for which Δl = ±1 (∏ – ∑, Δ – ∏,… transitions). For these bands ΔJ = 

0, ±1 is possible; therefore, in addition to the P and R branches, a Q branch appears which is 

stronger than either the P or R branch. 

(3) Parallel bands, for which Δl = 0 but l ≠ 0 (∏ – ∏, Δ – Δ,… transitions). For these bands ΔJ = 

0, ±1 and as for the perpendicular bands they have a Q as well as a P and an R branch. Here, 

however, the Q branch is weak. 
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In the standard notation, the quantum number l is written as a superscript to the degerate 

bending mode: for example, the vibrational levels of a linear triatomic molecule are specified as 

( 321 vvv l ). 

 

 

22..99  SSYYMMMMEETTRRIICC  TTOOPP  MMOOLLEECCUULLEESS  

 

 In a symmetric top molecule two of the principal axes of inertia are equal and different from 

the third which is non-zero. Molecules that are symmetric tops because of their symmetry possess a 

unique axis of rotational symmetry, which is usually taken as the z-axis, of threefold or higher 

degeneracy. According to the classification of Figure 2.2, prolate symmetric tops have A > B, 

whereas oblate symmetric tops have C < B.  As with linear molecules, the fundamental bands of a 

symmetric top are either parallel or perpendicular bands. Parallel bands arise when the transition 

moment is parallel to the molecular axis of highest symmetry, whereas when the transition moment 

is perpendicular to this axis, perpendicular bands occur. For a parallel band the selections rules are 

 

 ΔK = 0, ΔJ = 0, ±1,  for K ≠ 0; 

 

 ΔK = 0, ΔJ = ±1,  for K = 0; 

  

and for a perpendicular band they are 

 

 ΔK = ±1, ΔJ = 0, ±1. 

 

In addition there are also selection rules which are concerned with  the symmetry properties of the 

rotational levels: 

 

+ ↔ –; + ←|→ +; – ←|→ –; 

 

where + and – refer to the overall symmetry with respect to the inversion of all the particles about 

the origin. 

 For a non-degenerate vibrational state, the ro-vibrational energy levels of a prolate 

symmetric top up to the forth power of rotational angular momentum are given by 
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 ( ) ( )+++−+= 1~
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hc
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    ( ) ( ) 4v2v22v 11 KDKJJDJJD KJKJ −+−+− .   (2.46) 

 

As for linear molecules, for degenerate states the influence of the Coriolis force may 

produce an interaction between the two components of a degenerate pair of vibrations. The result of 

this interaction is the splitting of the degenerate vibrational levels, whose separation increases with 

increasing K and is zero when K is zero. 

The ro-vibrational transitions in symmetric tops are usually indicated by ΔKΔJK(J), in which 

ΔK and ΔJ are expressed with a letter (… O, P, Q, R, S,… → …, -2, -1, 0, +1, +2,…), and J, K refer 

to the ro-vibrational level from which the transition takes place. 

 

  

22..1100  AASSYYMMMMEETTRRIICC  TTOOPP  MMOOLLEECCUULLEESS  

 

 In an asymmetric rotor the three principal moments of inertia are different and none of them 

is zero. A measure of the degree of asymmetry of a molecule is given by the Ray’s asymmetry 

parameter, which is defined as 

 

 
CA

CAB
−

−−
=

2κ          (2.47) 

 

where A, B and C are the rotational constants. The asymmetry parameter takes values between –1 

and +1, which correspond to the prolate (B = C) and oblate symmetric (A = B) tops, respectively. 

 In asymmetric top molecules, the levels +k and –k, which are degenerate in symmetric 

rotors, are no longer degenerate due to the so-called asymmetry splitting. Therefore, the rotational 

energy levels of asymmetric rotors are identified by the quantum number J and two pseudo-

quantum numbers Ka and Kc which take the values: 

 

 Ka = 0, 1,… J;  Kc = 0, 1,… J 

 

provided that Ka + Kc = J or J + 1. Following the notation introduced by King, Hainer and Cross 

[42] the energy levels are conveniently indicated as 
ca KKJ . 
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 The ro-vibrational selection rules depend upon the orientation of the molecular transition 

moment with respect to the principal axes of inertia. The vibrational bands of asymmetric top 

molecules are therefore classified as follows [43]. 

(i) A-type bands, in which the transition moment lies along the A-axis. The rotational selection 

rules are: 

 

ΔJ = ±1; ΔKa = 0, ±2, ±4,… ΔKc = ±1, ±3, ±5,… for Ka = 0; 

ΔJ = 0, ±1; ΔKa = 0, ±2, ±4,… ΔKc = ±1, ±3, ±5,… for Ka ≠ 0. 

 

These bands are characterize by a central Q branch and well defined P and R branches. 

 

(ii) B-type bands, in which the transition moment lies along the B-axis. The rotational selection 

rules are: 

 

ΔJ = 0, ±1; ΔKa = ±1, ±3, ±5,… ΔKc = ±1, ±3, ±5,… 

 

These bands have two weak Q-branches which are often merged with the P and R branches [44]. 

 

(iii) C-type bands, in which the transition moment lies along the C-axis. The rotational selection 

rules are: 

 

ΔJ = ±1; ΔKa = ±1, ±3, ±5,… ΔKc = 0, ±2, ±4,… for Kc = 0; 

ΔJ = 0, ±1; ΔKa = ±1, ±3, ±5,… ΔKc = 0, ±2, ±4,… for Kc ≠ 0. 

 

These bands have a strong Q branch, whereas the P and R branches are relatively weak. 

 

 When the transition moment does not lie along a unique axis, hybrid bands occur. For 

example, vinyl fluoride, which belongs to the point group Cs, has hybrid A/B bands in which the 

transition moment lies in the (AB)-plane. 

 As also pointed out in Section 2.4, the ro-vibrational energy levels of asymmetric rotors can 

no longer be expressed by closed algebraic equations as can be done for linear or symmetric tops. 

Therefore a diagonalization of the Hamiltonian matrix is required. A particularly useful asymmetric 

rotor Hamiltonian has been developed by Watson [40]. This operator in the A-reduction and Ir 

representation, up to the second order perturbation terms, is given by: 
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( ) ( ) ( )[ ] +−+−−−−Δ−Δ−Δ− 2222222224224 ˆˆˆˆˆˆˆˆˆ2ˆˆˆˆ
acbcbaKcbJaKaJKJ JJJJJJJJJJJJJ δδ  

( ) +−+Φ+Φ+Φ+Φ+ 224642246 ˆˆˆ2ˆˆˆˆˆˆ
cbJaKaKJaJKJ JJJJJJJJJ ϕ  

( ) ( )[ ] ( ) ( )[ ]4222242222222 ˆˆˆˆˆˆˆˆˆˆˆˆˆ
acbcbaKacbcbaJK JJJJJJJJJJJJJ −+−+−+−+ ϕϕ  (2.48) 

 

where ΔJ, ΔJK, ΔK, δJ, δK are the quartic centrifugal distortion constants and ΦJ, ΦJK, ΦKJ, ΦK, ϕJ, 

ϕJK, ϕK are the sextic centrifugal distortion constants. 

 The ro-vibrationl transitions of asymmetric rotors can be indicated with a notation derived 

from the symmetric top one: ( )JJ K
K ±Δ Δ  where the subscripts ‘+’ and ‘–’ refers to levels for which 

JKK ca =+  and 1+=+ JKK ca , respectively. For near prolate asymmetric tops K refers to the 

value of the pseudo-quantum number Ka, whereas for near oblate asymmetric rotors it refers to Kc.ii 

 

                                                 
ii The chapter has been written by consulting Refs. [2, 3, 24, 28, 31 – 44]. 



 50

33..  MMoolleeccuullaarr  CCoolllliissiioonnss    

aanndd    

SSppeeccttrraall  LLiinnee  SShhaappeess  

 

 

 The first parameters governing the interactions between molecules and electromagnetic 

fields are the internal energy levels and the optical transition moments, which are related to the 

frequencies and integrated intensities of the spectral transitions, respectively. These spectroscopic 

data are intrinsic features of molecules regardless of their environment. 

 In real gases, the optically active molecules, which are also referred to as radiators, interact 

with the surrounding environment so that they cannot be considered as isolated. Consequently, the 

intrinsic spectroscopic parameters are no longer sufficient for the modelling of the spectra. Indeed, 

the collisions with the surrounding particles, also called perturbers, lead to characteristic absorption 

line shapes, which depend on the physical-chemistry of the intermolecular interactions. 

 

 

33..11  TTHHEE  AABBSSOORRPPTTIIOONN  CCOOEEFFFFIICCIIEENNTT  

 

 At low radiation intensity, the transmission of monochromatic radiation through a 

homogeneous gas sample is described by the Beer – Lambert law: 

 

 ( ) ( )nleII νκν −= 0          (3.1) 

 

where I(ν) and I0 are the transmitted and unattenuated intensities, respectively; n is the 

concentration of the gas; l is the optical path length and ( )νκ  is the absorption coefficient. 

 The integrated absorption coefficient, which represents the integrated intensity of the 

spectral line corresponding to the transition j ← i, is defined as  
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 ( )∫
+∞

∞−

= ννκ dSij          (3.2) 

 

and hence the absorption coefficient can be written in the form 

 

 ( ) ( )0νννκ −= fSij           (3.3) 

 

where ( )0νν −f  is the dimensionless normalized line shape function and 0ν  is the frequency of the 

line centre. 

 

 

33..22  LLIINNEE  IINNTTEENNSSIITTIIEESS  

 

 The integrated absorption coefficient is related to the transition dipole moment of the 

transition j ← i through the following equation 
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where N is the total number of radiating molecules per unit volume per unit pressure, Q is the total 

partition function, iE  is the lower state energy, 0~
ijν  is the frequency (in wavenumbers) of the 

transition, c is the speed of light and KB is the Boltzmann’s constant.  

 The commonly employed measure units for the integrated line intensity and the 

corresponding conversion factors are listed in Table 3.1 [45]. 

 
Table 3.1. Commonly used integrated intensity units and conversion factors to cm-2atm-1 at 300 K. 

Units Factor for conversion to cm-2atm-1 at 300 K 
cm-2atm-1 at 300 K 1.0 
cm-2atm-1 at T 3.3333T⋅10-3 
cm-2atm-1 at STP (cm-2amagat-1) 9.1053⋅10-1 
cm mole-1 4.0623⋅10-5 
cm mmole-1 (dark) 4.0623⋅10-2 
km mole-1 4.0623 
cm molecule-1 2.4464⋅10-19 
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 In an isotropic medium the space fixed X, Y, Z directions are equivalent and therefore the 

transition moment can be calculated as  

 

∑∑=
j i

F ijij
22 ˆ3ˆ μμ         (3.5) 

 

where Fμ̂  is the component of the dipole moment operator relative to one of the space fixed axes. 

Apart from the nuclear spin degeneracy function, the transition moment integral between the ro-

vibrational basis functions may be subdivided into vibration-rotation products. Therefore, the 

transition moment is conveniently factorized as  

 

 ∑ Φ==
",'

"'"'"' ""''"ˆ'"""ˆ'''
rr

Fgrrnn rJrJSSSrJrJ vvvv vv μμ β  (3.6) 

 

where v' and v" are the quantum numbers of the upper and lower vibrational states, respectively; r' 

and r" represent appropriate rotational quantum numbers other than the total angular momentum 

quantum number J; the nuclear spin degeneracy factor,  β  = "'nnS , is usually included as a part of 

the rotational line strength factor "'rrS . In the expression, FgΦ  is the element of the direction cosine 

matrix, i.e. the direction cosine of the angle between the molecule fixed g axis and the space fixed F 

axis. 

 In the symmetric rotor basis set, MkJ , the matrix elements of the direction cosines 

can be separated as follows 

 

 =Φ """''' MkJMkJ Fg  

""''""''"' MJMJkJkJJJ FgFgFg ΦΦΦ= ;  (3.7) 

 

the corresponding matrix elements are summarized in Table 3.2 [3].  

In an isotropic medium the summation over F of the square elements of the dipole moment may be 

achieved by multiplying the squared elements of any given F (usually Z) by three and performing a 

summation over all possible transitions between the M components. However, in anisotropic 

conditions, such as those caused by the use of linearly polarized light, the contribution coming from 

the different M components must be calculated explicitly. 
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Table 3.2. Direction cosine matrix elements in the symmetric rotor basis set. 

J' Matrix element J + 1 J  J – 1 

'JJ FgΦ  ( ) ( )( )[ ] 1
121214

−
+++ JJJ  ( )[ ] 114 −+JJ  ( )( )[ ] 1

12124
−

+− JJJ  
kJkJ Fz ,', Φ  ( ) 2212 kJ −+  k2  222 kJ −  

1,', ±Φ kJkJ Fz  
1,, ±Φ± kJkJi Fy  ( )( )21 +±+± kJkJm  ( )( )1+± kJkJ m  ( )( )1−± kJkJ mm  

MJMJ Zg ,', Φ  ( ) 2212 MJ −+  M2  222 MJ −  
1,', ±Φ MJMJ Xg  
1,, ±Φ± MJMJ Yg  ( )( )21 +±+± MJMJm  ( )( )1+± MJMJ m  ( )( )1−± MJMJ mm  

 

 In the absence of perturbation, the integrated absorption coefficient of a ro-vibrational 

transition can be expressed as 

 

 iij RSS 0
v=           (3.8) 

 

where iR  is the rotational factor including the square of the transformed direction cosines; 0
vS  is the 

vibrational band intensity which is related to square of the vibrational transition dipole moment by 
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where 0ν~  is the band centre in wavenumbers and vQ  is the vibrational partition function. 

 

 

33..33  DDIIPPOOLLEE  AAUUTTOOCCOORRRREELLAATTIIOONN  FFUUNNCCTTIIOONN  

 

 For weak optical fields and for non-reactive collisions at local thermodynamic equilibrium, 

the line shape function of a spectral absorption is given by the Fourier transform 
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where ( )tΦ  is the dipole autocorrelation function, which is defined by 
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 ( ) ( ) ( )''* tttt μμ ⋅+=Φ .        (3.11) 

 

The dipole autocorrelation function thus describes how the dipole μ at time t' correlates with itself 

at a later time t' + t. It must be normalized such that  Φ(0) = 1, because a function is correlated with 

itself at zero time. 

 It follows from equation (3.10) that an infinitely narrow spectral line corresponds to a 

stationary correlation function, i.e. Φ(t) does not decay with time. However, there are a number of 

processes which cause the autocorrelation function to decay, resulting in a broadening of the 

spectral line: the faster Φ(t) decays, the broader the line.  

Line broadening mechanisms in low pressure gases can be classified as homogeneous or 

inhomogeneous. Homogeneous processes are associated with the  time – energy uncertainty 

relation: they cause the radiator to remain in a given state for only a finite time; they are called 

homogeneous because they equally affect all the radiating particles. On the other hand, 

inhomogeneous broadening processes are associated with some property whose values vary 

according to a statistical distribution,  and therefore the line shape reflects this distribution. 

 In the infrared region, where spontaneous emission is negligible, the time decay of the 

dipole autocorrelation function is mainly caused by the translational motion of the radiator and its 

collisions with perturbers. Therefore, the observed spectral line shape is strictly related with the gas 

phase dynamics and collisional processes. The line shape functions describing the different decay 

processes are always obtained within some simplifying assumptions. 

 The binary and impact approximations underlie the majority of collision theories. The binary 

approximation assumes that the relaxation is dominated by binary collisions. The impact 

approximation relies upon the assumption that the average duration of a collision, τc, is negligible 

with respect to the average time, τ, between two successive collisions and with respect to the 

frequency detuning from line centre, 0ν : 
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All the times of interest are therefore assumed much greater than τc. 
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33..44  DDOOPPPPLLEERR  BBRROOAADDEENNIINNGG  

 

 At very low gas pressure, where the effects of collisions can be disregarded, the main 

contribution to the spectral broadening comes from the thermal motion of the radiators. Indeed, 

according to the Doppler principle, in the molecular reference frame the frequency of the incident 

radiation is shifted by an amount 

 

 ⎟
⎠
⎞

⎜
⎝
⎛ −=

c
z

radiationradiator
v1νν         (3.13) 

 

where the electromagnetic wave, having frequency radiationν , propagates in the +z direction and vz is 

the z component of the radiator velocity. The frequency of the absorbed radiation is higher than the 

frequency of resonance if the molecule moves in the same direction of the wave, and lower if it 

moves in the opposite sense. Therefore, the Doppler effect mirrors the Maxwell – Boltzmann 

distribution of velocities thus resulting in an inhomogeneous broadening of the line, which is 

symmetric since the velocities +vz and –vz  are equally probable. 

 If the velocity of the radiator does not vary in time, or remains constant during a sufficiently 

long time [46], the autocorrelation function for the radiator translational motion is 
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where k is the propagation vector of the electromagnetic wave and the average has been performed 

using the Maxwell – Boltzmann distribution; DνΔ  is related to the resonant frequency fiν  through 
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where 

 

 
2

1

2
⎟
⎠
⎞

⎜
⎝
⎛=

m
TK Bv          (3.16) 

 

is the most probable speed at temperature T for a radiator of mass m. 
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 The Doppler profile is the Fourier transform of ( )textΦ : 
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where DνΔ  is the (1/e) half width of the resulting Gaussian function. Its relation with the Doppler 

half width at half maximum (HWHM), γD, is 
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the molecular Doppler half width is given by 
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where fiν  is the resonant frequency, NA is the Avogadro’s number and m is the mass of the 

absorbing gas. In the infrared region, typical values of γD are a few 10-3 cm-1 at room temperature. 

 

 

33..55  CCOOLLLLIISSIIOONNAALL  BBRROOAADDEENNIINNGG::  TTHHEE  LLOORREENNTTZZ  PPRROOFFIILLEE  

 

 At high pressure the spectral line shape is dominated by the broadening due to molecular 

collisions. This broadening mainly comes from the intermolecular energy exchange which takes 

place during the collisions between the radiator and the perturber. The energy transfers include both 

internal and external degrees of freedom and their effect is to shorten the lifetimes of the initial and 

final optical levels. According to the time dependent perturbation theory, the collisional width of the 

spectral line corresponding to the f ← i transition, due only to the population decay of the two 

levels, is 
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where Δt represents the lifetime of the involved states. To a first approximation each collision can 

be considered a state-changing collision and hence the lifetimes itΔ  and ftΔ  may be approximated 

by the free time of flight, τ0, of the radiator; hence the collisional half width at half maximum is 

01 τγ ≈ . This simple description is justified by the efficiency of the rotational energy transfer, since 

the energy spacing between the rotational levels is generally smaller than the thermal energy, KBT. 

 However, collisions can destroy the coherence of the system without changing its internal 

state. These collisions are called dephasing collisions, since their effect is to interrupt the phase of 

the oscillating dipole.  

 If all the collisional effects are treated as dephasing processes, the correlation function 

describing the relaxation due to the collisions between the radiator and the perturber is 

 

 ( ) ( )ti
nti et ϕ=Φ          (3.20) 

 

where ( )tϕ  is the average collisional phase shift of the radiator dipole for the optical transition. 

Within the framework of the binary impact approximation, ( )tϕ  is a complex quantity whose 

imaginary part determines the decay rate, γ, of the radiating dipole and the real part its frequency 

shift, δ: 
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The Fourier transform of this correlation function leads to the Lorentz profile: 
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γ and δ are the collisional HWHM and the collisional line shift, respectively, which depend on the 

total pressure through 

 

 ∑+=
i

iirradiatorself PP 00
,γγγ         (3.23) 

 

 ∑+=
i

iirradiatorself PP 00
,δδδ         (3.24) 



 58

 

where 0
selfγ  and 0

selfδ  are the self- broadening and shifting coefficients, respectively; 0
,irγ  and 0

,irδ  

are the foreign- broadening and shifting coefficients between the radiator and the perturber i; 

radiatorP  and iP  denote the partial pressures of the radiator and the i-th perturbing species, 

respectively.  

 

 

33..66  TTHHEE  VVOOIIGGTT  PPRROOFFIILLEE  

 

 At intermediate gas pressure, both the translational motion and the collisional damping 

contribute to the shape of the ro-vibrational absorption profiles. The autocorrelation function is 

given by the product of ( )textΦ  and ( )tntiΦ  (equations 3.14 and 3.20, respectively) and therefore the 

line shape is described by the convolution of the Doppler and Lorentz profiles: 

 

 ( ) ( ) ( )∫
+∞

∞−

−= ','', dxyxxfxfyxf LDV . 

 

The resulting function is the Voigt profile, which can be conveniently expressed as the real part of 

the complex probability function, ( )iyxw + : 
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where, for simplicity, the following dimensionless parameters have been defined [47]: 
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= . (3.26) 

 

Despite the number of effects which lead to departures from the Voigt profile (see for example [48 

– 53]), this remains a reference model and a basis for more sophisticated  approaches. The Voigt 

profile is compared with other line shape functions in Figure 3.1. 
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33..77  CCOOLLLLIISSIIOONNAALL  NNAARRRROOWWIINNGG::  GGAALLAATTRRYY  AANNDD  NNEELLKKIINN--GGHHAATTAAKK  PPRROOFFIILLEESS  

 

 When the collisions do not affect the internal state of the radiator and the mean free path is 

smaller than the wavelength, λ, of the radiation [54], there is a contraction of the Doppler 

broadened contour. This effect, which was first described by Dicke [48], is referred to as collisional 

narrowing. 

 A collision which changes the velocity of the radiator from v to v', causes a change 1−czfi 'vν  

← 1−czfivν  of the Doppler shift, and therefore it modifies the line profile. In order to maintain the 

velocity equilibrium distribution, the probability density per unit time, ( )vv ←'A , of velocity 

changing collisions must satisfy the principle of detailed balance [19]: 

 

 ( ) ( ) ( ) ( )v'vvvvv MM fAfA →=← ''  

 

where ( )vMf  is the Maxwell – Boltzmann velocity distribution. Given the velocity isotropy of the 

gas, it follows that the velocity component along the direction z of propagation of the 

electromagnetic wave must, in turn, satisfy the relation 
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as a result, collisions inducing a decrease of zv  are more probable than the reverse case. Thus, in 

the corresponding Doppler frequency profile, the frequency transfers induced by collisions are more 

probable from the wing to the centre, causing a narrowing of the Doppler distribution. 

The effect of velocity changing collisions is also to increase the mean time taken to move a distance 

πλ 2 , thus hindering the movement of the oscillators [46]. For this reason the Dicke narrowing is 

sometimes called motional (or confinement) narrowing. 

 In the IR region, early observations of Dicke narrowing were found on light molecules with 

rotational levels separated by more than the thermal energy, KBT [55]. Its effect is illustrated in 

Figure 3.1 in which the departures from the Voigt profile are highlighted. The residuals clearly 

exhibit the typical w-shaped signature. 

 The effect of velocity changing collisions (VCC) have been tacked analytically in two 

limiting cases depending on the strength of the collisions themselves. A very comprehensive 
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treatment has been give by Rautian and Sobel’man [46] who also introduced the statistical 

correlation between velocity changing- and dephasing-internal state changing collisions. 

 The first model, called weak collision 

model, was developed by Galatry assuming a 

Brownian movement of the particles [56]. 

Within the framework of this approach the 

effects of the single collisions are assumed 

negligible. As a consequence a large number 

of collisions is required to completely 

randomize a given velocity distribution 

probability. The correlation function taking 

into account the Doppler effect as well as the 

Dicke narrowing is 
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2          (3.27) 

 

where weak
VCνβ =  is the speed independent effective velocity changing collision rate8 for this weak 

collision model. Since VCC and dephasing-, internal state changing-collisions are assumed to be 

statistically uncorrelated, the autocorrelation function is the product of weak
extΦ  and ( )tntiΦ , whose 

Fourier transform leads to the Galatry profile, which in dimensionless units is 

 

 ( ) ( )[ ] ( ) [ ]
⎭
⎬
⎫

⎩
⎨
⎧

=− ∫
+∞

−−+−+− −−

0

e12i
12

e
π
1 dtzysxf

ztztzsxyt
G Re,,      (3.28) 

 

where x, y and s are defined in (3.26) and 
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= .          (3.29) 

 

This function can also be expressed in terms of the confluent hyper-geometric function [47]. 

 The second limiting case, denoted strong collision model, was first introduced by Nelkin and 

Ghatak to describe Mössbauer line shapes [57]. Later Rautian and Sobel’man considered, in 
                                                 
8 It is also called dynamical friction coefficient. 
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addition, the effect of pressure broadening [46]. This model assumes that the velocity after a single 

collision is completely uncorrelated to the velocity prior to the collision, i.e. after each collision the 

velocity memory is lost and the velocity distribution is Maxwellian. 

 The line shape is derived by solving the kinetic equation for the probability density, 

( )tf ,,vr , of finding the radiator at position r with velocity v at time t. The resulting Nelkin – 

Ghatak profile (sometimes also called Rautian – Sobel’man profile) is given by 
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with x, y and s as in equation (3.26) and 

 

 
Dν

ς
Δ

Ω
=           (3.31) 

 

where strong
VCν=Ω  is the frequency of the velocity changing collisions. 

 It should be noted that both the Galatry and Nelkin – Ghatak profiles have the proper 

limiting behaviour: the Doppler profile when s, y and z tends to zero; the Voigt profile for z equal to 

zero. Further, both the models assume that there is no statistical correlation between dephasing-

internal state changing collisions and velocity changing collisions.  

Formally, the weak collision approximation underlying the Galatry profile is more 

appropriate for collisions in which the radiator is much heavier than the perturber [47, 58]. On the 

other hand, the strong collision model seems more suitable when the mass of the radiating species is 

much lower than the mass of the collisional partner [58]. However, this simple picture of heavy 

radiators and light perturbers is somewhat excessive for strong collisions [19].  

 

 

33..88  SSPPEEEEDD  DDEEPPEENNDDEENNCCEE  AANNDD  LLIINNEE  MMIIXXIINNGG  

 

 Another effect which gives rise to deviations from the collisional broadened line shapes is 

the dependence of the relaxation rates on the radiator speed. Coy made distinction between two 

types of speed dependences [59]: the first is the dependence of the relaxation rate on the relative 

speed of the colliding particles. Indeed, the relative translational kinetic energy participates in the 

energy transfers, implying that both radiator and perturber speeds are involved. By denoting with 
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( )relvσ  the collisional cross section averaged over all relative orientations of absorbers and 

perturbers for a particular relative speed, relv , and a given Boltzmann population, the relaxation rate 

for the absorber species in collisions where the partners have this relative speed is ( ) relrel vvσ . When 

averaged over the Boltzmann distribution of relative speeds, this quantity becomes the total 

relaxation rate for the system. 

The second quantity is the dependence of the relaxation rate on the speed of molecules in the 

absorber population. This quantity can be calculated by averaging the relaxation rate as a function 

of the relative speed over the distribution ( )arelf vv , , which gives the probability of a relative speed 

relv  in an absorber – perturber pair with absorber speed av  [59]. Anyway, the dependence of the 

collisional relaxation rates on the speed of the absorbing molecule is a consequence of the fact that 

they generally depend on the relative speed of the colliding molecules [60].  

Consequently, the collisional profiles may be thought as inhomogeneously distributed 

according to radiator speed groups in the range  [v, v + dv], each group being weighted by the 

thermal equilibrium probability ( ) ( ) vvvv dfπdf MM v24= . In the frequency domain, the 

consequences of the speed dependent line widths ( )vγ  and  shifts ( )vδ  are departures of the line 

shapes from the Voigt (or Lorentz) profile, which reflect the non-exponential decay behaviour in 

the time domain [60]. 

The speed dependent profiles take into account two sources of inhomogeneous broadening: 

the Doppler shift and the speed distribution of  ( )vγ  and ( )vδ . The speed dependent effects occur 

both in the collisional broadening regime and in the Dicke narrowing pressure range. Therefore, 

subtle effects can arise from the combination of velocity changing collisions and speed 

dependencies of the collisional cross sections.  

Line mixing effects arise when collisions are enough efficient for some lines to be 

considered no longer collisionally isolated one from the others. A simple illustration of line mixing 

consists of two vibrational levels (usually, the ground state and an excited vibrational one) coupled 

by rotationally inelastic collisions, as schematically shown in Figure 3.2.  

The two vibrational transitions undergoing collisional interference if ←  and '' if ←  have 

resonant frequencies if ←ν  and '' if ←ν , respectively. The coupling occurs because each transition can 

take place via two possible paths: one path is the optical transition, whereas the second path 

involves collision induced population transfers. When subjected to a radiation field, a molecule in 

internal state i can be excited to level f on absorption of a photon with frequency if ←ν . 

Alternatively, the molecule can be transferred to state 'i  by collisions. From this level it can be 
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excited to level 'f  by a photon of frequency '' if ←ν  and finally relax collisionally to state f (the 

reverse path ii collisions⎯⎯⎯ →⎯' ; fi if⎯⎯→⎯ ←ν ; 'ff collisions⎯⎯⎯ →⎯  is possible, as well). This path from i to f 

via 'i  and 'f  shows that a molecule initially in state i can contribute to the '' if ←  absorption line, 

through population transfer induced by the collision interaction of radiator with perturbers. Hence, 

in line mixing effects, inelastic collisions induce a coupling of ro-vibrational levels ( )', ii  and 

( )', ff  causing the optical transitions to be mixed, since population is exchanged between them. 

Three necessary conditions are 

required for the line mixing process to 

exist: (i) the 'ii ↔  and 'ff ↔  

transitions must be allowed; (ii) the lines 

have to be closely spaced, 

γνν 2<≈− ←← ifif ''  and the radiator-

perturber interactions have to be efficient 

in inducing the 'ii ↔  and 'ff ↔  

transitions; (iii) population transfers have 

to satisfy the detailed balance relation. 

In the spectra, line mixing effects 

lead to transfers from regions where absorptions are weak to those of strong absorption, and hence 

they reduce the absorption in the wings and enhance that in the centre of spectral lines. 

 

 

33..99  SSEEMMIICCLLAASSSSIICCAALL  TTHHEEOORRYY  OOFF  PPRREESSSSUURREE  BBRROOAADDEENNIINNGG  

 

 The theoretical treatment of pressure broadening must express the macroscopic effect of a 

thermal bath composed of perturbers on the spectral lines in terms of the microscopic collision 

parameters. Over the years the problem has been extensively dealt by various authors: a quantum 

theory of pressure broadening has been formulated independently by Baranger [61] and by Kolb 

and Griem [62]. A general impact theory has been given by Fano [63] and then extended by Ben-

Reuven [64]. 

 The most applied approach to the pressure broadening of ro-vibrational spectral lines has 

been first proposed by Anderson in 1949 [65] and then generalized by Tsao and Curnutte [66]. The 

resulting formalism is generally known as ATC theory or ATC approximation. Basically, it is a 
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time-dependent perturbative treatment of the deviations from the radiator’s unperturbed 

Hamiltonian caused by collisions. 

 Within the impact approximation, the collisional line shape is described by a Lorentzian 

function whose line width and line shift are linear with respect to the density N of the gas: 

 

 Γ=Γ σvN  

 Δ=Δ σvN  

 

where v  is the average relative velocity in the collisions and Γσ , Δσ  are effective broadening and 

shifting cross sections, respectively. 

 The effect of a collision is described by the scattering matrix Ŝ : 

 

 ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−= ∫

+∞

∞−

− dtetVei tHitHi hh

h
00exp ˆˆ ˆˆ ϑS       (3.32) 

 

where ϑ is the time ordering operator9, 0Ĥ  is the unperturbed Hamiltonian of internal degrees of 

colliding molecules, and ( )tV̂  represents the time dependent collisional interaction. 

The radiating molecule, which absorbs a photon, gives rise to the optical transition u ← l between 

the lower state l and the upper state u; collisions take action on both these states inducing transitions 

u → u' and l → l'. On the other side the collisions also change the internal state p of the perturber 

into p'. On the whole two different kinds of transitions are involved: the optical transition u ← l and 

the collision induced transitions u → u', l → l' and p → p'. 

 The relaxation efficiency of a collision, P, is described in terms of the scattering matrix by 

the following function 

 

 ( ) ∑∑−=
' '

†ˆ''''ˆ1,
p k

kpukpukplkplkpP SS    (3.33) 

 

where k and k' denote the translational states. 

 A full quantum mechanical calculation of the scattering matrix can be made only for atoms 

or very simple molecular systems, such as linear molecules colliding with atoms. For more 

                                                 
9 The time ordering operator makes an operator to act in the order prescribed by the time of their argument, with time 
increasing from right to left. 
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complicated molecules simplifying approximations are used. The semiclassical approximation 

restricts the quantum treatment to the internal degrees of freedom of the colliding species and 

assumes that the translational motion follows classical mechanics, so that the translational state is 

described by the impact parameter b and the relative velocity v. 

 Within this framework, the calculation involves an average on b, on v and over the internal 

states of the perturber. The line width and shift are then connected to the real and imaginary parts of 

P: 

 

 ( ) ( )dbpbPdfNi
p

Mp∑ ∫∫
+∞+∞

=Δ+Γ
00

,,2 vvvv πρ      (3.34) 

 

where pρ  is the population of the state p of the perturber, and ( )pv,,bPP =  is now the 

semiclassical relaxation efficiency function. 

 Even in the frame of the semiclassical approximation an exact calculation of the scattering 

matrix is not easily realized and further approximations are introduced by the ATC treatment: 

straight line trajectories and, for weak collisions occurring at large impact parameter10, lowest order 

(second order) perturbative expansion in Eq. (3.32). This yields a relaxation efficiency function 

( )pbP weak ,,v  which, for an intermolecular potential dominated by dipole – dipole interaction, is 

given by 
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in which only rotational transitions are included in the summations over p', l' and u' because the 

vibrational contribution is generally negligible; μp is the dipole moment of the perturber, while μl 

and μu are the dipole moments in the lower and uppers states of the radiating molecule, 

respectively. They are slightly different because of the different vibrational state. In Eq. (3.35) lx , 

ux  and px  are proportional to the energy changes induced by collisions: 

 

 ( )lll EEbx −= '
hv

, ( )uuu EEbx −= '
hv

, ( )ppp EEbx −= '
hv

;   (3.36) 

                                                 
10 The intermolecular potential V(t) is a small perturbation of H0. 



 66

 

( )xfdd , which is plotted in Figure 3.3, is the dipole – dipole resonance function defined by Tsao and 

Curnutte [66]: it is an even function of x. When the collision is resonant ( 0=+ pl xx  or 

0=+ pu xx ) ddf  = 1, whereas it goes to zero when the overall change of rotational energy is large.  

The efficiency function weakP  is asymptotically exact for b → ∞. From Figure 3.3 it can be 

deduced that the broadening and shifting effect is strongly reduced when x is large, that is when the 

energy transferred by a collision from translational to internal degrees of freedom is large in 

comparison to the duration of the collision. 

For strong collisions, occurring at small impact parameters, every coherence is lost and the 

outgoing rotational state of the absorber is assumed to be completely uncorrelated to the ingoing 

one. Consequently, ''ˆ kpikpi S  and kpfkpf †Ŝ''  in Eq. (3.33) are small 

and with a completely random phase. This yields 

 

( ) 1=pbP strong ,,v ,         (3.37) 

 

hence, strong collisions give full contribution to the line width and no contribution to the line shift. 

 For intermediate b values, different 

approximations can be found in the 

literature. Some authors [65, 66] resort to a 

cutoff impact parameter ( )pb ,v0 : weakP  is 

extended to all values larger than b0, while 
strongP  is used when b < b0. The cutoff 

impact parameter is defined by imposing a 

unitary bound to the perturbative approach 

used for weak collisions. The bound can be 

imposed either on the real part, 

( )[ ] 1weak =pbP ,,vRe  or to its absolute value [67], ( ) 1weak =pbP ,,v . 

Another interpolation is obtained by omitting the time ordering operator, ϑ, in Eq. (3.32) [68, 69]. 

This yields a smooth relaxation efficiency function, 
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which have the desired behaviour for both strong and weak limits. The choice of one or another 

interpolation method can change the calculated broadening and shifting parameters by a small 

extent, around 10 – 20 %. 

 The ATC approximation leads to reasonable results for gases whose molecules mainly 

interact through strong dipolar interaction. For all the other cases the application of this formalism 

is questionable, due to the major role played by the impact parameter cutoff in the electronic cloud 

overlap region for the two colliding partners. 

 

 

33..1100  CCOOHHEERREENNTT  TTRRAANNSSIIEENNTTSS  AANNDD  RRAAPPIIDD  PPAASSSSAAGGEE  SSIIGGNNAALLSS  

 

 Fast passage effects are defined as the coherent spontaneous radiation of gas molecules 

through excitation by radiation with fast frequency sweep over the absorption line [70]. The first 

evidences of the rapid passage effects were observed in nuclear magnetic spectroscopy as wiggles 

[71]. 

 Since the advent of the laser in 1960s, there has been considerable interest in optical 

analogues of the many transient phenomena observed in pulsed nuclear magnetic resonance 

experiments on spin systems. In the optical regions, these phenomena are referred to as coherent 

transients and the interest in them is twofold [20]. First, they exhibit the dynamics involved in the 

interaction of radiation and matter; second, they can be used as probe to study collisional decay 

processes. By now, every effect seen in magnetic resonance has been observed in the optical region, 

along with several new phenomena which have no NMR analogues  [72, 73]. 

 In the period from 1970 to 1980, one of the main method developed to rapidly turn 

molecules into resonance with the radiation field was laser Stark spectroscopy. In Stark switching 

experiments, which allow the use of stable continuous-wave lasers, a differential electric field is 

used to tune the MJ (≡ M) components of a vibration-rotation transition on a particular laser 

emission line [3]. 

 Later, the use of high power tunable lasers gave the opportunity of producing coherent 

transient phenomena in a variety of other methods [74]. In particular, it has been shown that linear 

optical techniques such as frequency chirping can produce laser pulses with a moderately linear 

frequency sweep [74]. When the sweeping time of the laser frequency across an optical resonance is 

shorter that the optical depopulation time and the dephasing time of the resonance, the transient 

process is a coherent phenomenon [75].  
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 Moving from the density matrix formalism [20], the method of treating rapid passage and 

coherent transient problems is based on the Bloch vector approach used in magnetic spectroscopy: a 

detailed analysis of the rapid passage process in NMR and ESR magnetic resonances has been 

given by Ernst [76] and Stoner et al. [77], respectively. A similar treatment of the fast passage 

signals observed in gas phase microwave spectroscopy has been carried out by McGurk at al. [78]. 

When the Bloch vector approach is applied to electric dipole transitions, it is usually called the 

optical Bloch, or Maxwell – Bloch, approach [20, 73, 79].  

 The coupled Maxwell – Bloch equations are derived by treating each transition as a two 

level system with resonance frequency 0ω . In these equation the electric field may be represented 

by a plane polarized wave travelling along the z axis 

 

 ( ) ( )kztEtE −= ωcos2 0         (3.39) 

 

where k represents the wavenumber. The field induces a polarization of the sets of molecular two 

level systems in which the transitions take place. Assuming that the population of the upper level 

decays to the lower level at a rate 1γ  and that the induced dipole dephases from the driving field at a 

rate 2γ , the time evolution of the polarization, ( )tP , and the population inversion, ( )tw , for a 

molecular velocity component zv  is given by the set of differential equations: 

 

 
( ) ( )[ ] ( ) ( ) ( )zz

z twtEiNtPti
dt
tdP

vv
v

,,
,

h

2
12

2
μ

γ −+Δ−=  

 

 
( ) ( ) ( ) ( ) ( )[ ] ( )[ ]eqzzz

z wwtwtPtEtPtE
N

i
dt

wtdw
−−−−= ,,,

, **
1

2 γvv
h

   (3.40) 

 

 ( ) ( )∫= zz dtPik
dz

tdE
vv,

0ε2
 

 

where ( )tΔ  is the frequency detuning, N is the number density of the two level system, 1γ  is called 

the population decay rate, 2γ  is called the polarization decay rate, 12μ  is the transition dipole 

moment, eqw  is the equilibrium population difference and  ε0 is the permittivity of the free space. 

 According to the Bloch vector picture, the evolution of the sample polarization can be 

described by the vector ( ) ( ) ( )[ ]twtvtu ,,=M . The components ( )tu  and ( )tv  are respectively 
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related to real and imaginary parts of the complex refractive index of the gas: ( )tu  is the dispersive 

part and ( )tv  is the absorptive part; ( )tw  represents the population difference between the upper 

and lower levels of the transition [80, 81].iii 

 

                                                 
iii The chapter has been written by consulting Refs. [3, 19, 20, 45 – 48, 54 – 63, 65 – 70, 72 – 81]. 
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44..  AAbb  iinniittiioo  CCaallccuullaattiioonnss    

iinn    

IInnffrraarreedd  SSppeeccttrroossccooppyy  

 

 

Ab initio calculations are computational methods based on Quantum Mechanics. The term 

“ab initio” means “from the beginning” and it is used to indicate that these methods use no 

experimental data other than the fundamental physical constants.  

Ab initio quantum mechanical calculations have long promised to become a major tool for 

the study of chemical and physical properties of molecules, such as structures, dynamics, reaction 

mechanisms and spectroscopic quantities as well. The fundamental theory behind them dates back 

to the earliest days of Quantum Mechanics. However, quantitative and reliable applications have 

become possible in the last few decades, thanks to the huge progresses made by computer hardware 

and to the development of efficient programming techniques. 

Nowadays the level of quantum mechanical calculations can be so refined that molecular 

spectroscopic parameters can be calculated with an accuracy of few wavenumbers.  

 

 

44..11  PPOOTTEENNTTIIAALL  EENNEERRGGYY  SSUURRFFAACCEE  

 

In the framework of the Born – Oppenheimer approximation the electronic energy, at a 

given set of nuclear positions, represents the potential energy.  The potential energy surface (PES) 

governs the displacements of the atoms, and hence the molecular vibrational motions. The 

knowledge of the potential energy surface is also important for the determination of the equilibrium 

structure and for a better understanding of the reaction kinetics, in particular the intramolecular 

vibration redistribution. The equilibrium structure of a molecule corresponds to the minimum of its 

potential energy surface and the changes in its geometry can be considered as movements on the 

PES.  
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For polyatomic molecules, the complete determination of the potential energy surface, from 

the equilibrium geometry to the dissociation limit, is a formidable task. Fortunately, for most 

spectroscopic applications, it is sufficient to know the PES around its minimum. This allow the 

expansion of the potential energy in a Taylor series as a function of the nuclear dimensionless 

nuclear coordinates around the equilibrium structure as done in Chapter 2, namely: 
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 The coefficients of this expansions are called the force field. Force fields are usually classified as 

harmonic and anharmonic: the harmonic force field involves the quadratic terms in the expansion, 

which are also called the second order (or quadratic) force constants; the anharmonic force field 

includes also the remaining terms, which represent high order corrections to the potential energy.  

 

 

44..22  EELLEECCTTRROONNIICC  SSTTRRUUCCTTUURREE  CCAALLCCUULLAATTIIOONNSS  

 

The PES is created by determining the electronic energy of a molecule while varying the 

positions of its nuclei. The electronic structure calculations, which are therefore required, involve 

the solution of the non relativistic, time-independent Schrödinger equation. For a molecule 

consisting of N nuclei and n electrons the Hamiltonian, in atomic units, obtained after applying the 

Born – Oppenheimer approximation is 
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where the indexes i and j refer to electrons and α refers to nuclei. In molecular structure 

calculations it is conventional to use an electronic Hamiltonian, elĤ , which does not include the 

internuclear repulsion energy. The latter energy is added to the electronic energy, which is solution 

of elelelel EH ψψ =ˆ , as a classical term at the end of the calculation. 

 The most convenient way to write the total electronic wavefunction elψ  is by means of a 

Slater determinant11, which for a system of n electrons in n spin-orbitals is given by: 

                                                 
11 In this way the electronic wavefunction obeys the Pauli principle. 
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where ( )eiχ  denotes the spin-orbital iχ  occupied by electron e. A spin orbital is the product of a 

one-electron space orbital and a one-electron spin function, namely ( ) ( ) ( )eee ii σψχ = . The spatial 

part iψ  describes the distribution of electron density in space, whereas the spin part σ defines the 

electron spin. 

 In the majority of quantum chemical calculations, the LCAO approach is used, where each 

molecular orbital is expressed as a Linear Combination of single electron Atomic Orbitals, 
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where cmi is a coefficient and the mφ ’s are commonly called basis functions and often correspond to 

the atomic orbitals. The smallest number of basis functions for a molecular system is that which can 

accommodate all the electrons of the molecule. 

 According to the variational principle, the general problem to solve in electronic structure 

calculations is to seek those spin-orbitals which make the total energy elelel H ψψ ˆ  a minimum. 

Therefore, for a given basis set and a given functional form of the wavefunction, the best set of 

coefficients is obtained when the energy is a minimum, as illustrated in Section 1.2. 

 

 

44..33  TTHHEE  HHAARRTTRREEEE  ––  FFOOCCKK  SSEELLFF  CCOONNSSIISSTTEENNTT  FFIIEELLDD  

 

In the Hartree – Fock method the molecular electronic wavefunction is written as a Slater 

determinant of spin orbitals, Eq. (4.3), and the electron – electron repulsion is treated in an average 

way. Each electron is considered to move in the field of the nuclei and the average field of the 

remaining n – 1 electrons. The Hamiltonian operator, for one electron, e.g. 1, in the spin orbital iχ  

contains three terms, corresponding to different contributions to the energy: 
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The operator ( )
coreH 1

ˆ  is called the core Hamiltonian and corresponds to the motion of a single 

electron moving in the field of the bare nuclei. The operators jĴ  and jK̂  are the Coulomb and 

exchange operators, respectively. The Coulomb operator takes into account in an average way the 

electrostatic repulsion between electrons; the exchange operator represents the contribution arising 

from the effects of spin correlations.  

The Fock operator, if̂ , is an effective one electron Hamiltonian for an electron in a poly-electronic 

system. Each spin orbital must be obtained by solving the Hartree – Fock equation with the 

corresponding Fock operator, 

 

 ( ) ( )11 iiiif χεχ =ˆ .         (4.9) 

 

However, since if̂  depends on the spin-orbitals of all the other n – 1 electrons, an iterative solution 

strategy is used. First, a set of trial solutions '
iχ  to the Hartree – Fock is defined. The Hartree – 

Fock equations are solved giving a second set of solutions "
iχ  which are used in the next iteration. 

The procedure thus gradually refines the individual electronic solutions, that correspond to lower 

and lower total energies, until the point is reached at which the results for all the electrons are 

unchanged. At this point the solutions are self-consistent. 

 Substituting the LCAO approximation (4.4) for the molecular orbitals into the Hartree – 

Fock equation (4.9), yields 
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where 'φ  is used to denote the spin orbitals corresponding to the basis functions. The Hartree – 

Fock equations can be transformed into the following matrix form, which is known as Roothaan 

equations: 

 

 SCεFC =           (4.11) 

 

where C is the k × k matrix of the coefficients cmi; ε is the k × k matrix of the orbital energies iε ; F 

and S are called Fock matrix and overlap matrix, whose elements are respectively: 

 

( ) ( )11 '' ˆ
millm fF φφ=  ( ) ( )11 ''

mllmS φφ= . 

 

The Roothaan equations have a non-trivial solution only if the following secular equation vanishes, 

 

 0det =− εSF ;         (4.12) 

 

this cannot be solved directly 

because the Fock matrix depends on 

the wave equations, through the 

Coulomb and exchange integrals. 

Therefore, as before a self 

consistent field approach must be 

used: a new set of coefficients is 

obtained at each iteration and the 

process continues until convergence 

is reached, as schematically shown 

in Figure 4.1. 
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Figure 4.1. Schematic diagram of the Hartree – Fock Self Consistent 
procedure. 
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44..44  BBAASSIISS  SSEETTSS  

 

 The use of an adequate basis set is an essential requirement for the success of the 

calculation. The basis sets most commonly used in quantum mechanical calculations are composed 

of atomic wavefunctions. The use of Slater-type atomic orbitals is computationally too expensive 

and therefore it is common practice to replace the Slater orbitals by functions based upon 

Gaussians, which gives the so-called Gaussian-type orbital (GTO).  

 A major advantage of Gaussian functions is that the product of two Gaussians can be 

expressed as a single Gaussian, and therefore Gaussian integral evaluation takes much less CPU 

time than Slater integral evaluation. A Cartesian Gaussian centred on a given atom is defined as 

 

 
2

ααα rkjiijk ezyNxg −=          (4.13) 

 

where N is a normalization constant, i, j, k, are non-negative integers and α is a positive orbital 

exponent, which determines the radial extent of the function. The order of the Gaussian-type 

functions is determined by the powers of the Cartesian variables: a zeroth order function has i + j + 

k = 0 and it is called an s-type Gaussian; a first order function, which leads to the p-type Gaussians, 

has i + j + k = 1; when i + j + k = 2 one obtains the d-type Gaussians, which are second order 

functions. In the latter case five linear combinations can be formed, which have the same angular 

behaviour as the atomic d orbitals.  

 Since a single Gaussian function does not have the desired cusp at the nucleus, it is current 

practice to overcome this problem by representing each orbital as a linear combination of Gaussian 

functions of the form 

 

 ∑
=

=
L

u
uuii gd

1

αφ           (4.14) 

 

where uid  are the expansion coefficients of the α
ug , which are primitive Gaussian functions centred 

on the same atom and having the same i, j, k as one another, but different orbital exponent α. When 

the expansion parameters (coefficients and exponents) are held fixed during the calculation, iφ  is 

called a contracted Gaussian-type function (CGTF).  
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 The simplest type of basis set is a minimal basis set, in which one CGTF is used to represent 

each of the occupied orbitals. The minimal basis set, which is referred to as single-zeta12 (SZ) basis 

set, is usually inadequate. A significant improvement is made by adopting a double-zeta basis set 

(DZ), which doubles the size of the basis set and therefore each basis function in the minimal basis 

set is replaced by two CGTF’s. In triple-zeta (TZ) and quadruple-zeta (QZ) basis sets three or four 

CGTF’s are respectively used to represent each of the orbitals.  

 A split-valence basis set (SV) is a compromise between the inadequacy of a minimal basis 

set and the computational demanding TZ and QZ basis sets. In a SV basis set the orbitals of the 

inner shells are  represented by a single CGTF, whereas the valence orbitals are modelled using 

more CGTFs. For example, the 6-31G basis set is single-ζ for the core orbitals and double-ζ for the 

valence orbitals. 

 Since the charge distribution of an atom in a molecule is usually perturbed from that of the 

isolated atom, polarisation functions are introduced into the basis set. The polarisation functions 

have the angular quantum number higher than the maximum one of the occupied orbitals in the free 

atom: they correspond to p orbitals for hydrogen and d orbitals for the first and second row 

elements. The use of polarisation basis functions on heavy atoms is indicated by an asterics, e.g. 6-

31G*. Two asterics (e.g. 6-31G**) indicate the use of polarisation functions also on hydrogen. 

Several methods exist to form contracted Gaussian basis sets. One of these starts from 

Slater-type orbitals and the coefficients in the linear combination of Gaussian functions and their 

exponents are chosen to give the best fit to the STO’s. Another method contracts Gaussian-type 

functions obtained from a SCF calculation. In the correlation-consistent basis sets developed by 

Dunning [84], the split valence basis sets are constructed by minimizing the energy of the atoms at 

the Hartree-Fock level with respect to the contraction coefficients and exponents. These basis sets, 

which are designated as cc-pVNZ (with N = D, T, Q,…standing for double, triple, quadruple,…) 

extract the maximum electron correlation energy for each atom. As N increases, the number of 

polarisation functions also increases. For example, the cc-pVTZ basis set is triple-zeta in the 

valence space and has two sets of d functions and a set of f functions. The cc-pVTZ basis set is 

described by a [4s3p2d1f/3s2p1d] contraction of a (10s5p2d1f/5s2p1d) primitive set for C, F/H 

atoms, whereas the cc-pVQZ basis set corresponds to a [5s4p3d2f1g/4s3p2d1f] contraction of a 

(12s6p3d2f1g/6s3p2d1f) primitive set. 

 

 

                                                 
12 The term zeta reflects that each basis function mimics a single Slater type orbital (STO) which is defined by its 
exponent usually denoted by ζ.  
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44..55  CCOOUUPPLLEEDD  CCLLUUSSTTEERR  TTHHEEOORRYY  

 

The result of a Hartree – Fock calculation is a set of k molecular orbitals, where k is the 

number of basis functions employed. The n electrons are fed into these orbitals according to the 

Aufbau principle. The remaining orbitals, which do not contain any electron, are known as virtual 

orbitals. Alternative electronic configurations can be generated by exciting electrons to these 

orbitals. The excited configurations are used in more advanced calculations. 

The accuracy of an electronic calculation is affected by four sources of error, which are: (i) 

incomplete treatment of electron correlation13; (ii) incompleteness of the basis set; (iii) relativistic 

effects; (iv) breakdown of the Born – Oppenheimer approximation. The last effect is usually 

negligible for molecules in the ground electronic state and, usually, relativistic effects arise only in 

heavy atoms. Therefore, in calculations on molecules without heavy atoms (i) and (ii) are the main 

sources of error. 

Multiconfigurational methods are used to address the problem of electron correlation and 

also to permit orbital readjustments to occur. These methods basically rely on exciting electrons to 

the virtual molecular orbitals and express the wavefunction as a linear combination of determinants 

rather than a single one. Configurations produced by moving one electron from an occupied to a 

virtual orbital are singly excited relative to the Hartree – Fock configuration and are called singles; 

those where two electrons are excited are called doubles. 

Coupled-cluster theory is a multiconfigurational approach which describes the wavefunction 

as [85] 
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where CCψ  is the exact non-relativistic ground state molecular electronic wavefunction, and the 

operator Te ˆ  is defined by the Taylor-series expansion: 
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the cluster operator T̂  is defined by: 

                                                 
13 The Hartree – Fock method indeed ignores instantaneous electron – electron repulsion, which is know as electron 
correlation. 
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 nTTTT ˆ...ˆˆˆ
21 +++=          (4.17) 

 

where n is the number of electrons in the molecule and the operator iT̂  generates all the 

configurations with i excited electrons. The effect of Te ˆ  is to express CCψ  as a linear combination 

of Slater determinants which comprise elψ  and all possible excitations of electrons from occupied 

to virtual spin-orbitals. 

 The most important contribution to the coupled cluster operator is made by 2̂T , but since the 

inclusion of 1̂T  is only slightly computationally expensive, the expansion (4.17) is generally 

truncated after the second term. The coupled cluster singles and doubles (CCSD) method is the 

typical coupled cluster computation.  

The one- and two-electron excitation operators are defined, respectively, as 
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where a
iψ  is a singly excited Slater determinant with the occupied spin-orbital iχ  replaced by the 

virtual spin-orbital aχ ; ab
ijψ  is a doubly excited Slater determinant with the occupied spin-orbitals 

iχ  and jχ  replaced by the virtual spin-orbitals aχ  and bχ ;  a
it  and ab

ijt  are numerical coefficients 

called amplitudes. The effect of the operator 1̂T  and 2̂T  is to transform a Slater determinant into a 

linear combination of all possible singly excited and doubly excited Slater determinants, 

respectively. 

 It can be shown [26, 86] that the coefficients appearing in Equations (4.18) can be obtained 

from a set of simultaneous non-linear equations, in which the coefficients are constant that involve 

orbital energies and electron-electron repulsion integrals over the basis functions. 

 Inclusion of the operator 3̂T  is computationally demanding and therefore the triple 

excitations are included by a perturbative treatment in the CCSD(T) method. This has become the 

standard method used for high-level ab initio calculations which lead to the most accurate results. 

However, it requires significant computer resources and therefore it is limited to relatively small 

molecules. 
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44..66  HHAARRMMOONNIICC  AANNDD  AANNHHAARRMMOONNIICC  FFOORRCCEE  FFIIEELLDDSS  

 

 The knowledge of the energy derivatives greatly facilitates the search for critical points, 

such as minima and saddle points, on the molecular potential energy surface. Besides, as shown in 

Chapter 2, the spectroscopic parameters can be calculated from the second and higher order 

derivatives of the molecular energy. Table 4.1 summarizes the connection between the energy 

derivatives up to the fourth order and some spectroscopic quantities [87]. 

 
Table 4.1. Molecular energy derivatives and related spectroscopic observables. 

Derivative Observable 

q
E

∂
∂  Forces on the nuclei; critical points on the PES. 

sr qq
E
∂∂

∂ 2

 Quadratic force constants; harmonic fundamental vibrational frequencies; 
Coriolis vibration-rotation couplings. 

rst
tsr qqq

E φ=
∂∂∂

∂ 3

 Cubic force constants; anharmonic constants; anharmonic resonances. 

rstu
utsr qqqq

E φ=
∂∂∂∂

∂ 4

 Quartic force constants; anharmonic constants; anharmonic resonances. 

 

 Calculation of the derivatives from energy points can be done in two ways. In numerical 

methods a number of energy values is calculated close to the point where the derivatives need to be 

evaluated; then an analytical function, generally a polynomial, is fitted to these points. This method 

is usually plagued by numerical instability, unless the number of points greatly exceeds the number 

of derivatives to be calculated. Another numerical method is represented by the use of finite 

difference methods, which are free from the instability encountered when surfaces are fitted. 

In analytical methods, the derivatives are directly calculated from quantum mechanical 

wavefunctions, for instance [88] 
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In comparison to numerical methods, the analytical calculation of the energy derivatives is more 

efficient and numerically accurate. On the other hand, the analytical approach requires huge 

programming efforts for its implementation. Another drawback is that the calculation of a single 

derivative usually takes more computer resources than the energy calculation itself, in particular for 
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second and higher order derivatives. For these reasons the analytical calculations are usually limited 

to the gradient (i.e. the vector of the N first derivatives) and the Hessian matrix (i.e. the N × N 

matrix of the second derivatives). The third and fourth derivatives, which are important for 

predicting vibrational anharmonicity, are computed numerically.iv 

 

                                                 
iv The chapter has been written by consulting Refs. [26, 27, 38, 82 – 88]. 
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55..  IInnssttrruummeennttaattiioonn  

 

 

 During the last forty years there has been a revolutionary improvement in the 

instrumentation used to measure the infrared spectra of molecules. The spectrometers based on the 

Fourier Transform (FT) technique are nowadays the major tools used for infrared spectroscopy. 

Their success is mainly due to the large spectral interval which can be recorded during a single 

measurement in a relatively short time, which depends on the spectral resolution employed. 

 On the other hand, high precision quantitative absorption measurements are provided by 

Tunable Diode Laser (TDL) spectrometers as well. Precise line shape measurements are one of the 

most important applications of these spectrometers in high resolution molecular spectroscopy. 

 More recently, Quantum Cascade Laser (QCL) based spectrometers have become one of the 

most promising sources of infrared radiation, in particular for trace gas detection and monitoring 

[89 – 95]. Indeed, they have led to the development of compact and transportable spectrometers, 

which are free of the requirement for cryogenic cooling [96 – 101]. 

 

 

55..11  TTUUNNAABBLLEE  DDIIOODDEE  LLAASSEERR  SSPPEECCTTRROOMMEETTEERR  

 
In IR TDL spectrometers the source of light is a tunable semiconductor laser. 

Semiconductor lasers are generally based upon a p-n junction: the light emission is associated with 

the radiative recombination of electron and holes that occurs at the junction [102, 103]. A schematic 

picture  of a heterojunction semiconductor laser is given in Figure 5.1. The excitation is provided by 

an external electric field applied across the p-

n junction, which causes the two types of 

carriers to come together. In Fabry – Pérot 

lasers the optical feedback necessary for the 

laser cavity is usually obtained by cleaving 

and polishing the opposite facets of the 

semiconductor so that they result parallel. 

Within the infrared spectral region, the semiconductor lasers are based on lead salts, namely 

Pb1-xSnxTe and Pb1-xSnxSe, and they provide a spectral coverage inside the interval 4 – 32 μm [3, 

Metal 
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Figure 5.1. Schematic diagram of a heterojunction 
semiconductor laser 
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102]; the nominal frequency of the radiation emitted depends on the exact composition of the 

crystal. The typical size of such semiconductor lasers is around 0.1 × 0.04 × 0.02 cm. These lasers 

operate at cryogenic temperatures in the range between 77 and 120 K and hence, they must be 

attached to the cold finger of a Dewar at liquid nitrogen temperature. 

For a given TDL, the bandwidth associated with spontaneous emission may be of the order 5 

– 50 cm-1, however laser action can only occurs at the wavelengths allowed by cavity modes which 

are dictated by the optical length of the Fabry – Pérot cavity. 

The wavelength of the radiation emitted depends on the injection current, while fine tuning 

is usually achieved by changing the temperature. This alters the refractive index and hence the 

optical length of the cavity. The rate of change of the band gap with the temperature is of the order 

of 2 – 4 cm-1K-1, as shown in Figure 5.2(a). Nevertheless, there is no continuous tuning over the 

whole gain profile, because of mode hopping. An example of this discontinuous emission pattern is 

shown in Figure 5.2(b). 

Lead salt diode lasers are generally multi-mode devices and therefore a monochromator is 

used to isolate a single mode. Typical single-mode output powers are between 10 and 100 μW. 

 

Figure 5.2. (a) Temperature tuning of TDLs.  (b) Example of mode hops occurring in TDLs. 
 

At the University Ca’ Foscari Venezia, the high resolution measurements were carried out 

on a Laser Analytics tunable diode laser assembly model SP-5000. During the years the 

spectrometer has been upgraded and progressively improved: at present it works in a two or three 

channel configuration. The scheme of the instrument and its optical arrangement are shown in 

Figure 5.3. After being collimated, the IR radiation emitted by the laser is split into two distinct 

beams: one is sent through the absorption cell containing the gas sample; the other is directed into a 

Germanium etalon, having a free spectral range of about 0.48288 cm-1, used for frequency 

calibration. When the spectrometer is operating in the three channel arrangement, the major beam is 
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further separated in two parts by another beamsplitter. One ray passes though the absorption cell, 

whereas the third beam is directed to a second cell which can be filled with a reference gas for 

calibration purposes. The emerging beams are then collected by different nitrogen cooled HgCdTe 

(MCT) photoconductive detectors. The electric signals produced by these detectors are 

simultaneously acquired by a 4 channel digital oscilloscope (Tektronix TDS 3014) and transferred 

to a personal computer for post processing, e.g. calibration and conversion to absorbance spectrum. 
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Figure 5.3. Scheme of the experimental setup of the TDL spectrometer employed at Università Ca’ Foscari Venezia. 
In the phase-sensitive signal recovery the spectral acquisition is performed by lock-in amplifiers (dashed lines). 

 

There are two ways in which the spectra can be acquired: sweep integration and phase-

sensitive signal recovery. In the sweep integration method the laser output is scanned repetitively by 

using a sawtooth modulation to the current supply, and the detector signal is recovered by a signal 

averager. The scan times are short (∼ 3 ms), so that the effects of laser instability are reduced and 

the signal-to-noise ratio is improved by averaging a large number of scans. 

In the experimental setup adopted, the phase-sensitive signal recovery is obtained by 

modulating the laser output beam using a mechanical chopper. The laser is scanned slowly 

(generally several minutes), and the resulting AC signal at the detector is demodulated by using 

lock-in amplifiers. 

For line parameter retrieval experiments, the first method is preferred, since in the phase-

sensitive signal recovery the effects of modulation depth may be difficult to calculate and correct 

for [3]. 
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55..22  FFOOUURRIIEERR  TTRRAANNSSFFOORRMM  SSPPEECCTTRROOMMEETTEERR  

 

 The majority of modern Fourier Transform Infrared (FTIR) spectrometers is based on the 

two beam interferometer originally designed by A. A. Michelson in 1891. The Michelson 

interferometer is a device that splits a beam of radiation into two paths, which are then recombined 

after introducing into one of them a path difference [104].  

The simplest form of Michelson interferometer is schematically represented in Figure 5.4. It 

consists of a beamsplitter placed between  two mutually perpendicular mirrors, one of which moves 

along an axis that is perpendicular to its plane. The operations of the interferometer are as follow: 

the energy from the infrared source is collimated and directed toward the beamsplitter, where the 

beam is partly reflected to the fixed mirror F and partly transmitted to the movable mirror M. The 

two beams are then reflected by the corresponding mirrors back to the beamsplitter, where they 

interfere and are again partly reflected to the source and partly transmitted to the detector.  

The energy reaching the 

detector is the sum of the beams, 

which recombine at the 

beamsplitter. If the distance of 

the two mirrors from the 

beamsplitter is the same, then 

the two beams travel equal 

distances and, once recombined, 

they interfere constructively 

since they are in phase. When 

the movable mirror is moved, 

the two beams travel unequal optical paths. Once recombined they can interfere either 

constructively or destructively depending on the path difference. The path difference introduced by 

the movable mirror is called optical path difference (OPD) or retardation and it is usually denoted 

by δ. If the movable mirror is displaced by x, the OPD is δ = 2x.  

The intensity of the beam that arrives at the detector is a function of the optical path 

difference, ( )δ'I , and it contains all the spectral information. If the movable mirror is translated 

back and forth at constant velocity, the signal at the detector varies sinusoidally. It has a maximum 

when the OPD is an integer multiple of the wavelength, λ, of the radiation, since the two beams 

recombine in phase; it has a minimum when the OPD equals an half-integer multiple of λ, since the 

two beams add out-of-phase [105]. 
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x
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Detector

Beamsplitter
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Figure 5.4. Scheme of a Michelson two mirror interferometer. 
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The beam intensity ( )δ'I  is composed of a constant (DC) and a modulated (AC) component. 

Only the latter is important for spectroscopic measurements, and it is generally referred to as 

interferogram, ( )δI . For an ideal interferometer, the interferogram ( )δI  and the spectrum ( )ν~B  

form an integral Fourier pair [104, 105]: 
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and hence the spectrum can be obtained from the interferogram by computing its cosine Fourier 

transform. In principle, according to equation (5.1a) the spectrum can be measured at infinitely high 

resolution14, however equation (5.1b) shows that this would be possible only by scanning the 

movable mirror over an infinitely long distance. This is obviously impossible and therefore the 

finite OPD limits the resolution of the interferometers.  

 By denoting with δmax the maximum optical path difference of an interferometer, the 

theoretical maximum limiting resolution, v~Δ  is 
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In practice, however, this resolution is never attained because of truncation and apodization; in 

addition interferogram is digitized at finite, rather than infinitesimal, sampling intervals. 

 If the OPD ranges from –Δ to +Δ, this amounts to multiplying the complete interferogram by 

a boxcar function, ( )δD , reproduced in Figure 5.5 (a) and defined as 
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14 There are various way to define the spectral resolution. One of the most employed is the use of the FWHM (Full 
Width Half Maximum): two spectral lines of equal intensity cannot be considered resolved if their separation is less 
than the FWHM. 
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The spectrum is then given by 

 

 ( ) ( ) ( ) ( )∫
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= δδνπδδν dDIB ~2cos~ ;       (5.4) 

 

this yield a spectrum that is the convolution of the FT of ( )δI  from –∞ to +∞ and the FT of ( )δD . 

The former is the complete spectrum, while the FT of ( )δD  is the sinc function, 
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~

~~
2

2sin22sincFTf ,       (5.5) 

 

which is represented in Figure 5.5 (b). Since 

the sinc function has a FWHM of 0.605, an 

infinitely narrow spectral line broads to 

0.605/δmax [104]. In addition, the sinc function 

causes each spectral line to be accompanied by 

a series of side lobes undulating positive and 

negative, with diminishing intensities on 

moving from the line centre15. The suppression 

of the magnitude of these oscillations is known 

as apodization and there exists a wide variety 

of apodization functions16 [104]. However, 

while reducing the magnitude of the ringing, the apodization functions lead to a poorer spectral 

resolution. 

 One of the most serious drawbacks of the original Michelson interferometer is the slight 

rotation of the plane mirrors [106]. The tilt compensation can be achieved by the use of 

retroreflectors such as corner cube mirror systems. The simplest corner cube consists of three 

mutually perpendicular plane mirrors, as shown in Figure 5.6. An ideal corner cube works as a 

perfect retroreflector, indeed if the beam impinging on the corner cube moves in the +k direction, 

the outgoing beam will propagate in the –k direction as a result of the three successive reflections 

by the mirrors. Hence, the outcoming beam is exactly parallel to the incident one. The simplest 

                                                 
15 This effect is called ringing. 
16 The boxcar function is usually called apodization function as well. Strictly speaking it is simply a truncation function. 
Indeed apodization derives from the Greek “apodos” which means “without feet” and therefore it refers to the removal 
of the side lobes caused by the truncation. 

Figure 5.5. The boxcar function (a) and corresponding 
Fourier transform (b), i.e. the sinc function.  
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corner cube interferometer is a conventional Michelson interferometer in which both plane mirrors 

have been replaced by corner cube mirrors [106]. 

 

 At Università Ca’ Foscari 

Venezia the FTIR spectra were 

recorded on a Bruker Vertex 70 corner 

cube spectrometer. The scheme of the 

instrument is given in Figure 5.7. It 

can work at different spectral 

resolution and covers both the medium 

IR region (400 – 5000 cm-1) and the 

near infrared region from 5000 to 

about 12000 cm-1. For operations in 

the MIR region, the radiation is 

emitted by a Globar source, a KBr beamsplitter is used and the radiation is collected by DTGLas 

detector. When the instrument is working in the NIR region, the radiation emitted by a tungsten 

lamp is sent to a Si/CaF2 beamsplitter and a InGaAs detector is used. 
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Figure 5.7. Diagram of the Bruker Vertex 70 FTIR spectrometer used for low and medium resolution measurements. 

 
Figure 5.6. Corner cube retroreflector. 
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 After the interferogram has been acquired by the proper detector, it is transferred to a PC, 

where it is Fourier transformed into the corresponding spectrum by the instrument control software 

(OPUS). 

 

 

55..33  SSUUPPEERRSSOONNIICC  FFRREEEE  JJEETT  EEXXPPAANNSSIIOONN  

 

 Infrared spectra provide a wealth of information on molecular energy levels and 

intramolecular dynamics. In order to obtain a reliable molecular Hamiltonian from the experimental 

spectra, the observed transitions must be properly assigned. The task is simplified by the use of high 

spectral resolution: an ideal gas sample would be thought as an ensemble of molecules, all in a 

given well defined quantum state (usually the vibronic ground state), travelling in free space with  a 

narrow velocity distribution and at a sufficiently low density such that intermolecular interactions 

become unimportant [107]. However, for molecules with a number of heavy atoms, the spectral 

lines are so closely spaced that many of them overlap within their natural or Doppler widths. In 

addition, for molecules with low lying vibrational levels, the absorptions due to the hot bands 

significantly contribute to the spectrum, which thus appears as a continuum or a quasi-continuum at 

room temperature. Under these circumstances the spectral analysis is a very formidable, often 

prohibitive, task. 

 The spectral structure can be greatly simplified by means of the supersonic expansion of the 

molecular gas sample. In supersonic free jets, molecules at moderately high pressures (usually 

between 1 and 100 atm) are expanded either neat or in a carrier through a small orifice (nozzle) or a 

planar slit, into a region of relatively low pressure [108]. The expansion cools the translational 

degrees of freedom of the gaseous mixture, thus creating a cold translational bath. In order to obtain 

a supersonic jet, the diameter, D, of the orifice must be larger than the mean free path, 0λ , of the 

particles: 10 <<Dλ . When this condition is met, there will be many collisions as the gas flows 

through the orifice and downstream of the orifice. Such a flow regime is called hydrodynamic. The 

hydrodynamic expansion converts the enthalpy associated with the random motion of the particles 

into direct mass flow. This process causes the mass flow velocity, u, to increase and the temperature 

T to decrease. The rate of cooling is governed by vp CC=γ , that is the ratio of the specific heat at 

constant pressure and that at constant volume. If an ideal gas at pressure P0, density ρ0 and 
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temperature T0 is expanded into a vacumm discharge chamber, the temperature T1, density ρ1 and 

pressure P1 after the expansion satisfy the following relations: 
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M is the Mach number, which is the ratio of the bulk flow velocity to the local speed of sound, a, 
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where x is the distance from the nozzle, A is a constant which depends on the type of gas (A = 3.26 

for an atomic gas) and a is given by 
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As the temperature of the expanding gas drops, the speed of sound decreases and therefore M 

increases. When M exceeds 1, the expansion is called supersonic. Although M changes with the 

distance, it converges to a limiting value at which the temperature lowering stops. 

After the expansion, the cold particles of the supersonic flow collide with the warm background 

molecules present in the vacuum chamber and a shock wave is formed around the beam. The 

structure of a free jet is shown in Figure 5.8. The supersonic jet occurs in the so called zone of 

silence, that is the spatial region enclosed by a barrel shock and the Mach disk. If a particle in the jet 

reaches the barrel shock or the Mach disk it is heated up. The Mach disk distance from the nozzle 

can be approximated by 
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where Pc is the pressure of the vacuum chamber [108]. Within the zone of silence the two body 

collisions probability becomes small and no further significant cooling occurs. The cooled 

molecules in the jet are then isolated and stay in the prepared state until they encounter an obstacle. 
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 Generally, the supersonic expansion is 

carried out employing a monoatomic gas carrier in 

which the radiators are seeded: in this way lower 

temperatures can be achieved because atoms do 

not store energy into internal degrees of freedom. 

The polyatomic molecules seeded into the 

expanding gas cool by means of two body 

collisions with the atoms of the carrier. The 

percentage of added molecules is generally so 

small that the conditions achieved in the 

expanding gas are nearly the same of the pure gas 

carrier. 

 Since the supersonic jet is in a non-

equilibrium state, the equilibration rates of the different degrees of freedom are not the same. 

Generally, the rate of equilibration between translations and rotations is generally fast and therefore 

extensive rotational cooling takes place before the molecules enter the collision-free region. The 

rate of vibration – translation equilibration of a particular vibrational mode is generally slower. 

Therefore, vibrational cooling occurs to some extent, but it is not as complete as the rotational one 

[107]. It follows that vibrottrans TTT <<≈ , where Ttrans, Trot and Tvib are the translational, rotational and 

vibrational temperatures, respectively [109, 110]. The rate of phase equilibration is very slow and 

the molecules persist for long time in the gas phase at temperatures far lower than those necessary 

to freeze the entire system into a solid [107]. The result is that, when the molecules enter the 

collision-free region, the system is translationally and rotationally very cold, vibrationally 

somewhat cold, but still consisting of single isolated gas phase molecules [107]. 

 

 A schematic diagram of the home-built supersonic free jet system [111, 112] of the 

Molecular Spectroscopy group of Università Ca’ Foscari Venezia is shown in Figure 5.9. The 

system is coupled to the TDL spectrometer presented in Section 5.1. 

 The radiation emitted by the lead salt laser, after being collimated and mode filtered, is 

subdivided into three parts by a couple of beamsplitters. The main part of the beam is directed into a 

1.5 m3 vacuum chamber. The radiation is focused onto a detector after a single passage through the 

supersonic jet. A set of large mechanic pumps, consisting of a 2000 m3h-1 Roots blower, backed by 

a 500 m3h-1 Roots blower and a 175 m3h-1 double stage rotary vane pump, is employed to evacuate 
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Figure 5.8. Structure of a free jet expansion. 



 94

the gas from the vacuum chamber. In order to minimize their vibrations, special vibration absorber 

are fitted under the pump system and a flexible pipe is used to connect the pumps to the chamber. 

By using an electronic delay generator, an adjustable delay time between the first pulse (which 

initializes the valve orifice controller) and the second one (which starts the scan and initiates the 

oscilloscope) can be properly set. It is generally chosen such that the valve is fully opened during 

the recording time. 
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Figure 5.9. Block diagram of the home built free jet system at Università Ca’ Foscari Venezia. 
 

 

55..44  QQUUAANNTTUUMM  CCAASSCCAADDEE  LLAASSEERR  SSPPEECCTTRROOMMEETTEERR  

 

 The main disadvantages of bipolar lead salt lasers are that they require cryogenic cooling to 

operate and their output power is usually low (some μW).  

 Over the last years, the invention of Quantum Cascade Lasers (QCLs) have led to the 

development of medium IR spectrometers which avoid the need of cryogenic cooling [94, 96 – 

101]. These lasers, which are based upon the AlInAs, InGaAs and InP technologies developed for 

optical communications [113], have been first realized by Capasso’s group [114], although the 

original idea of this type of laser was proposed by Kazarinov and Suris [115]. 

QCL’s rely on transitions between the quantized conduction band states of a multi-quantum 

well device [113]. They are unipolar semiconductor lasers which have only electrons as type of 
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carrier. The electrons propagate through a potential staircase of coupled quantum wells, where the 

conduction band is split by quantum-confinement into a number of distinct subbands [114, 116]. 

The sets of different square well potentials are designed by band structure engineering and they are 

obtained by growing a semiconductor composed of alternating layers of different types of 

semiconductor materials. 

 The scheme of the conduction band structure of the laser active core is shown in Figure 

5.10. A single stage of this device consists of an injector region and an active region. The light is 

generated by transitions between energy levels in the square well based potential. By applying an 

electric field, electrons are injected via an injector miniband into level 3, light is emitted by the 

transition from level 3 to level 2; then level 2 rapidly relaxes to level 1. The latter is coupled into 

the injector miniband which populates the upper level in the next stage of the cascade where the 

process is repeated again [117]. Therefore, by stacking a series of m stages (i.e. injector and active 

region) one electron is responsible for emitting m different photons [113]. 

QCLs cover the entire medium IR 

region and are of particular importance for 

the two atmospheric windows at 3 – 5 μm 

and 8 – 13 μm. The frequency of the emitted 

radiation depends on the energy spacing 

between the lasing subbands, i.e the n = 3 and 

n = 2 levels of the quantum well, and 

therefore it can be varied by changing the 

width of the quantum well [113]. The power 

levels available from these lasers can be three 

orders of magnitude greater than commercial lead salt lasers in this wavelength region; in addition, 

they have narrower emission linewidths. Generally, single mode QCLs adopt a distributed feedback 

(DFB) design for the longitudinal mode separation. The tuning mechanism of a DFB-QCL relies 

upon the variation of the refractive index of the waveguide with the temperature. This causes the 

apparent optical length of the frequency selection grating to change. 

Quantum Cascade Lasers operate either continuously or in pulsed mode. In the latter case, 

when a current pulse is applied to a QCL, the laser output frequency sweeps to lower frequency as a 

function of time. Two types of instrument for pulsed operations have been developed: the inter-

pulse [89, 91, 97, 118] and the intra-pulse [92, 98 – 100, 117, 119] methods. 

In the inter-pulse method short current pulses (3 – 10 ns) are used in order to limit the frequency 

down-chirp. The current generates a pulse in the spectral domain, which is tuned through the 
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Figure 5.10. Schematic diagram of the QCL conduction 
band structure. 
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spectral features by the use of a sub-threshold current ramp [119]. The obtained spectra resemble 

those produced by a TDL spectrometer, the recorded spectral micro-window covering an interval of 

0.2 – 0.8 cm-1.  

In the intra-pulse method, the frequency down-chirp is used to provide the scan through the 

absorption spectrum: a long current pulse is used so that the laser frequency rapidly sweeps to lower 

frequency [117]. In this way a complete spectral window covering some wavenumbers is recorded 

during each pulse. This method requires a very wide frequency bandwidth detector and amplifier 

combination, and also a fast and efficient digitiser [117]. 

 The resolution limitations of the intra-pulse QCL spectrometers are not determined by the 

effective linewidth of the laser emission profile induced by the current pulse, but by the chirp rate of 

the frequency down-chirp and the temporal resolution of the detection system [98, 117]. For the 

latter, the bandwidth – time duration product of a signal can not be less than a certain minimum 

value; this is sometimes referred to as “uncertainty relation” [120]. It states that the product of the 

equivalent duration, Δt, and the equivalent bandwidth, Δν, must exceed or be equal to a constant C, 

which is determined by the pulse shape: 

 

 Ct ≥⋅ νΔΔ ;          (5.10) 

 

for a rectangular time window C = 0.886, whereas for a Gaussian time window C = 0.441. 

A peculiar feature of the intra-pulse method is that, when very low pressures of pure gas are 

used, the shapes of the absorption lines have a characteristic hook shape [80, 81, 117, 121, 122]. 

This line shape is analogous to the rapid passage signals of NMR [76] and ESR spectroscopy [77], 

the fast passage signals of microwave spectroscopy [70, 78] or the optical nutation signals observed 

in time dependent coherent transient experiments [20].  

Most of the developments made on QCL spectrometers adopting the intra-pulse method 

have been carried out by the Strathclyde University group of Prof. G. Duxbury and Prof. N. 

Langford. The experimental arrangement of their laboratory-fixed spectrometer is shown in Figure 

5.11. 
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Figure 5.11. Schematic diagram of the experimental arrangement of the QCL laser spectrometer used at University of 
Strathclyde. 

 

The DFB-QCL is excited by a rectangular pulse current of 3 – 2000 ns and repetition rate of up to 

100 kHz. The laser heat sink is mounted upon a Peltier thermoelectric cooler, which allows the 

QCL substrate temperature to be maintained constant between –40 and +40 °C. The light emitted by 

the laser is coupled out through an anti-reflection coated ZnSe window and then collected by an off-

axis parabolic mirror-germanium telescope arrangement to produce a beam of about 3 mm 

diameter. This beam is directed via a set of steering mirrors into a multipass cell containing an 

astigmatic Herriot mirror arrangement. After traversing the cell, the radiation is coupled onto a 

Peltier-cooled small area photovoltaic VIGO MCT detector operating close to 0°C. The electrical 

signal produced by the detector is amplified by a built-in trans-impedance amplifier; the effective 

bandwidth of the detector-amplifier combination is about 1 GHz. The amplified signals are recorded 

with a high-speed (500 MHz bandwidth, 2 GSample) computer-controlled digitiser with a 

digitisation step of 0.5 ns. 
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66..  VViissuuaall  LLiinnee--SShhaappee  FFiittttiinngg  PPrrooggrraamm  

 

 

 Thanks to the availability of always more powerful computers, the time consuming task of 

inverting the experimental spectra to extract spectroscopic parameters has become increasingly 

assisted by computer programs. Compared to the huge number of softwares available for extracting 

the Hamiltonian’s parameters from the assigned line positions (a list of freely available devices is 

given in Ref. [123]), few programs specifically designed to perform line shape analysis by fitting 

experimental spectra have been presented (see, for example, Refs. [124 – 128]). These software rely 

upon the multi-spectrum fitting technique, introduced by Carlotti for the spectroscopic retrieval of 

concentration profiles of atmospheric constituents [129]. The basic idea underlying the multi-

spectrum approach is to fit various spectra recorded in different conditions (e.g. pressure, 

temperature, path length, etc.) at once. This method is the best choice when the large number of 

lines recorded in a single scan by an FT interferometer needs to be analyzed. Hence these programs 

appear designed to deal mainly with the FTIR spectra. Indeed, during the fitting procedure they 

explicitly take into account the step of the parameterization of the FTIR instrumental line shape, 

which is generally modelled as a sinc function.  

 On the other hand, the spectrometers based on laser sources have simpler instrumental 

contributions, generally modelled as a Gaussian or Lorentzian function. Furthermore, the spectral 

region which can be recorded in a scan is of the order of some wavenumbers, thus greatly reducing 

the amount of lines to be accounted for in a single spectrum. In many cases, the line shape analysis 

is carried out by using home made programs which are sometimes designed to fit the experimental 

features to a single theoretical function. Further, some programs are able to fit only one absorption 

line at time and still run from a command line window, thus avoiding an immediate comparison 

between the experimental data and the theoretical model. Commercial packages, such as IGOR Pro 

[130] and Origin [131], can be employed as well,  although they are not completely well suited for 

the purpose. 

As a consequence, a new software for line shape fitting has been projected and 

implemented. The program, called “Visual Line-Shape Fitting Program” (VLSFP), can fit more 

lines simultaneously, using different theoretical line shape functions. It has a standard graphical 

interface and it runs under Microsoft Windows environment.  
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66..11..  VVIISSUUAALL--LLIINNEE  SSHHAAPPEE  FFIITTTTIINNGG  PPRROOGGRRAAMM  IIMMPPLLEEMMEENNTTAATTIIOONN::  AANN  OOBBJJEECCTT  

OORRIIEENNTTEEDD  AAPPPPRROOAACCHH  

 

 VLSFP has been written combining Microsoft Visual Basic and C# for the graphical 

interface and the computational kernel, respectively. 

 The evaluation of the line parameters within a given theoretical model is performed through 

an iterative procedure using the Levenberg – Marquardt algorithm [132, 133]. The algorithm [134, 

135] has been implemented in a box constrained version [136], thus permitting to set bounds to the 

variability of the parameters or to keep the parameter values constrained. The fitting routine runs as 

a background process, hence avoiding the program interface to be frozen during the execution of the 

fitting task.  

The computational kernel, 

schematically depicted in Figure 6.1, 

has been projected following an 

Object Oriented Programming (OOP) 

approach [137]. This programming 

technique, born around 1960s, uses 

objects and their interactions to 

design computer programs. An 

application is then composed by a 

collection of cooperating objects, 

rather than an ensemble of 

subroutines that compute specific 

tasks. Each box of Figure 6.1 is 

referred to as a class and it represents 

an “object”. The class defines the 

properties (class variables) of the corresponding object and its behaviour (class methods). The 

object is able to process data and, mostly, to interact with other objects by receiving and sending 

messages. In a pictorial representation, every single object can be thought as a little machine with 

its own task. The distinct machines then cooperate to accomplish an objective: in this case the fit of 

the experimental line shape by means of different theoretical profiles.  

The benefit of the OOP relies in that classes provide modularity and structure in a program. 

Further, objects can interact each other by just knowing their properties, while the specific 

implementation does not matter. This gives a large level of abstraction and the possibility of 

 
 
Figure 6.1. Block diagram representing the implementation of 
VLSFP. Each box represents a class referred to as Object (C. M. 
stands for collision model).  The objects interact with each other to 
make the application: the arrow means “derives from”, the diamond 
means “makes use of” (see text for discussion). 
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modifying an object without changing the other ones. As a consequence the maintenance of a 

program becomes easier. 

Referring to Figure 6.1, the classes Vector, Matrix and Complex implements vector, matrix 

and complex algebra, respectively. They are used by the other objects of the project to store and 

process the data. The matrices have been implemented as one-dimensional arrays and therefore they 

are allocated as a single chunk of computer memory, thus speeding up the access to their elements. 

The fitting routines have been encapsulated inside the class LevMar and they have been designed to 

deal with a generic object of the type Line Shape. Line Shape represents an abstract class, that is an 

abstract object which defines the common characteristics possessed by all the line shapes (for 

example, the computed line profile, the line parameter array and the Jacobian matrix). The single 

line shape functions have been derived from the main abstract class and within each line shape class 

a specific implementation of the methods has been made. As a consequence, new line shape 

functions, such as the speed-dependent profiles, can be implemented without changing neither the 

Line Shape nor the LevMar classes. 

 

 

66..22..  DDEESSCCRRIIPPTTIIOONN  OOFF  TTHHEE  LLIINNEE--SSHHAAPPEE  FFUUNNCCTTIIOONNSS  

 

 The line shape functions have been implemented in the normalized form: denoting a generic 

line function by f(p), it is normalized to unitary area:  

 

 ( )∫
+∞

∞−

= 1dxf p           (6.1) 

 

where p = [x, y, z,…] is the vector of dimensionless parameters which are described in Table 6.1 

following the notation of Varghese and Hanson [47]. As can be seen, the line parameters are 

normalized by the effective Doppler half width (see also Eq. 3.18) defined as 

 

 
2ln

D
D

γα =           (6.2) 

 

where γD is the dimensional Doppler half width as given by equation (4.19). Since the program has 

been projected to work in the infrared region, the dimensional quantities are expressed in wave 

numbers. Nevertheless, being all the profiles computed using dimensionless quantities, VLSFP 
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could be employed also in other spectral regions. During the fitting procedure, VLSFP refines the 

line centre frequency 0ν~ , the line intensity S and the remaining line parameters, which clearly 

depend on the specific line shape function.  

 
Table 6.1. List of the dimensionless parameters of the normalized line shape functions 

Dimensionless Parameter 
Definition a Description Related Dimensional parameters 

D

vv
x

α
0

~~ −
=  Frequency detuning from resonance 

frequency 
Wavenumber frequency ν~  and line 

centre 0ν~  [cm-1]. 

D

Ly
α
γ

=  Frequency of broadening collisions 
Collisional half width, γL; Pressure 

broadening coefficient, 0
Lγ  [cm-1atm-1] 

D

z
α
β

=  Effective frequency of velocity changing 
collisions (weak collision model) 

Collisional narrowing, β; Collisional 
narrowing parameter, 0β  [cm-1atm-1]. 

D

Ω
α

ζ =  Frequency of velocity changing 
collisions (strong collision model) 

Collisional narrowing, Ω; Collisional 
narrowing parameter, 0Ω  [cm-1atm-1]. 

D

s
α
δ

=  Effective frequency of shifting collision Line shift, δ; Line shift coefficient, 0δ  
[cm-1atm-1]. 

a αD denotes the 1/e Doppler half width, eq. (6.2). 
 

The normalized profiles, and the corresponding parameters,  as implemented in VLSFP are 

presented in Table 6.2. For each profile the Jacobian matrix required by the Levenberg – Marquardt 

procedure is computed analytically or numerically.  

The Doppler and Lorentz profiles are quite easily valuable, whereas the functions defining the 

Voigt, the Galatry and the Nelkin – Ghatak profiles can only be computed numerically. The 

calculations of the Voigt and the Nelkin – Ghatak profiles have been based on the algorithm 

proposed by Wells [138], while the Galatry function is computed following the Fourier transform 

method proposed by Ouyang and Varghese [139]. The algorithms are described in sections 6.4 and 

6.5, respectively. 
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Table 6.2. Normalized line shape functions implemented in VLSFP 

Profile and Physical features Equation a 

Doppler 
Broadening by random thermal motion. 

( ) 2

e
π

1 xxf −=  

Lorentz 
Broadening by internal state perturbing 

collisions with negligible thermal motion 
contribution. 

( )
( )22π

1,
sxy

yysxf
−+

=−  

Voigt  
Broadening by thermal motion and internal 

state perturbing collisions. 
( ) ( )[ ]

( )[ ]∫
+∞

∞−

−

+−−
==− dt

ytsx
ywysxf

t

D
222/3

2

e
π

Re,
α

ξ

Galatry 
Broadening by thermal motion and internal 
state perturbing collisions; weak collision 

model for VCC. 

( ) ( )[ ] ( ) [ ]
⎭
⎬
⎫

⎩
⎨
⎧

=− ∫
+∞

−−+−+− −−

dtzysxf
ztztzsxyt

0

e12i
12

eRe
π
1,,  

Nelkin & Ghatak / Rautian & Sobel’man 
Broadening by thermal motion and internal 
state perturbing collisions; strong collision 

model for VCC. 

( ) ( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−−
+−

=−
ζζ

ζζ
ysxw

ysxwysxf
,π1

,Re
π

1,,  

a w(x, y) is the complex probability function. 
 

 

66..33..  TTHHEE  LLEEVVEENNBBEERRGG  ––  MMAARRQQUUAARRDDTT  AALLGGOORRIITTHHMM  

 

 Given a set of experimental data points, one is often involved in adjusting the parameters of 

an underlying theoretical model,  that  best describes the observations. The problem is generally 

known as least squares problem. In the case of the line parameters retrieval, the set of n data points 

represents the experimentally recorded absorption lines and the objective consists of determining 

the line parameter vector p (which also include the integrated intensity) that better reproduce the 

observed line contour within a given theoretical line shape function. Formally written, it consists of 

finding the parameters p (∈ ℜm) which minimize the residuals between experimental yexp(x) and 

calculated ycalc observables: 

 

 ( ) 2

calcexp
T yypεε −=         (6.3) 

 

where ( ) calcexp yypε −=  with ( )pxfy ,=calc  and  denotes the Euclidean norm. For small 

parameter variations, pδ , the Taylor series expansion of the generic element of ( )p,ixf  leads to 

(omitting the xi variable for clarity) 
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 ( ) ( ) ( ) ( ) ( )3TT
p 2

1
PPpp δδpHδpδpδp Offf ++∇+=+     (6.4) 

 

where ∇f(p) and H(p) are, respectively, the gradient vector and the Hessian matrix: 
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The basis of the Levenberg – Marquardt method is a linear approximation of ( )pxf ,  in the 

neighbourhood of p, and hence the function is approximated by: 

 

 ( ) ( ) Pp Jδpfδpf +≈+         (6.5) 

 

where J ∈ ℜn×m is the Jacobian matrix, whose elements are 

 

 ( )[ ] ( )
j

i
ij p

xf
∂

∂
=

p
pJ

,
. 

By substituting equation (6.5) into (6.3) it is possible to obtain an iterative procedure which,  given 

a starting point p0, produces a series of vectors p1, p2,… that converge toward the local minima p*. 

The necessary condition for a minima in equation (6.3), is that its gradient is equal to zero. Since 

εJεε TT −=∇ , each step requires to solve the so-called normal equations to find the δp which 

minimizes equation (6.3): 

 

εJJδJ T
P

T = .          (6.6) 

 

The Levenberg – Marquardt algorithm solves a variation of equation (6.6), referred to as augmented 

normal equations, 

 

 εJNδ T
P =           (6.7) 

 

with  
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 JJIN T+= λ           (6.8) 

 

where I is the m×m identity matrix and λ is a positive number. That is, the off-diagonal elements of 

N are identical to the corresponding elements of JTJ, while the diagonal elements have been 

incremented by λ. The strategy of altering the diagonal elements of JTJ is called damping and hence 

λ is called the damping term. 

 If the newer set of parameters p + δp obtained from equation (6.7) leads to a reduction of the 

error ε, the update is retained and the process iterated with a decreased damping term. Otherwise, 

the update is rejected and the augmented normal equations are solved with an increased damping 

term, until a value of δp that decreases the error is found. The process terminates when one of the 

following convergence conditions is fulfilled: (i) the magnitude of  εεT∇  drops below a threshold 

ε1; (ii) the change in magnitude of δp between two successive iterations drops below a threshold ε2; 

(iii) εTε drops below a threshold ε3; (iv) the maximum number of iterations is reached. 

 The Levenberg – Marquardt algorithm is adaptive, because it controls its own damping: the 

damping term is decreased if a reduction of the residuals is found, otherwise it is increased. Doing 

so, the algorithm is able to alternate between a slow approach, when the minimum is far away, and 

a fast convergence in proximity of the minima. 

 Once reached the minima, and hence the set of parameters which best describe the 

experimental data, their statistical errors are calculated from the covariance matrix. 

 

 

66..44..  IIMMPPLLEEMMEENNTTAATTIIOONN  OOFF  TTHHEE  VVOOIIGGTT  PPRROOFFIILLEE  AANNDD  TTHHEE  CCOOMMPPLLEEXX  PPRROOBBAABBIILLIITTYY  

FFUUNNCCTTIIOONN  

 

 The Voigt profile is widely used for modelling the spectral line profiles and in other 

scientific areas (for example, see [140] and references therein). As a consequence, the issue of its 

computation has been dealt over long time and intensive efforts have led to the development of 

many algorithms. A comprehensive survey of the different computational approaches has been 

reported by Schreier [141]. The most employed  strategy consists in evaluating the complex 

probability function employing series and asymptotic expansions, rational approximations and 

Gauss – Hermite integrations [138, 142 – 147]. The computation of the imaginary part of the 

complex probability function is performed following the same methods [138, 145 – 147]. In 

particular, Humliček pointed out that rational approximations seems superior to other methods and 
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they may be very efficient once the parameters have been properly chosen [145, 146]. An n-term 

rational approximation is specified by 2n complex numbers 

 

 ( )
( ) ( )

( ) ( )∑
= ++

+
=

n

k
n

k
n

k

n
k

n
k

iz
i

zw
1 δγ

βα
        (6.9) 

 

where αk, βk, γk and δk are real constants that have to be chosen in order to minimize the errors. The 

real parameters are related to the roots, ( )n
kx , and weights, ( )n

kλ , of the n-point Gauss – Hermite 

formula, 
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by the following relations: 
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It follows that once the order of the approximation has been fixed, the only disposable constant is 

the real positive number ( )ny0 . 

 In VLSFP, the Voigt function is computed employing the optimized version of the 

Humliček’s code proposed by Wells [138]. According to this implementation the variable domain 

of the function is subdivided into five different regions and within each of them a convenient 

expression for the real and imaginary parts of the complex probability function is used. The 

subdivision of the complex plane for y ≥ 0 is shown schematically in Figure 6.2. Far from the line 

centre, inside Region 0 where +∞→z , ( )zw  is computed by a very simple expression: 

 ( )
z

izw
π

=           (6.11) 
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which gives adequate relative accuracy with a relative error less than 10-5. 

Within Region I and Region II, the function is computed by means of the following rational 

approximation of order 2 and 4, respectively: 
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where the coefficients of the expansion are listed in Table 6.3 for n = 2 and 4 [146]. 

 

Figure 6.2. Schematic picture of the variable domain subdivision adopted to compute the complex probability 
function, w(x, y). 
 
Table 6.3. Coefficients of the approximation (6.12) for n = 2 and 4 

n k c d 
2 1 0.56418958355 0.50000000000 

1 1.4104739589 0.74999999999 4 2 0.56418958355 3.0000000000 

 

A slightly different rational approximation is adopted for region III: 

 

 ( )
( )

( ) ( )∑

∑

=

−

=

−

−+−

−
= 5

1

15

5

1

1

k

k
k

k

k
k

izbiz

iza
zw        (6.13) 



 107

 

with the coefficients ka  and kb  listed in Table 6.4 [146]. 

 
Table 6.4. Coefficients of the approximation (6.13) 

k a b 
1 16.4954955 16.4954955 
2 20.2093334 38.8236274 
3 11.9648172 39.2712051 
4 3.77898687 21.6927370 
5 0.0564223565 6.69939801 

 

When high relative accuracy is required, the real part ( )zu  of the complex probability function is 

most difficult to approximate by a rational function on the real axis. As a consequence, within 

region IV the imaginary part of ( )zw  is computed employing the approximation (6.9) of the twelfth 

order, while the real part is approximated employing the following expression: 

 

( )
( )( ) ( )( )

( ) ( )( ) ( ) ( )( )[ ] ( ) ( )( ) ( )( )
( )( ) ( )( )∑

=

−

++−

+−−−−−

+−
+=

n

k
nn

k

nn
k

n
k

nnn
k

n
k

nn
k

x

yyxx
yyxxyyyxx

yxx
yeyxu

1
2

0
2

000
2

2
0

2

22 αβ
,

            (6.14) 

 

again with n = 12 and ( )12
0y  = – 1.5 [145]. 

The achieved relative error is between 10-4 and 10-5 and in general less than 10-5, except for 

the region very close to the origin of the complex plane, where it starts to increase up to 10-2 at 

worst. Anyway the overall accuracy is properly adequate to describe the spectral line shapes, 

especially when both the Doppler and the Lorentz components contribute significantly to the 

resulting Voigt profile. Since the Well’s algorithm computes also the imaginary part of the complex 

probability function, it can be conveniently used also for the computation of the Nelkin – Ghatak 

profile. Concerning the derivatives of the real part of the complex probability function, they have 

been computed following the supplementary algorithm given by Wells, with an accuracy suitable 

for line-by-line fitting purposes. 
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66..55..  PPRROOFFIILLEESS  IINNCCLLUUDDIINNGG  DDIICCKKEE  NNAARRRROOWWIINNGG  

 

 As stated in Chapter 4, the Dicke narrowing is the contraction of the Doppler broadened 

width due to the effect of velocity changing collisions. Both the weak and strong collision models 

developed to treat this narrowing have been implemented in VLSFP.  

 The Nelkin – Ghatak profile, representing the strong collision limit, has been implemented 

employing the Well’s algorithm described in the preceding section. The derivatives of the 

imaginary part of the complex probability function, ( )zL , are derived from the derivatives of the 

real part by means of the Cauchy – Riemann conditions: 
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where ( )zK  denotes the real part of the complex probability function. 

 Concerning the Galatry profile, which is the expression for the weak collision limit, it is 

computed as the Fourier transform of its correlation function following the algorithm proposed by 

Ouyang and Varghese [139]: 

 

 ( ) ( )[ ]{ }tzyzyxfG ,,Re1,, Φℑ=
π

       (6.15) 

 

where ℑ is the Fourier transform operator, ( )tzy ,,Φ  is the correlation function and t the 

dimensionless time. 

 The actual evaluation of the Fourier transform is carried out employing a Discrete Fourier 

Transform (DFT), whose elements are equally spaced in time: 
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with 
1−

=Δ
N

Tt , where T is the dimensionless time limit and N is the number of DFT points. The 

integrals nf  are given by: 
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for n = 0 

 

( ) ( )

( ) ( ) ( ) ( )[ ]⎪
⎪

⎩

⎪
⎪

⎨

⎧

Δ+ΔΦ+ΔΦ+Δ−ΔΦ
Δ

≈Φ

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ΔΦ+Φ

Δ
≈Φ

=

∫

∫
+

−

21

21

21

0

5.045.0
6

,,

2
102

6
,,

n

n

n

ttntnttnttzy

tttzy

f  

 

for n > 0 

            (6.17) 
 

It follows that the DFT of an array of N of equally spaced, discrete points of frequency x is given 

by: 

  

 ( ) ∑
=

−
=

N

n

N
kni

nk efxF
0

2π

  k = 0, 1, 2,…, N – 1     (6.18) 

 

with 
T

kxk
π2

= ; at an arbitrary frequency x ≠ xk the Galatry function is obtained by interpolation. 

 The derivatives of the Galatry profile are computed following the same procedure, since 

they can be expressed as Fourier transforms, as well: 
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In VLSFP, the derivatives of the Galatry function with respect to y and z are computed using the 

relations (6.20) and (6.21), respectively, while the derivative with respect to x is obtained from 

yfG ∂∂  according to 
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 The evaluation of the DFT is demanded to the FFT class in which it is implemented the 

algorithm for the computation of the Discrete Fast Fourier Transform [135]. The accuracy of the 

algorithm depends on the number N of DFT points. This number is a compromise between accuracy 

and computation time and in the current implementation it is set to 2048. For this number the 

minimum precision achieved is 0.1% when y is comprised between 0 and 0.15, as stated by Ouyang 

and Varghese [139]. 

 

 

66..66..  DDEESSCCRRIIPPTTIIOONN  OOFF  TTHHEE  UUSSEERR  IINNTTEERRFFAACCEE  

 

 The graphical interface of Visual Line Shape Fitting Program is shown in Figure 6.3. From 

this interface the user has a complete control of the program: indeed, it is possible to define a 

project and declare the lines to be fitted. Then, from the tool bar, it is possible to start and stop the 

fitting procedure.  

A VLSFP project is composed of three files:  

 

(i)  the experimental spectrum file (.esf/.dat); 

(ii) the synthetic spectrum file (.csf); 

(iii) the line parameter file (.psf).  

 

For sake of clarity, the files can be grouped together into a project file (.lsf). Doing so, all the files 

can be loaded and saved at once by loading and saving the corresponding project. Each files comes 

into standard ASCII format. The only input data required by the program is the file storing the 

observed spectrum; the computed spectrum is saved as an absorbance spectrum in a file having 

format wavenumber, intensity, residual. 

By right clicking on the spectrum panel, a contextual menu appears. From this menu it is 

possible to declare or delete the lines to be fitted and to define some of their parameters (for 

example the line centre and the bounds of the line). The remaining parameters, as well as the line 

shape function, are input by using the input panel on the right side of the interface. The value of 

each line parameter can be typed into the corresponding text box, while the “numeric up – down” 

control may be used to specify its percentage variability; setting the variability to zero keeps the 

parameter constrained during the Levenberg – Marquardt refinement. 
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Figure 6.3. Graphical interface of VLSFP. The main regions are labelled: (1) menu and tool bars; (2) spectrum 
panel; (3) residual panel; (4) input panel; (5) output panel. In the spectrum panel the contextual menu for the 
declaration/delete of the lines is also shown. 

 

 Both the single line- and the multiple line- fitting procedures can be started (and stopped as 

well) by clicking on the appropriate button on the tool bar. The current status of the fit is displayed 

on the status bar as number of iterations and associated χ2 value (sum of the squares, εTε). The 

progress bar shows the overall advance of the fitting procedure. The program also presents useful 

tools to chose several options of the fit. For example, these features let the user to set the number of 

iterations, the convergence criteria of the fitting process and the field delimiters of the files.  

 At the end of the fit, the computed spectrum is plotted superimposed to the experimental 

one, while the residuals are shown into the relative panel. The resulting parameters are displayed 

into the output panel just under the input controls. 

 A number of additional features are accessible from the menu bar. For example, they allow 

the user to specify the experimental conditions, to set the range for the search of the maximum 

absorption when a line is declared, or to export the obtained parameters into a tab-delimited text 

file. 

In the present implementation the maximum number of lines that can be declared and fitted 

is one thousand. Clearly, as the number of lines to be fitted increases, the fitting routine becomes 
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progressively slow, due to increased size of the matrices which the Levenberg – Marquardt 

algorithm deals with. 
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77..  SSuullpphhuurr  DDiiooxxiiddee  LLiinnee  PPaarraammeetteerrss    

iinn  tthhee  99..22  μμmm    

AAttmmoosspphheerriicc  SSppeeccttrraall  WWiinnddooww  

 
 

 Sulphur dioxide is an important molecule which plays a significant role in many fields such 

as chemistry, biology and industry. It is of noticeable interest for the Earth’s atmosphere since it 

actively enters into the sulphur cycle. The natural sources are biomass burning and volcanic 

eruptions. The latter are sporadic sources but they are capable to cause huge local fluctuations in the 

SO2 concentration [148]. The main sources of sulphur dioxide arise from anthropogenic activities. 

Indeed it is widely employed by industry, in particular in winemaking and food preserving. Further, 

coal and petroleum often contain sulphur compounds which oxidize to SO2 during their 

combustion. Once in the atmosphere, it is one of the main causes of acid rains. Sulphur dioxide is 

also of astrophysical importance: it has been identified in the interstellar medium, in particular in 

star forming regions [149], and it has also been detected on the surface of Io [150] and in the Venus 

atmosphere [151]. 

 As a consequence, sulphur dioxide has always been widely studied using spectroscopic 

methods (see Refs. [152, 153] and references therein) and it is still the subject of considerable 

interest. Indeed, few years ago the ground state constants have been accurately re-determined as 

well as those of the excited vibrational state v2 = 1 [154]. In the infrared region, the fundamental 

bands ν1 and ν3 of the 32SO2 isotopologue have been deeply analyzed first by Guelachvili [155] and 

then re-investigated together with ν2 and 2ν2 – ν2 by Flaud et al. [156], taking also into account 

anharmonic and Coriolis resonances. 

Great efforts have been devoted toward the determination of the broadening parameters of 

SO2 whether self broadened [153, 157 – 159] or perturbed by air, nitrogen or noble gases [158 – 

161]. Absolute line intensity measurements for some ro-vibrational transitions of ν1 and ν3 have 

been carried out through diode laser spectroscopy [153], while intensity determinations have been 

performed within the entire 950 – 1400 cm-1 spectral region by means of Fourier transform 
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spectroscopy [152]. Very recently, the line parameters of a number of transitions around 9 μm have 

been retrieved employing both continuous wave [162, 163] and pulsed Quantum Cascade lasers 

[164]. Further investigations within the range 1315 – 1395 cm-1 have been made using a difference 

frequency spectrometer [165].  

The investigations have regarded not only the main isotopic species, but also 34SO2. Very 

recently, Lafferty et al. [166] have carried out a complete analysis of the high resolution spectrum 

of 34SO2 in the 19, 7 – 8 and 5 – 6 μm regions, whereas Flaud et al. [167] have measured a large 

number of individual line intensities for the ν1, ν3 and ν1 + ν3 bands determining expansions of the 

various transition moment operators. 

Besides the experimental measurements, theoretical values of the self-broadening 

coefficients have been calculated several years ago by Tejwani [168] on the basis of the Anderson – 

Tsao – Curnutte (ATC) theory [65, 66]. A modification of this theory has been used by Lazarev et 

al. [161] to compute pressure broadening and shift coefficients of sulphur dioxide perturbed by 

noble gases. 

Given the wide literature available about the subject, sulphur dioxide has been chosen as 

target molecule to define the experimental procedure for the retrieval of the line parameters by 

means of TDL spectroscopy and to test VLSFP as well. The present chapter deals with the 

determination of the line shape parameters for several ro-vibrational transitions of both 32SO2 and 
34SO2 in the region around 9.2 μm. The self-broadening coefficients have also been determined 

theoretically using the ATC approximation. Further, the integrated band intensities of the three 

fundamental bands have been measured from medium resolution spectra recorded with a FT-IR 

spectrometer.  

   

 

77..11..  EEXXPPEERRIIMMEENNTTAALL  PPRROOCCEEDDUURREE  FFOORR  LLIINNEE  PPAARRAAMMEETTEERR  DDEETTEERRMMIINNAATTIIOONNSS::  

CCHHAARRAACCTTEERRIIZZAATTIIOONN  OOFF  IINNSSTTRRUUMMEENNTTAALL  DDIISSTTOORRTTIIOONNSS  AANNDD  DDAATTAA  IINNVVEERRSSIIOONN  

 

 The SO2 high resolution infrared spectra in the 9 μm region were recorded with the tunable 

diode laser spectrometer described in Chapter 5. The spectrometer was used in the two beams 

configuration: the main part of the laser radiation passed through the 92.3 cm path length cell 

(PLC), with KBr windows, containing the gas sample; the other part was directed into the  

Germanium etalon used for frequency calibration. Each experimental spectrum was the result of an 

average of 512 scans. 
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 High-precision quantitative absorption measurements and detailed line shape determinations 

using TDL spectroscopy require a particular attention to the effect of the spectrometer instrumental 

function, because the measured spectrum is actually the convolution of the true spectrum with the 

instrumental function [169]. Each subsystem of a TDL apparatus and each step of the spectral 

acquisition and processing can introduce various sources of error, thus limiting both the precision 

and accuracy of the measurements. Amplitude and frequency noise, multimode and spontaneous 

emission from the laser, laser radiation astigmatism affect the quality of the spectra. Many factors 

limiting the precision of the determinations, such as optical feedback and interference from different 

optical elements, are related to the optics [170]. 

Indicatively, error sources can be grouped into two classes. The first one, involving the so-

called technical errors, includes errors which can be eliminated by improving hardware and data 

processing procedure. The second class of error sources involves errors of fundamental nature (for 

example shot noise): they can be minimized, but not eliminated, by carefully checking at the 

experimental conditions [170]. It follows that each stage of the spectral acquisition and processing 

must be handled very prudently. 

Therefore, the line shape distortions induced by the instrumental apparatus were accurately 

checked and minimized. In particular, it was discovered that the monochromator causes aberrations 

and asymmetries in the measured spectral profiles. The monochromator is responsible for a number 

of undesiderable effects among which there are: (i) an increase in the laser intensity noise due to the 

formation of optical feedback between the entrance slit of the monochromator and the laser; (ii) a 

significant increase in the instability of the power revealed by the photo detectors [170]. 

Consequently, the monochromator was employed just to find the frequency emission region of the 

laser, but it was removed during the measurements. 

On the other hand, the absence of a frequency selecting element demanded severe 

requirements on the monochromaticity of the laser output radiation. In accordance, single mode and 

stability emission of the lead salt laser were accurately checked before data acquisition. The 

spurious emissions were detected by modulating the radiation emitted by the laser with the TDL 

chopper and locking the acquisition system to its reference signal. The radiation was considered as 

monochromatic only when the observed residual oscillations were below 1% of the detected laser 

emission power. 

For the SO2 measurements, each spectral micro-window was recorded at different pressures 

in the range 20 – 900 Pa; an example of the resulting series of spectra is given in Figure 7.1. The 

pressure was measured employing an Alcatel capacitance vacuum gauge with a full scale range of 

1000 Pa and a quoted accuracy of 0.15%. Before each measurement the cell was evacuated down to 
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about 10-4 Pa by a diffusion pump backed by a double stage rotary pump. An elapsed time of 15 

minutes between the filling of the cell and the recording of the spectra was adopted in order to 

promote the homogenization of the gas and avoid gradients of concentration and temperature. All 

measurements were carried out at 297 ± 1 K and the SO2 sample provided by Sigma – Aldrich 

(99.9% purity) was used without further purification. 
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Figure 7.1. Example of the series of spectra recorded at different pressures of SO2 in the region between 1102.45 and 
1102.90 cm-1. Details of the experimental conditions are given. 

 

 After being recorded, the spectra were first wavenumber calibrated and then transformed 

into the corresponding absorbance spectra. These operations were made by using an home-made 

package of programs  written in MatLab [171]. The calibration was performed using the frequency 

of the SO2 lines obtained from the high resolution FT-IR spectrum. The average wave number 

accuracy resulted  about 5×10-4 cm-1. 

 The experimental transmittance spectra were obtained according to the Beer – Lambert’s 

law (equation 3.1) from the incident and transmitted radiation intensities,  ( )ν~0I  and ( )ν~I , 

respectively. As shown in Figure 7.2, the incident intensity was obtained by fitting the baseline to a 

high order polynomial or spline cubic function over the whole spectral region. In order to account 
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for a slight drift of the detector, the zero transmission level was fitted as well; this is also shown in 

Figure 7.2.  

Baseline location is another crucial step which limits the accuracy of the retrieved line 

parameters. The experimental complications arise from the fact that in a real experiment ( )ν~I  and 

( )ν~0I  cannot be recorded neither simultaneously nor in the same conditions. Therefore the baseline 

is usually synthetized through a fitting procedure similar to that of Figure 7.2. This approach uses 

the spectral portions of negligible absorption to obtain a function which represents the synthetic 

baseline. For an error in the base line which is 1% of the absorption coefficient value at line centre, 

the errors in the retrieved parameters have been estimated to be 6%, 9% and 12% for the integrated 

absorption coefficient, the Gaussian line-width and the Lorentzian line-width, respectively [170]. 

 The line parameters were retrieved 

by fitting the experimental features to the 

Voigt profile employing VLSFP: due to 

the overlap of different absorptions, the 

multi-line fitting approach was adopted. 

An example of the obtained results is 

given in Figure 7.3 (a).  At this stage the 

contribution coming from the 

instrumental function must be explicitly 

taken into account. Unlike FTIR 

spectrometers whose instrumental 

response is determined by the geometry 

of the instrument itself, the shape of the 

instrumental function of a laser spectrometer is not well known and it is determined by the shape of 

the laser emission profile. The emission profiles and line widths of diode lasers vary from one 

device to another, depend on the instantaneous laser power and drive current noise characteristics 

and they have been described as nearly Gaussian or nearly Lorentzian ([169] and references 

therein). On  a theoretical basis, the line shape of a laser emission profile can be thought as 

Lorentzian [113]. Nevertheless, there is a number of factors which lead to deviations from the 

Lorentzian line shape. For example, high-frequency broad-band noise on the laser current supply 

results in a Gaussian contribution to the instrumental function; a rectangular contribution arises 

from a linear drift of the laser tuning during a signal averaged measurement. Finally, low-frequency 

thermal and current drifts gives an irregular and unpredictable contribution. Given that the white 

noise Gaussian and the inherent Lorentz contributions are always present to some extent, the 
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Figure 7.2. Data inversion procedure: the baseline is fitted to a 
polynomial function to obtain the spectral background; the 
maximum absorption level is fitted to account for the slight drift 
of the photo-detector. 
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instrumental function can be modelled as (nearly) Gaussian or (nearly) Lorentzian depending on the 

relative magnitude of each contribution. 
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Figure 7.3. Panel (a) shows the SO2 spectrum (○) between 1096.5 and 1096.8 cm-1 (

2SOP  = 296.0 Pa, PLC = 92.3 cm, T 
= 297 K). The synthetic spectrum (―), as obtained from the fit of the experimental absorption features to the Voigt 
profile, and the corresponding residuals (―) are also shown. Panels (b) and (c) give an example of the linear 
regressions performed on the retrieved line parameters as a function of the gas pressure for lines 42 and 43, 
respectively: ( ) collisional half width; ( ) line intensity. 
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 Strictly speaking, both contributions can be significant and hence the proper instrumental 

function of a TDL spectrometer is a Voigt function. In the small absorbance limit, modelling the 

effect of a Voigt instrumental function on a Voigt absorption line is quite simple, given that the 

convolution of two Voigt functions is still a Voigt function. The effective Gaussian width, eff
Dγ , of 

the measured Voigt profile is the square root of the sum of the squares of the molecular, molecular
Dγ , 

and instrumental, TDL
Dγ , Gaussian widths, respectively: 

 

 ( ) ( )22 TDL
D

molecular
D

eff
D γγγ += .       (7.1) 

 

The effective Lorentzian width, eff
Lγ , is the sum of the pressure broadened half width, Lγ , and the 

Lorentzian instrumental width, TDL
Lγ : 

 

 TDL
LL

eff
L γγγ += .         (7.2) 

 

The measured integrated absorption coefficient remains unaffected. However, if the small 

absorption limit is not met, the effect of a Voigt instrumental function is more complicated and the 

treatment above outlined is no longer valid [169]. 

 As shown in Figure 7.4, a low pressure 

spectral line can be well reproduced  by a 

Doppler profile, and hence in the present case 

the instrumental line shape function can be 

considered to a very good approximation as a 

Gaussian distribution. Therefore, the 

instrumental contribution to the absorption line 

shapes was taken into account by keeping the 

Doppler half width fixed to the value given by 

equation (7.1) during the fitting procedure. The 

effective Doppler half-width was obtained by 

fitting the experimental absorptions recorded at 

low pressure (< 30 Pa) to a Gaussian profile, as 
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Figure 7.4. SO2 spectral line recorded at low pressure (P = 
29.5 Pa, T = 297 K, PLC = 92.3 cm). The experimental line 
shape is properly reproduced by the Doppler profile, thus 
suggesting that the instrumental function is nearly 
Gaussian. 
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shown in Figure 7.4. By setting the molecular Doppler half width to the value given by equation 

(3.19), TDL
Dγ  resulted to range from to 3.6⋅10-4 cm-1 to 1.6⋅10-3 cm-1 and have an average value of 

8.2⋅10-4 cm-1, for the employed 9.2 μm laser and the investigated micro-window. 

 

 

77..22..  EEXXPPEERRIIMMEENNTTAALL  PPRROOCCEEDDUURREE  FFOORR  SSUULLPPHHUURR  DDIIOOXXIIDDEE  VVIIBBRRAATTIIOONNAALL  CCRROOSSSS  

SSEECCTTIIOONN  MMEEAASSUURREEMMEENNTTSS  

 

 The measurements of the absorption cross sections were carried out using the Bruker Vertex 

70 FTIR instrument of Section 5.2 equipped with a 134.0 (± 0.5) mm path-length cell with KBr 

windows; the temperature in the cell was kept constant at 298 (± 1) K. A total of 128 interferograms 

for both the background and the spectra were co-added and transformed into the absorbance 

spectrum, using boxcar apodization and Mertz phase correction.  

In analytical applications it is normal practice to employ a resolution greater than the full 

width at half height of the spectral absorption feature, in order to avoid non-linear behaviour at 

absorbances greater than 0.5. This is a good rule when solid or liquid samples are analyzed, but in 

the gas phase the situation is complicated by the fine rotational structure. Since for medium 

resolution gas phase measurements the rotational structure cannot be resolved, the optimum 

experimental conditions are those which include all the vibrational information and no rotational 

information. Therefore, the FTIR spectra were recorded at the resolution of 0.2 cm-1, using SO2 

pressures in the range 100 – 1400 Pa, and the measurements were carried out on both pure sulphur 

dioxide and SO2 mixed with 1000 kPa of nitrogen. While the employed resolution led to the 

maximum vibrational information, the effect of pressurization with nitrogen was to broaden the 

rotational spectral lines thus reducing the contribution of the fine rotational structure to the 

interferogram. Pressure measurements were performed employing three different capacitance 

vacuum gauges (Alcatel model ARD 1001, 1002 and 1003 with a full scale range of  1013, 101 and 

10 hPa, respectively), each with a quoted manufacturer’s full scale accuracy of 0.15%. 

The same procedure described in the previous section for the evacuation and the filling of 

the cell was adopted and 20 minutes were waited before the entrance of the gas in the cell and the 

recording of the spectrum. Adsorption of the gas on the cell walls was checked both by direct 

measurement of pressure, and by monitoring the absorption spectrum: it was found to be negligible 

over a period of 2 hours, which is far longer than the time required to obtain a spectrum.  
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 The vibrational absorbance cross section per molecule (cm2 molecule-1), ( )νσ ~ , was 

calculated from the measured spectrum by using the following relationship 

 

 ( ) ( )
ln

10lnννσ
~

~ A
=          (7.3) 

 

where ( )ν~A  is the absorbance at wavenumber ν~ , n is the number density (molecules cm-3) and l  is 

the optical path length (cm). Assuming the validity of the ideal gas law, the integrated cross section 

Gint (cm molecule-1) is derived from the absorbance cross section by means of the following 

equation: 

 

 ( ) ( )∫∫ ==
2

1

2

1 A

6 10ln10 ν

ν

ν

ν

νννσν
~

~

~

~

~~~~ Ad
PN

RTdGint
l

      (7.4) 

 

where P (Pa) and T (K) are the gas pressure and temperature, respectively, R is the molar gas 

constant (J K-1 mol-1) and NA is the Avogadro’s number. The integration limits, 1ν~  and 2ν~ , 

correspond to wavenumbers of negligible absorption. 

The experimental uncertainty in the cross sections was estimated, as suggested by 

Nemtchinov and Varanasi [172], by taking into account the uncertainties of the pressure and 

temperature of the sample, of the optical path length, of the photometric accuracy of the FTIR 

spectrometer and of the evaluation of absorbance; in general, it resulted better than 7%. 

  

 

77..33..  SSEEMMIICCLLAASSSSIICCAALL  CCAALLCCUULLAATTIIOONN  OOFF  SSEELLFF--BBRROOAADDEENNIINNGG  CCOOEEFFFFIICCIIEENNTTSS  

 

The sulphur dioxide self-broadening coefficients have been theoretically determined by 

using the semiclassical formalism presented in Section 3.8. The broadening coefficients 0
Lγ  have 

been calculated for the lines of interest, obtaining values between 0.5 and 0.1 cm-1atm-1. This 

corresponds to collisional cross sections, σ = πr2, between 880 and 175 Å2 and radii r between 16.7 

and 7.5 Å. For so large cross sections, the ATC approximation is reliable because collisional 

relaxation is well described by Eq. (3.37) up to large b values and what happens at short distances 

(deflection of the trajectory and velocity changes) is not important. Moreover, at large distances the 

relevant interaction is surely the dipole – dipole one. On the whole, the accuracy of theoretical 

calculations should be of the order of 10%, with the caution that an underestimation is possible for 
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the lines having a broadening coefficient smaller than 0.20 cm-1atm-1. In this case the contribution 

of interactions other than the dipole – dipole one could be not completely negligible. 

 Eq. (3.35) allows a straightforward interpretation of the dependence of Lγ on the rotational 

quantum numbers. Since the difference between upper and lower levels is not large, one usually 

considers the lower level l = J", "
aK , "

cK : it is known that for SO2 self-broadening is almost 

independent on J", while it decreases for increasing values of "
aK . By Eq. (3.35) and (3.36) and 

Figure 3.3, it can be seen that an important role is played by energy transfer. The average absolute 

value of px  depends on the rotational energy exchanged by the perturber: 

 

 ∑ ∑ −=
p p

ppp
p

pp EEppbx
'

'

2

2 '1 μ
μ

ρ
hv

,      (7.5) 

 

where two kinds of average are included: an average on ingoing states p, weighted by their 

population pρ , and an average on the dipole-allowed transitions p → p', weighted, according to Eq. 

(3.35), by the square of the dipole matrix moment 
2

'pp pμ . By setting the relative velocity to its 

mean value v  = 4.43×104 cm⋅s-1 and b to the typical value of 10 Å, px  results to be 10.4. For a 

given lower state l of the absorbing molecule, the average absolute value of lx  is: 

 

 ∑ −=
'

'

2

2 '1
l

llp
l

l EEllbx μ
μhv

.       (7.6) 

 

From Figure 3.2 it can be argued that when pl xx +  >≈  5 the broadening contribution is strongly 

reduced. Hence, in order to get a large effect, lx  and px  must either be both small or have opposite 

signs and similar absolute values. This is less probable when lx  becomes larger than px . The 

dependence of lx  on J" is plotted in Figure 7.5 for "
aK  = 0, 5, 10, 20, 30 and 40. For "

aK  = 0 and 5 

lx  may become larger than px  only when J" > 40. On the contrary, for "
aK  = 10, 20, 30 and 40, 

lx  is almost independent on J", while it increases with "
aK  and is always larger than px . 
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On the whole, the absorption lines with higher "
aK  values have lower broadening 

coefficients because collisional relaxation is hampered by the larger energy amount involved in the 

dipole-allowed rotational transitions. 
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Figure 7.5. Dependence of the quantity 

lx , defined in Eq. 7.6, on the quantum number J". The cases "
aK  = 0 ( ), 5 

( ), 10 ( ), 20 ( ), 30 ( ) and 40 ( ) are considered. Solid line reports the average value 
px  for the perturbing 

molecule. 
 

 

77..44..  EEXXPPEERRIIMMEENNTTAALL  RREESSUULLTTSS  AANNDD  DDIISSCCUUSSSSIIOONN  

 

 The self-broadening coefficients, 0
Lγ , and the integrated absorption coefficients, 0S , have 

been obtained using a curve of growth technique. Since in the adopted experimental conditions the 

coefficients are linearly dependent on the pressure, the retrieved line parameters lie on straight lines 

of equations 

 

 
2

0
SOL

TDL
LL pγγγ +=          (7.7) 

2

0
0 SOpSSS +=          (7.8) 
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where the intercepts should be zero within the experimental uncertainty. As a consequence, a linear 

regression of the line parameters plotted as a function of the gas pressure gives the involved 

coefficient, as shown in Figure 7.3 (b) and (c). Using this technique, it is possible to check the 

linearity of the line parameters and their physical consistency. 
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Figure 7.6. Isolated absorption line corresponding to the 2014,6 ← 2115,7 transition. Row (a) shows the experimental ( ) 
and computed spectrum (—). Experimental details: SO2 total pressure = 107.0 Pa, PLC = 92.3 cm, temperature = 297 
K. The remaining rows show the residuals obtained from different models: (b, —) Voigt; (c, —) weak collision model 
(wcm); (d, —) strong collision model (scm). The standard deviations of the fits, σ (cm-1), are: σVoigt = 1.6 × 10-3; σwcm = 
0.88 × 10-3; σscm = 0.90 × 10-3. Note the deviations from the Voigt profile typical of Dicke narrowing and how they 
reduce when Galatry or Nelkin – Ghatak profiles are used. 

 

Generally, the experimental features are well reproduced by the Voigt profile, even if in 

some circumstances the plot of the residuals shows some regular trends. These are not due to 

instrumental distortions, since the lines recorded at low pressure are well described by a Gaussian 

function. Rather, the shape of the residuals suggests that Dicke narrowing is acting, as shown in 

Figure 7.6 in the case of an isolated line corresponding to the ro-vibrational transition 2014,6 ← 

2115,7. When the Dicke narrowing is taken into account, the line is properly reproduced by either the 

Nelkin – Ghatak or the Galatry profiles. However, in the majority of the circumstances and 

especially in dense spectral regions, neither the use of the weak and strong collision models is 

capable to completely account for the observed deviations. An example of such a situation is given 

in Figure 7.7 where the spectral region between 1089.69 and 1089.87 cm-1 is reproduced. The 
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possible explanation for this behaviour is the presence of weak absorptions underneath the stronger 

ones, as also suggested by the fact that the magnitude of some residuals increases with the pressure. 

These lines, being not resolved at all, cannot be taken into account during the fits but at the same 

time cause asymmetries in the observed absorptions. Further, the high density of lines in the region 

investigated is also due to the weak absorptions belonging to ν1 + ν2 – ν2 of 32SO2 and ν1 of 34SO2. 

These, which at low pressure are below the detection threshold of the interferometer, become 

progressively more significant as the number density of the SO2 sample increases thus explaining 

the increase in the magnitude of the residuals as the SO2 pressure raises. For the same reasons, the 

Dicke narrowed profiles are not able to account for all the deviations. Anyway, it is remarkable that 

even in the presence of strongly overlapped lines, the physical meaning of the line parameters is 

preserved as confirmed by their linearity with respect to the pressure, see Figure 7.3 (b) and (c).  
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Figure 7.7. SO2 spectrum between 1089.69 and 1089.87 cm-1: row (a) shows the experimental ( ) and computed spectrum 
(—). Experimental details: SO2 total pressure = 511.4 Pa, PLC = 92.3 cm, temperature = 297 K. The remaining rows show 
the residuals obtained from different models: (b, —) Voigt; (c, —) weak collision model (wcm); (d, —) strong collision 
model (scm). The standard deviations of the fits, σ (cm-1), are: σVoigt = 4.0 × 10-3; σwcm = 3.1 × 10-3; σscm = 3.2 × 10-3. The 
residuals persists even when the Dicke narrowed models are employed. 
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Table 7.1 (1 of 3). Line labelling, assignment and line parameters of ν1 band of 32SO2 
a 

Line N. J' Ka' Kc' J" Ka" Kc" exp
0ν  b exp

L
,0γ  c calc

L
,0γ  c 0

expS  d 0
litS  d, e 0

HitranS  d, f 

1 20 16 4 21 17 5 0.1496 
1 33 13 21 34 14 20 1083.25644(10) 0.262(11) 0.29288 6.32(11) 7.348 7.23 

2 33 20 14 33 21 13 1083.3399(2) 0.24(3) 0.11372 0.315(8) 0.3669 0.296 
5 55 8 48 56 9 47 1083.4370(4) 0.38(8) 0.43713 0.15(2) 0.2241 0.291 
6 32 20 12 32 21 11 1083.4530(4) 0.23(6) 0.11040 0.26(3) 0.3802 0.306 
7 37 12 26 38 13 25 1083.4796(2) 0.324(11) 0.33836 2.032(6) 2.080 2.27 

10 24 15 9 25 16 10 1083.5169(2) 0.262(3) 0.19378 4.09(4) 4.237 2.27 
11 31 20 12 31 21 11 1083.5635(2) 0.18(3) 0.10706 0.328(2) 0.3887 0.313 
12 52 19 33 52 20 32 1083.5839(2) 0.261(12) 0.20093 0.12(2) 0.08710 0.0710 
15 49 4 46 50 5 45 1083.61175(13) 0.52(5) 0.49231 0.095(12) 0.1267 0.153 
16 50 9 41 51 10 42 1083.6283(3) 0.341(11) 0.38110 0.573(12) 0.5012 0.620 
17 30 20 10 30 21 9 1083.6706(3) 0.191(14) 0.10374 0.318(7) 0.3943 0.317 
18 41 11 31 42 12 30 1083.7149(2) 0.356(11) 0.36688 1.56(4) 1.475 1.48 
19 28 14 14 29 15 15 1083.764(4) 0.270(5) 0.24000 3.70(5) 3.688 3.73 
20 29 20 10 29 21 9 1083.7739(4) 0.199(7) 0.10036 0.365(4) 0.3953 0.318 
21 20 14 6 21 15 7 1089.52139(7) 0.266(5) 0.20598 5.51(3) 6.790 7.15 
22 33 11 23 34 12 22 1089.72440(9) 0.340(10) 0.35646 3.55(6) 3.698 4.01 
24 29 18 12 29 19 11 1089.79423(13) 0.20(2) 0.13791 0.65(2) 0.8634 0.713 
25 51 7 45 52 8 44 1089.8234(2) 0.40(6) 0.45981 0.51(5) 0.4501 0.580 
26 24 13 11 25 14 12 1089.84713(3) 0.268(7) 0.25521 5.70(5) 6.071 6.09 
27 15 15 1 16 16 0 1089.87257(4) 0.161(7) 0.1516 6.78(8) 7.679 7.15 
28 28 18 10 28 19 9 1089.8912(7) 0.277(10) 0.13421 0.70(3) 0.870 0.719 
30 27 18 10 27 19 9 1089.9877(3) 0.20(3) 0.13046 0.72(4) 0.8662 0.715 
31 37 10 28 38 11 27 1090.03033(9) 0.35(2) 0.38531 2.71(10) 2.714 3.06 
33 26 18 8 26 19 7 1090.0797(2) 0.21(3) 0.1267 0.90(3) 0.8500 0.702 
34 46 8 38 47 9 39 1090.1414(2) 0.32(2) 0.41063 0.94(2) 0.9930 1.22 
35 28 12 16 29 13 17 1090.1595(13) 0.31(2) 0.30616 5.1(2) 5.135 5.34 
36 25 18 8 25 19 7 0.1229 0.676 

36 g 36 9 27 37 10 28 1090.1683(2) 0.21(3) 0.4022 1.01(4) 1.103  
37 19 14 6 20 15 5 1090.22675(12) 0.22(2) 0.20141 6.2(2) 7.234 6.97 
38 22 16 6 22 17 5 1096.5478(12) 0.195(14) 0.15667 1.16(8) 1.541 1.31 
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Table 7.1 continued (2 of 3) 

Line N. J' Ka' Kc' J" Ka" Kc" exp
0ν  b exp

L
,0γ  c calc

L
,0γ  c 0

expS  d 0
litS  d, e 0

HitranS  d, f 

39 19 12 8 20 13 7 0.2674 
39 43 4 40 44 5 39 1096.60539(8) 0.30(2) 0.5053 8.1(2) 10.36 9.78 

40 21 16 6 21 17 5 1096.6240(4) 0.25(2) 0.15233 1.16(5) 1.409 1.19 
42 42 7 35 43 8 36 1096.6577(2) 0.48(7) 0.44232 1.84(11) 1.816 2.21 
43 28 10 18 29 11 19 0.37415 7.13 

43 h 15 11 5 16 12 4 1096.66481(8) 0.335(14) 0.2927 6.70(14) 7.294  
44 48 15 33 48 16 32 1096.6821(2) 0.12(8) 0.2892 0.35(7) 0.4880 0.419 
45 20 16 4 20 17 3 1096.69442(12) 0.15(2) 0.14785 0.99(6) 1.229 1.04 
47 37 8 30 38 9 29 1096.73588(13) 0.39(3) 0.4139 3.55(13) 3.253 3.78 
49 19 16 4 19 17 3 1096.7617(3) 0.18(2) 0.14295 1.00(5) 1.002 0.847 
50 26 14 12 26 15 11 1102.487(2) 0.21(2) 0.23003 2.34(10) 3.367 2.93 
52 29 8 22 30 9 21 1102.5613(4) 0.39(4) 0.42856 6.5(3) 7.319 8.12 
53 25 14 12 25 15 11 1102.5743(3) 0.26(2) 0.22577 2.93(10) 3.395 2.95 
54 15 11 5 16 12 4 1102.61678(5) 0.33(2) 0.28482 13.1(3) 13.90 13.6 
55 24 14 10 24 15 9 1102.6563(4) 0.37(3) 0.22154 3.18(14) 3.376 2.94 
56 51 13 39 51 14 38 0.33643 0.483 

56 h 30 12 18 30 13 17 1102.6636(2) 0.32(6) 0.3205 0.86(3) 0.7669  
58 23 14 10 23 15 9 1102.73521(12) 0.23(3) 0.21723 2.83(14) 3.329 2.89 
59 22 14 8 22 15 7 0.21292 
59 41 5 37 42 6 36 1102.81016(7) 0.28(3) 0.4967 5.4(2) 4.937 4.92 

60 24 9 15 25 10 16 1102.83387(10) 0.352(12) 0.39634 10.1(3) 10.02 10.7 
61 21 14 8 21 15 7 1102.8830(2) 0.25(2) 0.20864 2.71(6) 3.073 2.67 
64 20 14 6 20 15 5 1102.9522(3) 0.28(3) 0.20413 2.52(12) 2.865 2.49 
65 49 13 37 49 14 36 1102.9616(2) 0.29(3) 0.3360 0.75(3) 0.7130 0.628 
68 19 14 6 19 15 5 1103.0182(4) 0.21(2) 0.19951 2.46(11) 2.591 2.59 
69 33 7 27 34 8 26 1103.0563(4) 0.402(13) 0.43908 5.37(10) 5.300 6.11 
70 18 14 4 18 15 3 1103.0813(2) 0.27(4) 0.19472 2.09(11) 2.251 1.96 
71 19 10 10 20 11 9 1103.08964(13) 0.35(3) 0.34122 12.4(6) 12.48 12.8 
72 48 13 35 48 14 34 1103.1077(4) 0.29(6) 0.33539 0.57(6) 0.8085 0.713 
74 17 14 4 17 15 3 1103.1408(3) 0.22(3) 0.18965 1.50(7) 1.835 1.59 
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Table 7.1 continued (3 of 3) 

Line N. J' Ka' Kc' J" Ka" Kc" exp
0ν  b exp

L
,0γ  c calc

L
,0γ  c 0

expS  d 0
litS  d, e 0

HitranS  d, f 

76 16 14 2 16 15 1 1103.1972(3) 0.18(3) 0.18501 1.26(5) 1.324 1.15 
79 38 6 32 39 7 33 1103.2432(3) 0.40(3) 0.47186 3.07(10) 3.064 3.70 
80 47 13 35 47 14 34 0.33425 
80 15 14 2 15 15 1 1103.2505(3) 0.29(3) 0.1796 1.70(6) 1.629 1.43 

81 28 8 20 29 9 21 1103.2824(3) 0.43(2) 0.42916 8.4(3) 7.972 8.79 
82 14 11 3 15 12 4 1103.30473(9) 0.27(2) 0.27987 13.7(4) 14.56 14.2 
83 46 13 33 46 14 32 1103.3921(5) 0.29(5) 0.33268 1.21(8) 1.031 0.909 

a In case of overlapped transitions the literature value of the line intensity is obtained by summing the individual line intensities of each transition (where available). Figures in 
parentheses correspond to one standard deviation. 
b Values expressed in cm-1. 
c Values expressed in cm-1 atm-1. 
d Values expressed in 10-22 cm molecule-1. 
e From Ref. [152]. 
f From Ref. [15]. 
g Transition belonging to ν1 + ν2 – ν2 of 32SO2. 
h Transition belonging to ν1 of 34SO2. 
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The retrieved parameters of the spectral lines belonging to the ν1 band of the 32SO2 isotopologue are 

listed in Table 7.1, together with the broadening coefficients calculated following the theory 

presented in Sections 3.8 and 7.3. The experimental and theoretical self-broadening parameters and 

their dependence on the "
aK  pseudo-quantum number are shown in Figure 7.8 (a). Besides the good 

agreement between experimental and calculated pressure broadening coefficients, the plot also 

shows their decrease as "
aK  increases. Considering the b-type character of the ν1 band, this trend 

was expected, as outlined in the discussion at the end of Section 7.3. The retrieved line intensities of 

the ν1 lines are compared with the literature values and the Hitran 2004 database [15] in Figure 7.8 

(b). As can be seen the agreement is in general very satisfactory, indeed the ratios 00
litSS /exp  and 

00
HitranSS /exp  are 0.92 and 1.00, respectively. 
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Figure 7.8. Self-broadening (panel a) and integrated absorption (panel b) coefficients of the ν1 ro-vibrational transitions 
of 32SO2. The upper diagram shows the comparison between the experimental ( ) and calculated ( ) self-broadening 
coefficients and their decrease with increasing values of Ka"; the dotted line (--) is the self broadening coefficient given 
by Hitran 2004. In the lower panel the integrated intensities are compared with the literature values: ( ) this work; ( ) 
from Ref. [152]; ( ) from Ref.[15]. 
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 Besides the main absorptions coming from the ν1 band of 32S sulphur dioxide, 11 lines 

belonging to the ν1 + ν2 – ν2 hot band of the main isotopologue and 11 lines belonging to the ν1 

band of 34SO2 were also identified and analyzed. The obtained line parameters are given in Tables 

7.2 and 7.3, respectively. Theoretical values of the pressure broadening coefficients have been 

calculated for these transitions as well. In the case of 34SO2, the calculations have been carried out 

considering the collisions with the main isotopic species. A graphical comparison between the 

experimental and the calculated broadening parameters is shown in Figure 7.9 (a) and 7.10 (a) for 

the ν1 + ν2 – ν2 of 32SO2 and ν1 of 34SO2, respectively. The agreement is satisfactory but it is 

generally poorer than that obtained for the  ν1 band of the 32SO2 isotopologue. This can be 

explained considering the larger uncertainties affecting the values obtained experimentally for the 

spectral lines of ν1 + ν2 – ν2 of 32SO2 and  ν1 of 34SO2, which are caused by their smaller intensity. 

As a consequence, these lines are more affected by the line shape distortions induced by either the 

neighbouring lines and the inversion procedure, particularly by the base line location. An analogous 

behaviour is observed when the integrated intensities here obtained are compared with the literature 

values; the graphical comparisons are given in Figures 7.9 (b) and 7.10 (b). Nevertheless, taking 

into account the weakness of the lines and the density of transitions in the spectra, the agreement 

between the data sets can be considered satisfactory.  
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Figure 7.9. Self-broadening (panel a) and integrated 
absorption (panel b) coefficients of the ν1 + ν2 – ν2 ro-
vibrational transitions of 32SO2. The upper diagram shows 
the comparison between the experimental ( ) and 
calculated ( ) self-broadening coefficients. In the lower 
panel the obtained integrated intensities ( ) are compared 
with the values of Ref. [152] ( ). 

Figure 7.10. Self-broadening (panel a) and integrated 
absorption (panel b) coefficients of the ν1 ro-vibrational 
transitions of 34SO2. Panel (a) shows the comparison 
between the experimental ( ) and calculated ( ) self-
broadening coefficients. In panel (b) the obtained 
integrated intensities ( ) are compared with the values of 
Ref. [167] ( ). 



Table 7.2. Line labelling, assignment, and line parameters of the ν1 + ν2 – ν2 hot band of 32SO2
 a  

Line N. J' Ka' Kc' J" Ka" Kc" exp
0ν  b exp

L
,0γ  c calc

L
,0γ  c 0

expS  d 0
litS  d, e 

4 36 11 25 37 12 16 1083.4293(4) 0.26(5) 0.36313 1.6(2) 2.175 
8 18 15 3 19 16 4 1083.4845(2) 0.16(2) 0.16727 5.3(2) 4.364 
9 27 13 15 28 14 14 1083.4935(2) 0.425(11) 0.26798 4.9(3) 3.544 

29 18 13 5 19 14 6 0.22849 
29 f 51 17 35 51 18 34 1089.9139(4) 0.25(4) 0.2469 8.4(5) 8.265 

32 27 11 17 28 12 16 0.33707 
32 g 20 12 8 21 13 9 1090.0597(3) 0.32(4) 0.2801 8.4(3) 9.327 

41 13 12 2 14 13 1 1096.6290(3) 0.202(9) 0.23827 7.7(2) 9.513 
48 27 9 19 28 10 18 1096.7446(9) 0.20(3) 0.40290 4.5(3) 6.389 
51 14 10 4 15 11 5 1102.5453(5) 0.39(4) 0.31800 10.6(5) 11.73 
66 23 8 16 24 9 15 1102.9831(3) 0.33(3) 0.42592 7.5(4) 9.218 
73 18 9 9 19 10 10 1103.1241(3) 0.29(3) 0.37519 9.3(5) 10.98 
78 13 10 4 14 11 3 1103.2290(3) 0.25(3) 0.31275 11.7(7) 12.18 

a In case of overlapped transitions the literature value of the line intensity is obtained by summing the individual line intensities of each transition (where available). Figures in 
parentheses correspond to one standard deviation. 
b Values expressed in cm-1. 
c Values expressed in cm-1 atm-1. 
d Values expressed in 10-23 cm molecule-1. 
e From Ref. [152]. 
f Transition belonging to ν1 of 32SO2.  
g Transition belonging to ν1 of 34SO2. 
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Table 7.3. Line labelling, assignment and line parameters of the ν1 band of 34SO2
 a 

Line N. J' Ka' Kc' J" Ka" Kc" exp
0ν  b exp

L
,0γ  c calc

L
,0γ  c 0

expS  d 0
litS  d, e 

3 25 13 13 26 14 12 1083.3933(4) 0.305(3) 0.26801 1.72(10) 2.740 
13 16 15 1 17 16 2 1083.6045(3) 0.20(2) 0.16544 2.40(11) 3.470 
14 29 12 18 30 13 7 1083.6125(2) 0.325(11) 0.31836 1.78(8) 2.306 
23 16 13 3 17 14 4 0.22763 
23 f 32 10 22 33 11 23 1089.7409(2) 0.27(4) 0.3826 7.1(4) 8.487 

46 24 9 15 25 10 16 1096.7061(2) 0.43(7) 0.40186 3.85(9) 4.669 
57 20 8 12 21 9 13 1102.7295(2) 0.28(2) 0.42430 4.9(9) 6.334 
62 29 6 24 30 7 23 0.46384 
62 f 43 12 32 43 13 31 1102.9206(3) 0.60(3) 0.3493 5.07(12) 4.838 

63 27 12 16 27 13 15 1102.9324(4) 0.33(7) 0.30852 3.22(13) 2.470 
67 15 9 7 16 10 6 1102.9938(3) 0.26(5) 0.36911 6.0(5) 7.513 
75 24 7 17 25 8 18 1103.1511(3) 0.45(2) 0.45457 4.1(2) 5.227 
77 10 10 0 11 11 1 1103.2134(3) 0.173(8) 0.30495 7.4(4) 8.474 

a In case of overlapped transitions the literature value of the line intensity is obtained by summing the individual line intensities of each transition (where available). Figures in 
parentheses correspond to one standard deviation. 
b Values expressed in cm-1. 
c Values expressed in cm-1 atm-1. 
d Values expressed in 10-23 cm molecule-1. 
e From Ref. [167]. 
f Transition belonging to ν1 + ν2 – ν2 of 32SO2.  
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The fits carried out using the profiles accounting for Dicke narrowing have led to the 

determination of the Dicke narrowing coefficients, which resulted to be β = 0.11(2) cm-1atm-1 and 

Ω = 0.09(2) cm-1atm-1, within the weak and strong collision models, respectively.  On the other 

hand, the self-broadening coefficients obtained by using these models agree within the statistical 

error with those obtained from the fits with the Voigt profile. 

The integrated absorption coefficients obtained from the line parameter analysis have been 

used to derive the total band intensity of the ν1 normal mode: it is resulted to be 3.32(12)⋅10-18 

cm⋅molecule-1. This value closely matches that obtained by Sumpf [153] from analogous high 

resolution measurements carried out by TDL spectroscopy. 

The integrated band intensities of the ν1, ν2 and ν3 fundamental bands derived from the 

medium resolution spectra, an example of which is given in Figure 7.11, are listed in Table 7.4 

together with the most recent literature values. The resulting photo-absorption spectra are 

reproduced in Figures 7.12 (a) and (b) for the measurements carried out on pure sulphur dioxide and 

its mixture with nitrogen. 
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Figure 7.11. Example of the series of spectra recorded at different SO2 pressure for the determination of the vibrational 
cross sections. The spectra were recorded using 1000 kPa of N2 as buffer gas, the SO2 partial pressures are indicated in 
figure. Experimental details: T = 298.0 K, PLC = 13.40 cm, 0.2 cm-1 resolution. 
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Table 7.4. Obtained integrated intensities of the ν1, ν2 and ν3 fundamental bands of SO2 and their comparison with the 
most recent literature values a 

 0
1νS  0

2νS  0
3νS  

This Work 
0.359(3) b 
0.353(3) c 
0.332(12) d 

0.424(8) b 
0.417(13) c 

2.78(2) b 
1.730(13) c 

Henningsen et al. [165] - - 2.61 
Sumpf [153] 0.341(11) d - 2.40(15) d 

Chu et al. [152] 0.38286(90) - 2.9657(43) 
Kim and King [173] 0.342(12) 0.420(5) 3.19(3) 

Kunimoto et al. [174] 0.439 - 3.50 
a Values expressed as 10-17 cm molecule-1. Figures in parentheses correspond to one standard deviation.  
b From meausurements on pure SO2. 
c From measuremnents on SO2 + 1000 kPa of N2. 
d Total band intensity, from high resolution measurements. 
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Figure 7.12. Photo absorption spectrum of the SO2 fundamental bands: (a) from measurements on pure SO2; (b) from 
measurements on SO2 mixed with 1000 kPa of N2. Experimental details: T = 297 K, PLC = 13.40 cm, 0.2 cm-1 
resolution. 
 

The experimental results show that, while the vibrational cross sections of ν1 and ν2 are 

essentially unaffected by the buffering with N2, the ν3 integrated band intensity obtained without N2 
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is about 1.6 times smaller than that obtained upon pressurization with nitrogen. In order to 

understand this behaviour, a systematic study on the effects of interferogram truncation and finite 

resolution has been carried out following the treatment described by Ahro and Kauppinen [175]. 

They considered a simplified model, which is exemplified in Figure 7.13, of a rigid diatomic 

molecule having a Gaussian shaped vibrational band consisting of a series of Lorentzian rotational 

lines of separation 2B. The corresponding interferogram consists of Gaussian wave-packets 

separated by ( )B21 . Therefore, the separation of the rotational wave-packets in the interferogram is 

inversely proportional to the distance between the rotational spectral lines and the width of the 

wave-packets is inversely proportional to the width of the vibrational band. Since there is very little 

information between the wave-packets, there is no advantage in collecting the interferogram in 

between the wave-packets, as shown in Figure 7.14. 
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Figure 7.13. Example of Gaussian shaped vibrational band 
composed of a series of Lorentzian rotational lines having 
width Γ and separated by 2B. 

Figure 7.14. Part of the interferogram of a Gaussian 
shaped vibrational band composed of a series of 
Lorentzian rotational lines. The separation between the 
wave-packets is 1/(2B). 

 

For the present purposes, a MatLab program, in which the vibrational bands are modelled as 

described above, has been written to simulate the effect of finite resolution. The routine calculates 

the interferogram of a given reference Gaussian shaped vibrational band at a resolution 

( ) 12 −Δ= xR N
ref , where N is the number of points of the interferogram and xΔ = 1.38⋅10-4 cm; this 

interferogram is then truncated in order to match the new resolution ( ) 12 −Δ= xR M
trunc , where M < N 

is the number of points of the truncated interferogram. Finally, the new interferogram is Fourier 

transformed into the new spectrum, which results to have a lower resolution. Besides the number of 

points of the reference and truncated interferograms, the simulation parameters which can be varied 
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are the separation B between the rotational lines, their width Γ and the width σ of the Gaussian 

vibrational band.  

Since the effect of pressurization with N2 is to broaden the rotational lines, and given that 

the three fundamental bands of sulphur dioxide have similar rotational constants and similar 

broadening parameters, the simulations have been performed by considering a series of 6 reference 

vibrational bands with different peak absorbances (within the range 0.1 – 0.6) for each of which the 

reduced width, refRΓ=Γ* , of the rotational lines has been increased from 1.0 to 6.0. As reference 

spectrum, a Gaussian band with a nominal resolution of 0.05 cm-1 has been used and the resolution 

has been degraded to 0.22 cm-1. 

The results of the simulations are listed in Table 7.5 and illustrated in Figure 7.15. They show that 

as the rotational lines become broader, the distortions due to the finite resolution are reduced and 

the ratio between the area subtended by the vibrational band after and before the truncation, 

reftrunc AA , increases and tends toward one. As can be seen in Figure 7.15, the present calculations 

also prove that the ratio reftrunc AA  reduces as the band peak absorbance increases. This result is in 

agreement with the investigations carried out by Parker and Tooke [176]. According to their work, 

two regimes need to be distinguished: in the first, the FWHM of the vibrational band is much 

smaller than the resolution; in the second one, the FWHM is comparable or larger than the 

resolution. In this regime, as truncation and apodization have a greater effect closer to the band 

centre, they have a major effect on bands having a larger absorbance. Therefore, the spectral 

distortions induced by the finite resolution are larger in vibrational bands which have higher peak 

absorbance and whose rotational lines are sharper. This is exactly the case of sulphur dioxide: since 

the ν3 band has an higher peak absorbance than ν1 and ν2, it is much more distorted by the 

instrumental resolution. The effect of the buffer gas is to broaden the rotational lines, thus removing 

these distortion. On the other hand, the pressurization with nitrogen leaves the ν1 and ν2 bands 

almost unchanged due to their lower peak absorbance. In summary, since ν3 has an higher peak 

absorbance than the ν1 and ν2 bands, it is more distorted than the other ones by the finite 

instrumental resolution. By using a buffer gas, the rotational lines are broadened such that these 

distortions are removed. 
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Table 7.5. Effect of the finite resolution on the area of a Gaussian shaped vibrational band as a function of peak 
absorbance, AbsPeak, and reduced rotational line width, Γ*, obtained from computer simulations 

reftrunc AA  

Γ* AbsPeak 

1.0 1.2 1.5 2.0 3.0 4.0 5.0 6.0 

0.10 0.94093 0.94099 0.94114 0.94171 0.94489 0.95205 0.96260 0.97357 

0.15 0.91285 0.91294 0.91317 0.91400 0.91868 0.92922 0.94474 0.96087 

0.25 0.85963 0.85997 0.86014 0.86148 0.86897 0.88584 0.91070 0.93654 

0.40 0.78698 0.78719 0.78774 0.78976 0.80103 0.82641 0.86379 0.90266 

0.50 0.74313 0.74338 0.74404 0.74646 0.75998 0.79039 0.83519 0.88178 

0.60 0.70273 0.70300 0.70377 0.70655 0.72211 0.75709 0.80861 0.86220 
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Figure 7.15. Simulated trend of the ratio between the areas of a Gaussian shaped vibrational bands at two different 
resolutions as a function of band peak absorbance and reduced rotational line width. 
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From Table 7.4 it can be seen that the fundamental bands ν1 and ν3 have received more 

attention than the ν2 bending vibration, for which the most recent determination of the integrated 

band intensity seems that of Kim and King [173]. The agreement between their value and the 

present one is very good. Concerning the ν1 band, all the cross sections of Table  7.4 match fairly 

well. Only the value given by Kunimoto et al. [174] is about 20% larger that the others. The 

integrated band intensities of the ν3 band appear slightly more scattered. The value of 2.78 × 10-17 

cm molecule-1 here measured lies in the middle between the two limiting literature values: 2.40 × 

10-17 and 3.50 × 10-17 cm molecule-1. 

 Finally, it should be pointed out that the total band intensities of the ν1 fundamental band 

obtained from the high resolution measurements are slightly smaller than the integrated cross 

sections derived from low or medium resolution spectra. This is because the absorptions due to 

either the hot bands and the isotopic species contribute to the cross sections obtained from the latter 

measurements, whereas they can be excluded from the determinations based on the high resolution 

line intensities. 
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88..  VViinnyyll  FFlluuoorriiddee  SSppeeccttrroossccooppyy::    

VViibbrraattiioonnaall  aannaallyyssiiss,,    

AAbb  iinniittiioo  ccaallccuullaattiioonnss  aanndd    

LLiinnee  ppaarraammeetteerr  ddeetteerrmmiinnaattiioonn    

 

 

The last years have seen an increasing interest in spectroscopic studies of haloalkenes owing 

to their potential role as air pollutants and also to improve the theoretical studies of their reactivity 

toward hydroxyl radical and ozone (for example [177, 178] and references therein). Among these, 

vinyl fluoride, H2C=CHF, has been studied extensively by spectroscopic methods, since it is widely 

used by industry mainly as a monomer for the production of synthetic resins, such as polyvinyl 

fluoride. Low resolution infrared investigations, mainly limited to the identification of the 

fundamental modes, have been carried out a long time ago [179 – 181] and an analysis of the 

partially resolved rotational structure has been performed around 900 cm-1 for the ν8, ν10 and ν11 

modes strongly interacting by Coriolis and anharmonic resonances [182]. Ground state parameters, 

obtained from the analysis of microwave spectra [183 – 185], have been more extensively 

determined combining the microwave data available in the literature together with infrared 

combination differences [186]. Many investigations have been also devoted to the determination of 

its structure ([187] and references therein) and a semi-experimental equilibrium structure has been 

derived from experimental ground state rotational constants and rovibrational interaction parameters 

calculated from an ab initio anharmonic force field [188]. 

The high resolution infrared spectra of vinyl fluoride have been deeply investigated in many 

spectral regions [189 – 193] and the obtained results have led to the determination of accurate 

molecular parameters for several fundamentals and overtone vibrations, and to a thorough 

understanding of the interaction mechanism for the observed perturbations.  

 Despite the industrial importance of vinyl fluoride, there exist no studies on the 

determination of the line parameters of the ro-vibrational absorption lines. The lack of literature 
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data is partly motivated by the complex structure of the room temperature high resolution spectrum, 

which presents a high density of lines with many overlapped transitions. 

This chapter deals with the determination of the line parameters of vinyl fluoride in the ν7 

band atmospheric region around 8 μm. In addition, a complete vibrational study of the medium 

resolution gas phase spectrum in the 400 – 8000 cm-1 region is presented together with the 

measurements of the absolute infrared photo absorption cross sections. Accurate ab initio 

calculations of the harmonic and anharmonic force fields have been also performed: correlated 

harmonic force fields have been obtained from coupled cluster CCSD(T) calculations with the cc-

pVQZ basis set, while anharmonic force constants have been computed employing the less resource 

demanding cc-pVTZ basis set. 

 

 

88..11..  EEXXPPEERRIIMMEENNTTAALL  DDEETTAAIILLSS  AANNDD  DDAATTAA  IINNVVEERRSSIIOONN  

 

The H2C=CHF (purity ≈ 99%) gas samples were provided by Peninsular Chemical 

Research, Inc. and were used without further purification. 

 

 

Medium and low resolution measurements 

 

The low and medium resolution spectra of vinyl fluoride were recorded on the Bruker 

Vertex 70 FTIR spectrometer at a resolution between 0.2 and 1.0 cm-1 in the 400 – 5000 cm-1 

region, and at 1.0 cm-1 in the 5000 – 8000 cm-1 range. The wavenumber accuracy in the investigated 

range (400 – 8000 cm-1) was estimated to be around 0.2 cm-1. A 134.0 (± 0.5) mm path-length, 

double walled, stainless steel gas cell equipped with KBr windows was employed in the range 400 – 

5000 cm-1, while a multipass cell (150 – 3750 cm) with CaF2 windows was used in the NIR region. 

A total of 128 scans for both the sample and the background spectra were co-added and transformed 

into the corresponding absorbance or transmittance spectrum, using boxcar apodization function 

and Mertz phase correction. 

For the vibrational analysis the sample pressures were varied in the range 0.37 – 40 kPa and 

the spectra were recorded at room temperature. For the absorption cross section measurements (400 

– 3500 cm-1), different pressures of vinyl fluoride were used, both for the pure compound and its 

mixture with N2 (SIAD, purity > 99%) to a total pressure of 101 kPa. The temperature in the cell, 

continuously monitored by thermocouples, was kept constant at 298.0 K (± 0.5 K). 
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The absorbance cross-section per molecule (cm2 molecule-1), ( )νσ ~ , was  calculated from the 

measured infrared absorbance using the relationship given in Equation 7.3. The integrated cross 

section Gint (cm molecule-1) was then derived from the absorbance cross section by means of 

equation 7.4. In the case of two or more overlapped bands without a clear separation a single 

integration was performed. The experimental uncertainty in the cross section measurements was 

estimated by taking into account the uncertainties of pressure and temperature of the sample, of the 

optical path length, of the photometric accuracy of the FTIR spectrometer and of the evaluation of 

the absorbance (26).  

At the beginning of the experiments some spectra were recorded at two different resolutions 

(0.2 and 0.5 cm-1) for different pressures of both pure vinyl fluoride and its mixture with N2. A 

linear dependence of the absorbance with the sample pressure was observed over all the used 

concentration range. The calculated band intensities corresponding to the same concentration of the 

sample at different spectral resolutions was found to be equal within the error of the measurements; 

therefore the integrated cross sections were determined from the spectra of the pure gas (H2C=CHF 

pressures in the range 4 – 33 hPa) recorded at the resolution of 0.5 cm-1 because they generally had 

a better signal-to-noise ratio, especially for the weaker absorption features. 

 

 

High resolution measurements 

 

 The high resolution spectra of vinyl fluoride in the 8 μm atmospheric window were recorded 

on the TDL spectrometer of Università Ca’ Foscari Venezia described in Chapter 5. It was used in 

the three beams configuration, in which the main part of the beam passed through the cell 

containing the sample, while the other two beams were sent through an empty reference cell and the 

Germanium etalon, respectively. The reference signals were used to obtain the transmission spectra 

using the procedure described following in the text. The measurements were carried out at 299 ± 1 

K by adopting the same procedure described in Section 7.2 for sulphur dioxide. In the present 

experiments the elapsed time between filling of the cell and spectral acquisition was raised to 20 – 

25 minutes due to the stickiness of vinyl fluoride. Further, a liquid nitrogen trap was used in order 

to facilitate the evacuation of the cell. Given the strong intensity of the absorptions, small 

concentrations of vinyl fluoride were used and each spectral microwindow was recorded up to nine 

different pressures within the range 5 – 200 Pa; no buffer gases were used. An example of the 

obtained spectra is given in Figure 8.1. Each experimental spectrum is the result of an average of 

128 scans.  
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Figure 8.1. Example of the series of spectra recorded at different pressures of H2C=CHF in the region 1120.88 – 
1121.41 cm-1. Experimental details: PLC = 92.3 cm; T = 299.5 K; sample pressures are given in the figure. 
 

Despite the adopted low pressures, the spectra appeared very crowded and therefore a data 

inversion based on a fit of the baseline was impracticable. Therefore, the transmission spectra were 

obtained by ratioing the sample and the reference spectra according to 

 

 *

*

reference

sample

T
T

T =           (8.1) 

 

where *
sampleT  and *

referenceT  are in turn the sample and the reference signals normalized by the 

corresponding background. Denoting by sampleI  and backgroundI  the spectra of the sample channel with 

filled and empty cell, respectively, and by sample
referenceI  and background

referenceI  the  corresponding signals of the 

reference channel, *
sampleT  and *

referenceT  are respectively given by: 
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In this way, the drift of the laser and its power fluctuations equally affect the two channels and 

therefore their effects compensate by taking the ratio (8.1). A drawback of this approach is the 

degradation of the signal-to-noise ratio; nevertheless, it represents a good compromise when fitting 

the baseline is impossible or too imprecise. 

After absorbance conversion, the spectra were wavenumber-calibrated by using the 

frequency of the H2C=CHF lines obtained from the high resolution FTIR spectrum. The resulting 

wavenumber accuracy was, on average, 5.6⋅10-4 cm-1. 

 

 

88..22..  CCOOMMPPUUTTAATTIIOONNAALL  DDEETTAAIILLSS  

 

Quantum-chemical calculations were carried out at the correlated levels of coupled cluster 

theory with single and double excitations augmented by a perturbational estimate of the effects of 

connected triple excitations, CCSD(T). The Dunning's correlation consistent polarized valence basis 

sets cc-pVTZ and cc-pVQZ were employed. The frozen core approximation, where the carbon and 

fluorine 1s-like molecular orbitals are constrained to remain doubly occupied in the calculations, 

were adopted and spherical harmonics were used throughout. 

At first, the molecular geometry of vinyl fluoride was optimized within the constraint of Cs 

symmetry point group at CCSD(T)/cc-pVTZ level of theory. At the computed equilibrium 

geometry, the harmonic force field was evaluated analytically employing the same level of theory. 

The CCSD(T)/cc-pVTZ cubic and quartic normal coordinates force constants (φijk, φijkk) were 

determined with the use of a finite difference procedure [194] involving displacements along the 

normal coordinates (step size 0.05 amu½ bohr). All these calculations were performed with the 

Mainz-Austin-Budapest version of ACES II program package [195]. 

Since the semi-experimental structure of vinyl fluoride is in good agreement with the 

structure calculated at CCSD(T)/cc-pVQZ level of theory [188], an additional geometry 

optimization followed by the harmonic force field evaluation was performed at this level of theory. 

These calculations were carried out with the MOLPRO system of programs [196], where the 

hessian matrix is calculated numerically by finite differences [197]. 
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88..33  DDEESSCCRRIIPPTTIIOONN  OOFF  TTHHEE  SSPPEECCTTRRUUMM  AANNDD  AASSSSIIGGNNMMEENNTT  

 

Vinyl fluoride is a planar near-prolate asymmetric top (κ ≅ –0.945), belonging to the Cs 

symmetry point group. The A and B principal axes of inertia lie in the molecular symmetry plane, 

while the C-axis is perpendicular to it. The molecule has twelve fundamental vibrations of which 

nine of species A' (ν1 – ν9), that give rise to A/B hybrid bands, and three of species A" (ν10 – ν12), 

that produce C-type absorptions. Survey spectra of vinyl fluoride in the region investigated, 

recorded at 1.0 cm-1 resolution, are shown in Figure 8.2. Few assignments are given below selected 

bands in order to facilitate the reading of the spectra,  which provide a rich source of information on 

overtone and combination levels. The frequencies and the assignments for the observed bands are 

given in Table 8.1.  
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Figure 8.2. The gas-phase IR spectra of H2C=CHF at 1.0 cm-1 resolution: (—) PLC = 13.4 cm, P = 613 Pa; and (—)  
PLC = 13.4 cm, P = 11.4 kPa. Only some representative bands are labelled. For a better reading, the (—) trace has 
been shifted upwards. 
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Table 8.1 (1 of  2). Observed band centres (cm-1) of the gas-phase IR spectra of H2C=CHF 

Band Observed envelope Relative Intensity a Wavenumber b 

ν9 A / B m 482.9 
 2ν9 – ν9   485.5 
 ν12 C m 712.4 ± 0.2 
 ν9 + ν12 – ν9   713.5 

 ν11 C s 863.1 ± 0.2 

ν9 + ν11 – ν9   864.3 ± 0.2 

ν8 A / B s 927.8 ± 0.2 

ν10 C s 929.1 ± 0.2 

ν7 + ν9 – ν9   1152.7 

ν7 A vs 1155.4 

ν6 A w 1305.2 

ν5 A / B m 1379.5 

2ν12  vw 1424.4 

ν11 + ν12 A / B w 1574.3 ± 0.5 

ν7 + ν9  vw 1635.7 

ν4 + ν9 – ν9   1652.8 

ν4 A vs 1655.6 

ν10 + ν11 B / A w 1790.3 

2ν8 A / B w 1854.6 

ν7 + ν9 + ν11 – ν9   2017.7 

ν7 + ν11 C vw 2018.6 

ν7 + ν8 + ν9 – ν9   2075.6 

ν7 + ν8 A w 2077.7 

ν4 + ν9 A vw 2136.2 

2ν7 A vw 2304.1 

ν6 + ν7 A vw 2457.5 

ν5 + ν7 A vw 2530.7 

2ν6  vw 2608.3 
 2ν5 A / B vw 2751.8 
 ν4 + ν7 A vw 2805.1 

 ν4 + ν6  vw 2949.6 ± 0.5 
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Table 8.1. (continued 2 of  2)   

Band Observed envelope Relative Intensity a Wavenumber b 

 ν4 + ν5 A w 3000.3 

 ν2 B / A w 3094.5 

ν1 A / B w 3140.7 

2ν4 A vw 3301.6 ± 0.5 

ν1 + ν8 A / B vw 4063.9 

 ν2 + ν7 B / A vw 4246.0 

 ν1 + ν7 A / B vw 4292.9 

 ν1 + ν6 A / B vw 4439.7 

 ν1 + ν5 B / A w 4505.6 

 ν1 + 2ν5 A / B vw 5863.8 ± 0.5 

 2ν2 A / B vw 6070.1 ± 0.5 

ν2 + ν3 A / B vw 6120.3 ± 0.5 

ν1 + ν2 A / B vw 6230.7 ± 0.5 

2ν1 A / B vw 6243.2 ± 0.5 

ν1 + ν2 + ν6 A / B vw 7531.1 ± 0.5 

2ν1 + ν5 A / B vw 7589.0 ± 0.5 

ν1 + ν2 + ν5  vw 7603.0 ± 0.5 
a  Abbreviations  as follow: vs = very strong, s = strong, m = medium, w = weak, vw = very 
weak. 
b    The experimental error is ± 0.1 cm-1 unless otherwise quoted. 

 

The measured vibrational frequencies, and the corresponding calculated values, for the 12 

normal modes of vibration are summarized in Table 8.2. The same table reports also the 

approximate description of the normal mode based on the total energy distribution. As it can be 

seen, there is an overall good agreement between calculated and observed frequencies. All the 

fundamentals, except the CH stretchings (ν1, ν2 and ν3 normal modes), have been extensively 

analyzed at high resolution [189 – 193]. As shown in Figure 8.2, the ν1 and ν2 fundamentals, 

although partially overlapped, show a predominant B-type structure; the ν3 band is very weak and 

overlapped by the stronger ν2.  

In the most favourable experimental conditions, a lot of overtones and combination bands 

could be observed and positively identified. The proposed assignments, which are listed in Table 

8.1, have been made considering the calculated anharmonicity constants, the relative intensities and 
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the expected band contour of the combined normal vibrations. The assignments appear to be 

consistent throughout the entire spectral region investigated.  

The presence of satellite peaks near the band origin of some fundamentals and combination 

bands provide further information on the vibrational energy levels of the hot bands of the ν9 

fundamental: νi  + νj – νj and νi + νj + νk – νj, where νj is the vibrational level with v9 = 1 located at 

about 483 cm-1. 

 
Table 8.2. Gas phase fundamental vibrations of H2C=CHF 

Symmetry 
species Mode Approximate description Observed 

band center [cm-1] 
Calculated a 

band center [cm-1] 

Α' ν1 CH2 antisym. stretch 3140.7 3136.7 
 ν2 CH stretch 3094.5 3084.9 
 ν3 CH2 sym. stretch 3062.1 b 3073.1 / 3040.8 c 
 ν4 C=C stretch 1655.6 1653.9 / 1657.1 c 
 ν5 CH2 bend 1379.5 1375.5 / 1378.7 c 
 ν6 CH bend 1305.2 1304.0 
 ν7 CF stretch 1155.4 1155.7 
 ν8 CH2 rock 927.8 927.5 
 ν9 C=CF bend 482.9 480.4 
     

Α" ν10 Torsion 929.1 930.2 
 ν11 CH2 wag 863.1 854.6 
 ν12 CH out of plane bend 712.4 712.9 

a From the hybrid anharmonic force field (see text). 
b From Raman spectrum of the gas [181]. 
c Fermi perturbed / unperturbed values. 
 

 

88..44  RROOTTAATTIIOONNAALL  AANNAALLYYSSIISS  

 

 In the spectra recorded at the resolution of 0.2 cm-1, a number of bands exhibit a resolved 

rotational structure which can be assigned and analyzed. From the rotational constants [186], the 

parameter 2(A – B ), where B   = (B + C)/2, results to be 3.65 cm-1. This value is large enough for 

the B- and C-type bands to show a resolved rotational structure, similar to the pattern observed in 

perpendicular bands of symmetric rotors. Therefore, since the separation between consecutive peaks 

is 3.6 ± 0.1 cm-1, the observed rotational structure has to be attributed to the P,RQK  clusters of B- or 

C-type bands: Figure 8.3 shows the rotational details of the ν1 and ν2 bands in the region around 
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3000 cm-1. Some assignments of the PQK and RQK features of the ν1 fundamental are also indicated. 

Note that the RQK heads of ν2 are severely mingled with the PQK series of the ν1 band. 

 The analysis has been carried out in the symmetric top approximation by a least squares 

fitting procedure to the following reduced equation: 

 

 ( ) ( ) ( ) ( )[ ] 2
0

, ""''''2''~~ KBABAKBABARP −−−+−−+= mνν     (8.3) 

 

where the upper ‘–’ and lower ‘+’ signs refer to the P- and R-branch, respectively. 
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Figure 8.3. The gas-phase IR spectrum of the CH stretching region of H2C=CHF at 0.2 cm-1 resolution (PLC = 13.4 cm, 
P = 3213 Pa, 298 K). The B-type rotational structure of the ν1 band is labelled. 
 

The rotational analysis has been performed only for the bands not yet investigated under 

high resolution. Then, the study has been carried out on the B-type component of the ν1 and ν2 

fundamentals and ν1 + ν5, ν4 + ν5 and ν6 + ν7 combination bands. The band origins, 0
~ν , the 

rotational parameters, the number of data used in the least squares fits, and the obtained standard 

deviations for all the considered five bands, are summarized in Table 8.3. The frequencies have 

been usually taken at the top of the sharp lines and the observed lines undergoing asymmetry 

splitting have not been used in the fitting procedure. In order to verify the consistency of the 
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assigned rotational structure, checks have been performed by using the ground state combination 

difference method in the symmetric top limit. 

 
Table 8.3. Molecular parameters (cm-1) of H2C=CHF bands a 

Band 0ν~  '' BA −  "" BA −  N. of data σ  b 

ν1 3140.99(6) 1.8145(18) 1.8235(19) 20 0.14 
  1.8202 c    

ν2 3096.46(3) 1.7958(16) 1.8200(17) 18 0.07 
  1.8198 c    

ν1 + ν5 4505.45(3) 1.8164(11) 1.8145(11) 27 0.10 
  1.8285 c    

ν4 + ν5 2999.68(6) 1.824(3) 1.819(3) 14 0.12 
  1.826 c    

ν6 + ν7 2457.57(3) 1.8119(10) 1.8128(10) 24 0.09 
  1.8270 c    

  Average: 1.8180(17)   
   1.8261 c   

a The uncertainties given in parentheses are one standard deviation of the last significant digits. 
b Standard deviation (cm-1). 
c Calculated values from the quadratic CCSD(T)/cc-pVQZ and cubic CCSD(T)/cc-pVTZ force constants. 
 

 

88..55  IINNTTEEGGRRAATTEEDD  BBAANNDD  IINNTTEENNSSIITTIIEESS  

 

 The infrared spectra of vinyl fluoride has been divided into three main regions, by taking 

into account the different intensities of the absorption bands in the range 400 – 3500 cm-1. The first, 

between 400 and 780 cm-1, is reproduced in Figure 8.4 (a) and it is characterized by the weak 

absorptions originating from ν9 (at 483 cm-1) and ν12  (at 712 cm-1).  The second region, Figure 8.4 

(b), is located between 780 and 1700 cm-1 and it shows several strong bands, i.e. the fundamentals 

ν8, ν10, ν11, ν7, ν4, and the two weaker absorptions ν5 and ν6. Finally, as shown in Figure 8.4 (c), the 

spectrum between 1700 and 3500 cm-1 contains many very weak features, corresponding to the CH 

stretching fundamentals ν1, ν2 and ν3, and various combination and overtone bands. 
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Figure 8.4. Regions of the gas phase IR spectrum of H2C=CHF for the determination of the vibrational cross sections: 
(a) 400 – 780 cm-1; (b) 780 – 1700 cm-1; (c) 1700 – 3500 cm-1. Experimental details: P = 438.0 Pa (—); 690.5 Pa (—); 
817.5 Pa (—); 944.5 Pa (—); 1230 Pa (—); 1540 Pa (—); 2660 Pa (—); PLC = 13.4 cm; T = 298 K; 0.5 cm-1 
resolution.  
 

The retrieved integrated absorption cross sections together with their statistical errors are 

reported in Table 8.4; the estimated experimental uncertainty is better than 6.0%. For completeness, 

the same Table also includes the calculated intensity values. The agreement of the two sets of data 

is satisfactory; indeed the mean deviation between the experimental and calculated values is about 

13%. The averaged photo-absorption spectrum for the region investigated in the present analysis is 

reproduced in Figure 8.5. 

 



 

 

 

151

Table 8.4. Integrated cross sections of H2C=CHF in the range 400 – 3500 cm-1 

Integrated absorption cross sections 
Integration limits  

[cm-1] Experimental a 

[10-18 cm molecule-1] 

Experimental a 

[km mol-1] 

Theoretical b 

[km mol-1] 

420 – 580 0.714(12) 4.30(7) 4.24 

610 – 1050 18.33(11) 110.4(7) 111.51 

1050 – 1250 12.93(12) 77.9(7) 87.07 

1250 – 1480 1.242(18) 7.48(11) 9.06 

1520 – 1720 13.9(2) 83.7(12) 101.71 

2000 – 2200 0.356(6) 2.14(4) 1.68 

2900 – 3420 1.59(3) 9.57(18) 11.68 

a Standard deviations in units of the last significant digits are given in parentheses. The estimated experimental 
uncertainties are better than 6.0% of the reported value. 
b Sum of the computed intensities of the fundamentals comprised in the integration limits (see Table 8.6). 
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Figure 8.5. Averaged absorption cross section spectrum of H2C=CHF in the region 400 – 3500 cm-1 (0.5 cm-1 
resolution, T = 298 K). 
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88..66  EEQQUUIILLIIBBRRIIUUMM  GGEEOOMMEETTRRYY  AANNDD  HHAARRMMOONNIICC  FFOORRCCEE  CCOONNSSTTAANNTTSS  

 

A detailed analysis of the equilibrium structure of vinyl fluoride with the determination of its 

semi-experimental structure has been reported recently by Demaison [188]. In general, CCSD(T) 

calculations give very reliable results in the determination of the equilibrium geometry. The 

systematic errors, on the basis of several structure optimizations, give an accuracy of 0.005 Å for 

bond lengths and 0.2° for bond angles [198]. From these considerations a geometry optimization 

has been carried out at CCSD(T)/cc-pVTZ level of theory, using the analytical gradients and the 

analytical derivatives of the dipole moment to compute the integrated infrared band intensities. 

The harmonic force field has also been evaluated at the same level of theory from analytical 

second derivatives. On the basis of the structure calculations of Ref. [188] a CCSD(T)/cc-pVQZ 

geometry optimization has also been performed. Assuming the CCSD(T)/cc-pVQZ optimized 

equilibrium structure as the nearest to the true molecular geometry, the harmonic force field has 

been evaluated at the same level of theory in a Cartesian coordinates representation. 

For the sake of completeness, Table 8.5 collects the set of 12 chemically intuitive internal 

coordinates R: of them, the planar R1 – R9 coordinates correspond to the nine determinable 

structural parameters which define the geometry of H2C=CHF. Table 8.6 summarizes the 

fundamental frequencies computed with the harmonic force fields determined at the two levels of 

theory taken into account. The total energy distribution (TED %) values [199] in terms of the 

internal coordinates of Table 8.5 are also reported. 

The integrated infrared band intensities, in units of km⋅mol-1, have been computed 

employing the formula 

 
2

 25472.42
i

i Q
A

∂
∂

=
μ          (8.4) 

 

where  ∂μ/∂Qi are the dipole moment derivatives in ( ) 1
2

1amuÅ
−

D , evaluated analytically at 

CCSD(T)/cc-pVTZ level of theory. These data are also included in Table 8.6. 
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Table 8.5. Internal coordinates of H2C=CHF in the Cs symmetry point group and theoretical equilibrium geometries 
compared to the semi-experimental molecular structure (bond lengths in Å, bond angles in degrees) 

  cc-pVTZ cc-pVQZ semi-experimental a 

A' C–F 1.3430 1.3428 1.3428 
 C=C 1.3285 1.3253 1.3210 
 C–Hc

 b 1.0808 1.0801 1.0789 
 C–Hg

 b 1.0818 1.0809 1.0789 
 C–Ht

 b 1.0797 1.0790 1.0774 
 FĈC 122.09 121.91 121.70 
 CĈHc 121.34 121.39 121.34 
 CĈHg 125.51 125.32 126.40 
 CĈHt 119.05 118.93 118.97 

A" C–Hg out-of-plane bending 
 C–Hc out-of-plane bending 
 Torsion 

a Ref. [188]. 
b c, cis to fluorine; g, geminal; t, trans to fluorine. 
 

 

88..77  AABB  IINNIITTIIOO  AANNHHAARRMMOONNIICC  FFOORRCCEE  FFIIEELLDD  

 

The theoretical anharmonic force field has been calculated at the CCSD(T) level of theory 

using the ACES II program [195]. The cc-pVTZ basis set has been used in the frozen core 

approximation. Equilibrium molecular geometry has been calculated at first; then, the associated 

quadratic force constants have been evaluated analytically in Cartesian coordinates. The cubic and 

quartic force constants have been calculated in the reduced normal coordinates space with the use of 

a finite differences procedure, involving displacements along normal coordinates, through analytic 

calculation of the second derivatives at these displaced geometries. 

As previously reported, the CCSD(T)/cc-pVQZ calculations of geometry and harmonic 

force field are assumed to better approach to the experimental values. However, in order to reduce 

the considerable amount of computer time required to obtain cubic and quartic force constants at 

this level of theory, a hybrid force field has been calculated. This has the geometry and second-

order force constants at CCSD(T)/cc-pVQZ level of theory while the cubic and quartic force 

constants are evaluated at the CCSD(T)/cc-pVTZ level. The anharmonic spectroscopic constants 

have been derived from this hybrid force field, applying standard formulas based on second-order 
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rovibrational perturbation theory presented in Chapter 2. 

 
Table 8.6. Harmonic wavenumbers ωi, total energy distribution (TED %) and integrated band intensities obtained for 
H2C=CHF at the CCSD(T) level of theory used in the calculations employing the cc-pVTZ and cc-pVQZ basis sets 

   cc-pVTZ cc-pVQZ 

 Mode TED % a Wavenumber 
[cm-1] 

Intensity 
[km mol-1] 

Wavenumber   
[cm-1] 

A' ω1 R5(55) + R3(43) 3280 1.96 3282 

 ω2 R4(92) 3217 6.99 3221 

 ω3 R3(50) + R5(44) 3178 0.69 3178 

 ω4 R2(69) 1703 93.08 1700 

 ω5 R9(48) + R7(24) + R8(23) 1425 5.69 1418 

 ω6 R8(66) + R7(20) + R2(16) 1335 2.50 1332 

 ω7 R1(51) + R7(20) + R6(20) 1186 87.01 1179 

 ω8 R1(36) + R9(32) + R7(18) 946 32.96 943 

 ω9 R6(78) + R7(12) 481 4.24 481 

A" ω10 R12(100) 956 35.58 954 

 ω11 R11(100) 871 41.02 872 

 ω12 R10(96) 725 1.95 725 

a Terms ≥ 10%. 
 

 

88..88  AANNHHAARRMMOONNIICCIITTYY  CCOONNSSTTAANNTTSS  AANNDD  VVIIBBRRAATTIIOONNAALL  RREESSOONNAANNCCEESS  

 

The anharmonicity constants xij of vinyl fluoride, calculated with the previously described 

force field, are reported in Table 8.7, together with the corresponding observed values (in 

parentheses). As stated in Chapters 2 and 4, these constants depend on the quadratic, cubic, and 

quartic force constants, and strong anharmonic interactions between fundamentals and overtones or 

combination bands may lead to a breakdown of the corresponding perturbation formulas. In these 

cases it is necessary to consider the xij effective constants (values indicated by an asterisk in Table 

8.7), excluding such contributions from the perturbative summations (see Section 2.5). These 

effective anharmonicity constants have been introduced here to account for the following Fermi 

resonances: (2ν11 / ν4), (2ν12 / ν5), (ν4 + ν5 / ν3), (ν7 + ν9 / ν4), (ν8 + ν9 / ν5), (ν10 + ν12 / ν4). 



 

 

 

155

 
Table 8.7. Anharmonicity constants xij (cm-1) of H2C=CHF a 

i \ j 1 2 3 4 5 6 7 8 9 10 11 12 

1 – 30.7 – 10.1 – 102.5 0.2 – 17.1 – 4.9 – 3.4 – 5.4 – 1.5 – 3.5 – 15.9 – 4.1 

2  – 50.9 – 20.2 –3.5 1.5 – 13.1 – 3.6 0.4 – 0.3 – 12.8 – 3.5 – 3.5 

  – 24.2 – 9.2 * – 14.7 * – 4.9 – 3.6 – 4.5 – 1.1 – 4.6 – 8.8 – 4.2 3    (16.1) (10.6)        

   – 3.5 – 9.2 * – 12.5 – 7.3 * – 10.2 – 4.1 * – 6.2 * – 7.1 * – 3.9 * 4     (– 34.5)  (– 6.8)  (– 3.5) (– 5.6) (– 20.5) (– 3.3) 

    – 3.8 – 5.9 – 3.4 – 4.6 * – 0.6 * – 1.4 – 7.3 – 1.2 * 5        (– 14.1) (– 10.1)   (– 6.1) 

6      – 2.3 – 2.9 – 0.2 1.0 – 1.8 – 0.8 – 1.4 

      – 3.2 – 5.3 – 2.1 * – 1.8 0.8 – 2.0 7         (– 2.7)    

       – 0.6 0.1 * – 0.7 2.0 0.3 8         (9.6)    

9         1.3 – 0.1 0.9 1.1 

         – 3.4 – 1.2 – 0.7 * 10            (– 1.3) 

          2.0 * – 1.2 11           (5.4)  

           – 0.6 * 12            (0.6) 
a  

The constants affected by Fermi resonances are marked by an asterisk, and the corresponding unperturbed values are given in parentheses. 
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 In the wavenumber region from 5950 to 6250 cm-1 there is a resonant polyad involving 12 

vibrational states detailed by the  C—H  overtones 2νi (i = 1, 2, and 3), their combination bands νi + 

νj (i = 1, 2; j = 2, 3), and three quanta combination bands νi + νj + νk (i =1, 2, 3; j = 4; k = 5, 6). This 

resonant polyad involves Darling-Dennison resonances defined from the following matrix elements 

(200): 

 

 ( )( )( )( )[ ] 2
12v1v2v1v

4
2vvv2v ++++=++ jjii

iijj
jiji

k
Ŵ    (8.5) 

 

and (201) 

 

 ( )( )[ ] 2
1v1v1v

4
vv1v1v jji

ijjj
jiji

k
W −+=−+ ˆ     (8.6) 

 

and the Fermi resonance matrix elements (37) 

 

 
( )( ) 2

1

8
1v1vv

1v1v1vvvv ⎥
⎦

⎤
⎢
⎣

⎡ ++
=++− kji

ijkkjikji W φˆ   (8.7) 

 

After diagonalization of the resonant matrix, three main wavenumber regions have been identified: 

 

i. 5950 – 6000 cm-1 containing the 2ν3 and other three quanta combination bands; 

ii. 6000 – 6150 cm-1 with ν1 + ν3, 2ν2, ν2 + ν3 and many other three quanta bands; 

iii. 6200 – 6250 cm-1 with ν1 + ν2 and 2ν1. 

 

From inspection of the eigenvectors, it has been found that many transitions involving the 

combination bands are strongly mixed and, in some instances, the assignment becomes matter of 

taste.  

The experimental and ab initio rotational constants are compared in Table 8.8. The 

calculated values have been computed with the hybrid anharmonic force field previously described. 

The agreement between calculated and experimental values is good and all the constants exhibit 

comparable small discrepancies. 
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Table 8.8. Theoretical rotational constants (cm-1) of H2C=CHF: comparison with experimental data 

Vibrational state Parameter Calculated  a Observed (O. – C.) % b 
A 2.1539779 2.1543131 c 0.02 
B 0.3530043 0.35480820 c 0.51 Ground 
C 0.3028079 0.30414491 c 0.44 
A 2.1476373 –  –  
B 0.3525442 – – v1 = 1 
C 0.3023963 – – 
A 2.1473513 – – 
B 0.3526590 – – v2 = 1 
C 0.3024622 – – 
A 2.1459824 – – 
B 0.3527206 – – v3 = 1 
C 0.3024300 – – 
A 2.1447260 2.143574 d –0.05 
B 0.3518468 0.3534695 d 0.46 v4 = 1 
C 0.3016102 0.3029452 d 0.44 
A 2.1624859 2.16768 e 0.24 
B 0.3536094 0.355282 e 0.47 v5 = 1 
C 0.3025695 0.303892 e 0.44 
A 2.1466726 2.147330 e 0.03 
B 0.3539970 0.355780 e 0.50 v6 = 1 
C 0.3029657 0.304274 e 0.43 
A 2.1617585 2.1607684 c –0.05 
B 0.3524318 0.35428992 c 0.52 v7 = 1 
C 0.3013644 0.30270804 c 0.44 
A 2.1793511 2.190790 f 0.52 
B 0.3447842 0.3539404 f 2.59 v8 = 1 
C 0.3020702 0.30334301 f 0.42 
A 2.1520283 2.15120869 g –0.04 
B 0.3529377 0.354653821 g 0.48 v9 = 1 
C 0.3024772 0.303760709 g 0.42 
A 2.1492821 2.1371708 f –0.57 
B 0.3601694 0.35446577 f –1.61 v10 = 1 
C 0.3030510 0.30437546 f 0.03 
A 2.1148872 2.115590 f 0.03 
B 0.3523780 0.3540522 f 0.47 v11 = 1 
C 0.3030240 0.30435560 f 0.44 
A 2.1534229 2.1533486 h 0.00 
B 0.3525343 0.35435860 h 0.51 v12 = 1 
C 0.3029195 0.30427227 h 0.44 

a From the hybrid anharmonic force field (see text). 
b (O. – C.) % = (Obs. – Calc.) × 100 / Obs. 
c Ref. [186].      d Ref. [190].      e Ref. [192].      f Ref. [193].      g Ref. [191].      h Ref. [189]. 
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Table 8.9 contains the equilibrium quartic centrifugal distortion constants (A-reduction), 

calculated from the quadratic force field (CCSD(T)/cc-pVQZ), and compares them with their 

experimental counterparts. The equilibrium sextic centrifugal distortion constants (A-reduction) 

calculated from CCSD(T)/cc-pVTZ cubic force field are reported in Table 8.9 as well. Comparisons 

with the available experimental ground state constants for quartic and sextic terms reveal a good 

agreement between theory and experiment. 

 
 Table 8.9. Experimental and calculated quartic and sextic centrifugal distortion constants (cm-1) for H2C=CHF  

   Observed a Calculated  (O. – C.) %  b  

ΔJ × 106         0.28126         0.27850 0.98 

ΔJK × 105        –0.2537        –0.26563 –4.70 

ΔK × 104         0.44367         0.45255 –2.00 

δJ × 107         0.5891         0.58000 1.54 

δK × 105         0.1186         0.11028 7.02 

      

ΦJ × 1012         0.47         0.49756 –5.86 

ΦJK × 1012 – –0.14783   – 

ΦKJ × 109        –0.223        –0.24040 –7.80 

ΦK × 108         0.259         0.27861 –7.57 

φJ × 1012         0.217         0.21150 2.53 

φJK × 1011 – 0.26819 – 

φK × 109         0.46         0.44460 3.35 
a Ref. [186]. 
b (O. – C.) % = (Observed – Calculated) × 100 / Observed. 
 

 

88..99  LLIINNEE  SSHHAAPPEE  PPAARRAAMMEETTEERRSS  

 

 The high resolution spectrum of vinyl fluoride in the 8.7 μm atmospheric region is 

characterized by the ro-vibrational transitions belonging to the ν7 band, which corresponds to the 

C—F stretching. As pointed out at the beginning of the chapter, this spectral region is rather 

crowded: the high density of lines, about 90 lines per cm-1, can be appreciated in Figure 8.6 (a). 

Besides the stronger absorptions of the ν7 normal mode, the majority of the weakest lines is due to 
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the ro-vibrational transitions of the ν7 + ν9 – ν9 hot band. Indeed, according to the Boltzmann 

distribution, at 299 K the population of the v9 = 1 vibrational level is about 10% relative to that of 

the ground state. Hence, the ro-vibrational transitions of ν7 + ν9 – ν9 are about one order of 

magnitude weaker than those of the ν7 band. Due to their intensity the hot band lines strongly affect 

the main features and therefore they must be considered during the fitting procedure.  
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Figure 8.6. Vinyl fluoride spectrum between 1148.14 and 1148.60 cm-1: (a) experimental ( ) and computed (—) 
spectra. Experimental details: H2C=CHF total pressure = 30.6 Pa, PLC = 92.3 cm, temperature = 299 K. The remaining 
rows show the residuals obtained from different models: (b) Voigt; (c) strong collision model (scm). The standard 
deviations of the fits, σ (cm-1), are: σVoigt = 4.5 × 10-3; σscm = 2.6 × 10-3. 
 

 As first, the spectral lines have been fitted to the Voigt profile. However, the residuals show 

significant deviations from this model, as illustrated in Figure 8.6 (b). Besides, the majority of self-

broadening coefficients cannot be properly determined. This is because, due to the low H2C=CHF 

pressures employed, the Doppler ( Dγ  ≅ 1.0⋅10-3 cm-1) and the instrumental ( TDL
Dγ  ≅ 1.7⋅10-3 cm-1) 

line widths dominate over the Lorentzian component, and the pressure broadening is not enough 

pronounced to give well determined values of the collisional half widths. It has been observed that, 

in order to obtain the self-broadening coefficients from the fits with the Voigt profile, the vinyl 

fluoride pressure has to be raised up to about 200 Pa.  
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Table 8.10. (1 of 4). Line labelling, assignment and line parameters of ν7 ro-vibrational transitions of H2C=CHF 
a 

0
Lγ    [cm-1 atm-1] Line N. J' '

aK '
cK  J" "

aK "
cK 0ν~   

[cm-1] Voigt Nelkin - Ghatak 

0Ω   
[cm-1 atm-1] 

S0  
[10-21 cm molecule-1] 

1 10 7 4 11 8 3 1120.8982(5) - 0.42(7) 0.74(19) 0.84(12) 
2 18 9 9 18 10 8 1120.9310(2) - 0.52(6) 0.15(3) 0.515(6) 

49 1 48 50 1 493 49 2 48 50 2 49 1120.95340(8) 0.32(5) 0.348(14) 0.14(6) 1.558(11) 

4 47 5 42 48 5 43 1120.9688(2) - 0.39(4) 0.89(11) 0.74(3) 
5 16 9 7 16 10 6 1120.9980(2) - 0.20(7) - 0.340(12) 
6 48 8 40 49 8 41 1121.0060(2) - 0.39(5) 0.30(5) 0.52(2) 

48 3 45 49 3 467 48 8 41 49 8 42 1121.0149(2) - 0.429(11) 0.24(5) 2.140(13) 

8 15 9 6 15 10 5 1121.02867(10) - 0.34(6) - 0.287(8) 
12 48 4 45 49 4 46 1121.0858(2) 0.31(2) 0.27(2) 0.34(11) 0.86(2) 
18 48 9 39 49 9 40 1121.16520(11) 0.22(4) 0.36(3) 0.22(7) 0.83(2) 
21 47 4 43 48 4 44 1121.2103(2) 0.301(12) 0.32(3) 0.32(11) 0.981(6) 

49 0 49 50 0 5022 49 1 49 50 1 50 1121.2313(2) 0.304(8) 0.311(9) 0.33(14) 1.73(2) 

26 47 6 41 48 6 42 1121.2698(2) 0.44(8) 0.42(7) 1.07(7) 0.76(2) 
28 48 10 38 49 10 39 1121.3161(5) 0.20(2) 0.47(5) 0.57(15) 0.713(5) 
31 48 2 46 49 2 47 1121.3795(6) 0.29(2) 0.27(3) - 0.912(8) 
32 48 3 46 49 3 47 1121.3878(2) 0.39(2) 0.39(4) - 1.189(9) 
33 41 7 35 42 7 36 1126.0878(4) - 0.68(4) 0.67(9) 1.30(2) 
34 41 4 38 42 4 39 1126.0907(5) - 0.53(9) 0.51(22) 2.10(2) 
35 41 7 34 42 7 35 1126.1165(5) - 0.94(5) 0.37(11) 1.90(2) 
36 18 4 15 19 5 14 1126.1207(3) - 0.82(40) - 0.94(7) 
37 40 4 36 41 4 37 1126.1545(7) 0.37(5) 0.32(2) 0.76(17) 3.4(3) 
38 18 4 14 19 5 15 1126.1723(6) - 0.60(20) 0.98(12) 0.66(7) 
41 41 8 33 42 8 34 1126.24550(7) - 0.27(10) 0.15(5) 1.6(2) 
44 40 5 35 41 5 36 1126.2800(2) - 0.316(11) 0.37(9) 1.67(2) 
45 42 13 29 43 13 30 1126.2966(3) - 0.53(14) 0.31(10) 0.74(2) 

42 0 42 43 0 4346 42 1 42 43 1 43 1126.35166(14) 0.58(2) 0.72(10) 0.56(11) 3.62(2) 
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Table 8.10 (continued 2 of 4)      
0
Lγ    [cm-1 atm-1] Line N. J' '

aK '
cK  J" "

aK "
cK 0ν~   

[cm-1] Voigt Nelkin - Ghatak 

0Ω   
[cm-1 atm-1] 

S0  
[10-21 cm molecule-1] 

47 41 2 39 42 2 40 1126.3608(2) - 0.23(4) 0.38(4) 2.19(2) 
48 41 9 32 42 9 33 1126.3880(2) - 0.36(11) 0.53(9) 1.48(2) 
49 41 3 39 42 3 40 1126.3947(2) 0.60(8) 0.87(22) 1.0(2) 2.35(2) 
50 41 13 28 42 13 29 1127.0336(11) - 0.34(10) 1.6(7) 0.72(2) 
51 39 5 34 40 5 35 1127.05060(7) 0.35(12) 0.49(9) 0.52(12) 1.63(3) 
52 40 2 38 41 2 39 1127.0586(3) - - 0.29(8) 1.61(3) 

41 0 41 42 0 4253 41 1 41 42 1 42 1127.0721(5) - 0.85(2) - 3.5(4) 

54 40 3 38 41 3 39 1127.1007(2) - 0.19(6) 0.56(13) 1.68(2) 
55 40 9 31 41 9 32 1127.1264(9) - 0.51(20) 0.33(15) 1.86(4) 
58 41 14 27 41 14 28 1127.1974(9) - - - 0.65(7) 
60 39 3 36 40 3 37 1127.2245(10) - 0.59(10) 0.51(9) 2.27(4) 
62 40 10 30 41 10 31 1127.2693(6) - 0.60(20) 0.86(10) 1.80(4) 
66 41 15 26 42 15 27 1127.3690(3) - 0.50(11) - 0.78(3) 
67 39 6 33 40 6 34 1127.3764(4) - 0.50(11) 0.87(20) 2.17(4) 
68 39 5 35 40 5 36 1127.3929(5) - 0.70(6) 0.17(2) 2.63(3) 
69 40 11 29 41 11 30 1127.4073(5) - 0.75(25) 0.37(9) 2.11(3) 
71 40 1 39 41 1 40 1127.4473(7) - 0.47(3) 0.78(5) 7.88(4) 
72 33 5 28 34 5 29 1131.6307(5) - 0.45(6) 0.63(3) 2.64(2) 
73 34 1 33 35 1 34 1131.6497(3) - 0.59(2) 0.23(3) 4.27(3) 

34 2 33 35 2 3474 34 10 24 35 10 25 1131.6620(2) - 0.61(6) - 6.61(3) 

33 5 29 34 5 3079 35 15 20 36 15 21 1131.73595(9) 0.51(9) 0.43(5) 0.76(15) 3.77(2) 

80 33 4 30 34 4 31 1131.77691(13) - 0.33(8) 0.31(9) 3.01(3) 
82 34 11 23 35 11 24 1131.79872(8) - 0.82(7) 0.69(6) 2.11(2) 
84 33 2 31 34 2 32 1131.84041(11) 0.35(2) 0.87(4) 0.66(6) 3.26(2) 
85 33 6 27 34 6 28 1131.84719(9) - 0.65(9) 1.5(3) 3.08(2) 
86 33 6 28 34 6 29 1131.86042(12) - 0.31(8) 1.2(3) 2.74(3) 
89 35 16 19 36 16 20 1131.9421(3) 0.85(9) 0.88(8) 0.46(2) 0.75(2) 
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Table 8.10 (continued 3 of 4)       
0
Lγ    [cm-1 atm-1] Line N. J' '

aK '
cK  J" "

aK "
cK 0ν~   

[cm-1] Voigt Nelkin - Ghatak 

0Ω   
[cm-1 atm-1] 

S0  
[10-21 cm molecule-1] 

33 3 31 34 3 3292 33 7 26 34 7 27 1131.9971(3) - 0.84(6) 0.37(14) 7.58(2) 

93 33 7 27 34 7 28 1132.0010(2) - - 0.43(3) 2.47(4) 
94 34 12 22 35 12 23 1132.0107(4) - 0.70(8) 0.60(16) 2.09(3) 
96 32 3 29 33 3 30 1132.0408(3) - 0.29(7) 1.5(3) 4.13(4) 

34 0 34 35 0 3597 34 1 34 35 1 35 1132.0455(3) - 0.89(9) 0.96(14) 7.23(4) 

99 32 4 28 33 4 29 1132.06298(10) - 0.88(5) 0.655(8) 3.94(2) 
100 27 12 15 28 12 16 1137.0217(6) - 0.96(21) 0.40(7) 2.07(2) 
101 27 6 19 27 7 20 1137.04048(13) - 0.88(10) 0.75(11) 3.50(3) 
102 25 3 22 26 3 23 1137.0520(3) 0.35(4) - 0.71(14) 2.84(5) 
103 26 1 25 27 1 26 1137.0768(4) - 0.253(5) 0.191(12) 4.9(3) 
106 26 2 25 27 2 26 1137.15207(14) - - 1.1(4) 2.23(2) 
107 26 8 18 27 8 19 1137.1564(2) 0.74(4) 0.54(5) 0.22(9) 5.93(2) 

27 13 14 28 13 15108 28 17 11 29 17 12 1137.1707(2) - 0.36(7) 0.61(15) 3.626(14) 

109 25 2 23 26 2 24 1137.18880(8) 0.77(9) 0.76(2) 0.87(15) 6.552(13) 
113 26 9 17 27 9 18 1137.28139(12) - 0.78(5) 0.68(18) 4.455(12) 
114 25 4 21 26 4 22 1137.32001(10) 0.33(3) 0.88(8) 0.312(7) 3.876(13) 
115 27 14 13 28 14 14 1137.33787(6) - 0.68(15) - 2.52(2) 
117 28 18 10 29 18 11 1137.36254(12) - 1.1(2) 0.95(30) 0.36(3) 
119 26 10 16 27 10 17 1137.41444(8) - 0.39(4) 1.3(4) 3.585(14) 
120 25 4 22 26 4 23 1137.46439(9) - 0.56(20) 0.39(8) 4.4(3) 
121 10 1 10 11 1 11 1148.1499(8) 0.80(20) 0.70(2) 0.15(5) 2.8(2) 
123 10 7 3 11 7 4 1148.1963(4) - 0.69(6) 0.34(2) 3.05(4) 
125 10 8 2 11 8 3 1148.30268(13) 0.48(4) 0.68(4) 0.32(8) 2.88(2) 
126 9 1 8 10 1 9 1148.3454(3) 0.74(2) 0.80(2) 0.41(5) 4.253(13) 
127 8 0 8 9 1 9 1148.3689(2) - 0.85(8) - 0.73(7) 
128 10 9 1 11 9 2 1148.42090(10) 0.31(4) 0.54(6) 0.51(14) 2.59(2) 
129 9 2 7 10 2 8 1148.4328(2) 0.75(2) 0.39(3) 0.87(20) 4.29(2) 
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Table 8.10 (continued 4 of 4)       
0
Lγ    [cm-1 atm-1] Line N. J' '

aK '
cK  J" "

aK "
cK 0ν~   

[cm-1] Voigt Nelkin - Ghatak 

0Ω   
[cm-1 atm-1] 

S0  
[10-21 cm molecule-1] 

131 9 1 8 9 2 7 1148.4574(4) 0.51(10) 0.87(8) - 0.63(3) 
136 20 1 19 20 2 18 1148.5397(4) - 1.1(4) - 0.75(7) 
137 10 10 0 11 10 1 1148.5511(3) - 1.1(4) 0.70(20) 0.98(3) 
138 9 3 6 10 3 7 1148.5643(2) 0.47(12) 0.45(5) - 3.30(5) 
139 9 3 7 10 3 8 1148.5741(2) 0.65(21) 0.91(15) 0.94(20) 4.6(4) 
140 9 2 8 10 2 9 1148.5792(3) - 0.85(8) - 5.3(3) 

a Figures in parentheses refer to one standard deviation. 
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Table 8.11 (1 of 2). Line parameters of ν7 + ν9 – ν9  ro-vibrational transitions of H2C=CHF 
a 

0
Lγ    [cm-1 atm-1] Line N. 0ν~  

[cm-1] Voigt Nelkin - Ghatak 

0Ω  
[cm-1 atm-1] 

S0 
[10-22 cm molecule-1] 

9 1121.0453(6) - - - 1.03(4) 
10 1121.0579(3) - 0.19(9) 0.36(9) 4.62(6) 
11 1121.0812(6) - 0.390(9) - 3.8(3) 
13 1121.0962(2) 0.38(4) 0.29(6) 0.18(7) 3.87(13) 
14 1121.1107(3) - - - 2.91(10) 
15 1121.1226(2) - 0.56(13) - 2.8(2) 
16 1121.1336(2) - 0.46(8) - 3.72(14) 
17 1121.15649(11) 0.43(3) 0.29(5) 0.36(11) 7.44(13) 
19 1121.1717(2) - 0.50(17) 0.17(3) 1.7(2) 
20 1121.1865(2) - 0.14(6) 0.30(4) 2.58(8) 
23 1121.2403(2) - 0.41(6) 0.68(4) 4.8(3) 
24 1121.2563(2) - - - 3.86(11) 
25 1121.2643(2) - 0.77(6) 0.34(2) 1.7(3) 
27 1121.2858(3) - 0.38(8) - 2.23(6) 
29 1121.3426(6) 0.41(4) 0.40(9) 0.57(20) 4.87(11) 
30 1121.3573(7) - 0.47(10) - 0.72(7) 
39 1126.1799(7)  1.3(4) 0.66(20) 4.8(4) 
40 1126.1974(4) - - - 9.62(12) 
42 1126.2622(2) - 1.0(4) - 4.1(6) 
43 1126.2696(2) - 1.2(5) - 2.0(5) 
56 1127.1343(10) - 0.90(40) - 17.2(12) 
57 1127.1890(12) - 0.66(15) 0.95(27) 5.4(4) 
59 1127.2199(9) - 0.74(20) - 9.6(9) 
63 1127.2822(9) - - - 2.3(3) 
64 1127.3031(6) - 1.2(5) 0.69(20) 10.4(3) 
65 1127.3533(6) - 0.86(28) 1.1(5) 2.9(6) 
70 1127.4313(9) - - 1.2(6) 1.2(4) 
75 1131.6877(2) - - - 8.62(8) 
76 1131.70390(10) - - - 3.81(2) 
77 1131.7231(2) 0.53(9) 0.77(18) 0.54(14) 7.4(2) 
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Table 8.11 (continued 2 of 2)    
0
Lγ    [cm-1 atm-1] Line N. 0ν~  

[cm-1] Voigt Nelkin - Ghatak 

0Ω  
[cm-1 atm-1] 

S0 
[10-22 cm molecule-1] 

78 1131.7321(3) - 1.4(4) 0.35(11) 3.9(3) 
81 1131.7833(2) - 1.2(3) 1.1(4) 5.7(3) 
83 1131.8243(2) - 0.29(8) 0.64(18) 7.03(13) 
87 1131.8745(2) - 0.34(2) - 5.2(3) 
88 1131.8819(2) - 0.26(2) 0.51(24) 6.2(2) 
90 1131.9711(2) - - - 6.2(3) 
91 1131.9806(2) - 0.39(7) - 4.5(2) 
95 1132.0262(3) - 0.93(10) 0.69(18) 11.2(5) 
98 1132.0558(2) - 0.28(3) 0.32(9) 2.0(2) 

104 1137.0955(2) - 0.98(13) 0.62(20) 6.53(11) 
105 1137.1034(3) - 0.95(20) 0.49(9) 8.29(11) 
110 1137.2241(3) - 1.2(3) 0.66(13) 2.9(3) 
111 1137.2578(2) - 1.4(4) 0.28(11) 6.7(5) 
112 1137.26507(13) - 0.76(23) 0.80(3) 1.11(3) 
116 1137.3515(2) - 0.60(10) 0.13(3) 2.7(2) 
118 1137.37004(11) - 0.65(20) 1.1(5) 7.1(6) 
122 1148.1675(11) - - - 3.8(9) 
124 1148.2978(5) 0.78(25) 0.78(25) - 7.6(3) 
130 1148.4406(5) 0.63(5) 0.63(5) - 5.6(8) 
132 1148.4636(4) - 1.1(2) 1.2(3) 12.1(3) 
133 1148.4782(3) - 0.56(15) - 5.3(5) 
134 1148.5235(2) - 0.79(25) - 4.0(9) 
135 1148.5349(5) - 0.58(13) - 6.7(7) 

a Figures in parentheses refer to one standard deviation. 
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On the other hand, the ‘w’ shape of the residuals suggests a narrowing of the spectral lines due to 

Dicke effect. Therefore, the lines have also been fitted employing the Nelkin – Ghatak profile. 

When this strong collision model is used, there is a dramatic reduction of the residuals, as shown in 

Figure 8.6 (c), and the standard deviation of the fit decreases by about a factor of two. In addition, 

this leads to a determination of many of the broadening coefficients that have not been obtained 

using the Voigt profile.  

The results indicate that in the investigated pressure range the self-broadened vinyl fluoride 

sample appears as a system strongly affected by the motional narrowing effect, in which both the 

velocity changing collisions and the internal state changing-, dephasing-collisions play an almost 

equal role in determining the shape of the spectral lines. Consequently, the line profiles accounting 

for the Dicke narrowing effect must be employed to model the experimental features. 

The retrieved line parameters for the ν7 lines are listed in Table 8.10, where both the self-

broadening coefficients given by the fits with the Voigt profile and those obtained employing the 

Nelkin – Ghatak profile have been reported. The line parameters of the hot band have been 

determined as well, and they are reproduced in Table 8.11. Nevertheless, the quantum numbers of 

the transitions are not given because of the lack of a reliable assignment of the ro-vibrational 

transitions at present. Again, the self-broadening and narrowing coefficients of few lines (usually 

weak or blended) have not been reported because their accuracy is too low. As stressed before, this 

is due to the small range of vinyl fluoride pressures adopted in the experiments, which limits the 

accuracy of the measurements for some lines. On the other hand, the use of low pressures is 

strongly recommended, in order to avoid saturation effects, and hence working in the experimental 

conditions of applicability of the Beer – Lambert law. 

Since the ν7 normal mode belongs to 

the A' symmetry species, it gives rise to a A/B 

hybrid band which presents both A- and B-

type ro-vibrational transitions. The ν7 B-type 

transitions are much weaker then the A-type 

ones, and hence only few B-type lines have 

been observed. These transitions have self-

broadening coefficients, which seem to 

decrease with increasing pseudo quantum 

number "
aK , as illustrated in Figure 8.7. This 

dependence agrees with the trend obtained for 

the ν1 band of sulphur dioxide (which is a B-type band as well) in Chapter 7, and with the 
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coefficients for the B-type transitions of vinyl fluoride. 
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theoretical predictions of Tejwani [168] for B-type transitions. On the other hand, the calculations 

carried out by Tejwani for A-type transitions predicted a decrease of the pressure broadening 

coefficients with increasing "
aK  as well as a significant J dependence. The results obtained here for 

the A-type transitions suggest that, for a given value of "
aK , there is a decrease of the self-

broadening coefficients as J" increases. This trend, which is illustrated in Figure 8.8 for "
aK  = 0, 1, 

tends to persist up to "
aK  = 6. Then for "

aK   ≥ 7, no regular trend of the broadening parameters has 

been observed. Nevertheless, this can be caused by the smaller number of transitions observed with 
"
aK   ≥ 9, which gives poorer statistics, and their smaller intensity. Indeed, the strong overlapping 

among some spectral lines, which often cannot be resolved, is one of the unavoidable factors 

limiting  the accuracy of the retrieved parameters, in particular for the weakest lines, such as the B-

type transitions or the transitions having "
aK > 9. 
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Figure 8.8. J" dependence of the self broadening coefficients for A-type transitions of vinyl fluoride with "

aK  = 0, 1. 

 

The fits employing the Nelkin – Ghatak profile led to the determination of the narrowing 

parameter, which resulted to be 0.51 (± 0.20) cm-1 atm-1. As can be seen, the magnitude of the self-

broadening and self-narrowing have a similar extent. 
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 Concerning the individual narrowing coefficients, they do not show any clear dependence 

upon the quantum numbers, except for "
aK = 0, 2 transitions, where the narrowing coefficients seem 

to decrease smoothly with J", as shown in Figure 8.9.  
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Figure 8.9. J" dependence of the self-narrowing coefficients of vinyl fluoride. For "

aK  = 0 and 2 transitions,  Ω0  
decrease with increasing J" values. 
 

This observation, together with the unusually large narrowing coefficient obtained for some of the 

analysed lines, may suggest that, despite the low H2C=CHF pressure, line mixing effects could 

occur. Another effects which can be responsible for the large narrowing coefficients is the speed-

dependence of the line widths. Nevertheless, further investigations are required to say whether or 

not line mixing or speed dependencies arise. 
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9. JJeett--CCoooolleedd  DDiiooddee  LLaasseerr  SSppeeccttrruumm  aanndd  

FFTTIIRR  IInntteeggrraatteedd  BBaanndd  

IInntteennssiittiieess  ooff  CCFF33BBrr  
 

 

Fully halogenated compounds, such as chlorofluorocarbons and halons, are largely 

employed by industry due to their versatility. For example, they are used as refrigerants, fire-

extinguishers, solvents and foam-blowing agents.  

On the other hand, these chemicals actively take part to the photochemistry of the Earth’s 

atmosphere and are sources of a number of radicals which may destroy ozone catalytically. Once in 

the stratosphere, chlorinated and brominated organic compounds undergo photochemical oxidation, 

thus releasing chlorine and bromine atoms that critically affect the Earth’s protective ozone layer. 

Among the bromine sources there are the long-lived anthropogenic halons and methyl bromide: 

between 1980 and the late 1990s emissions of these compounds have resulted in more than a 

doubling of the atmospheric bromine loading [202]. Bromotrifluoromethane (CF3Br, Halon 1301, 

Freon 13B1), which is characterized by a long stratospheric lifetime of about 65 years, has the 

highest Ozone Depletion Potential among the sources of bromine (12 referred to CFC 11, as 

reported in Ref. [203]), and therefore it has been banned by the Montreal Protocol since 2003. Its 

averaged global tropospheric mixing ratio has been estimated equal to 2.6 ppt [204]: this value may 

seem rather low, but it must be underlined that bromine is considered up to 45 – 70 times more 

efficient than chlorine as a catalyst of stratospheric ozone depletion [205].  

The vibrational infrared spectrum of bromotrifluoromethane shows two strong absorption 

bands, ν1 and ν4 located at 1085 and 1210 cm-1, respectively, and a number of weaker fundamental, 

overtone and combination features. Hence, this compound can heavily contribute to the greenhouse 

effect. In addition to its importance in the atmospheric chemistry, CF3Br has been proposed as a 

prototype molecule for infrared laser chemistry and isotopically selective multiphoton induced 

dissociation (Refs. [206  –  209] and references therein). 

Owing to the severe environmental effects and the suggested variety of applications, CF3Br 

has been the subject of many spectroscopic studies in the last decades. Concerning the microwave 
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and the millimetre regions, the 12C species has been extensively analyzed in the past [210 – 215] 

thus leading to the determination of the dipole moment and to an accurate set of ground state 

constants for both the 79/81Br isotopologues; the bromine nuclear quadrupole constants have been 

theoretically investigated, employing several DFT and hybrid HF/DFT methods [216]. Recently, 

also the 13C species have been studied [217] employing both radiofrequency-microwave double 

resonance (RFMWDR) and conventional microwave spectroscopic techniques.  

The infrared spectrum of CF3Br has been originally assigned by Plyler and Acquista [218] 

and subsequently by Polo and Kent Wilson [219]; the structure of many fundamental, overtone and 

combination bands has been analysed at low and medium resolution employing grating [220, 221] 

and Fourier transform spectrometers [222]. Successively, the advent of tunable diode laser and 

FTIR spectrometers with a greater resolving power has allowed a more accurate ro-vibrational 

analysis of the fine structure of the infrared spectrum (see for example Refs. [223 – 225]).  

The last years have seen a renewed interest in spectroscopic studies of similar halogenated 

pollutants (for example Ref. [226 – 228] and references therein), since an accurate ro-vibrational 

analysis of the bands falling in the mid infrared region can support the quantitative detection and the 

temperature profiles modelling of these compounds. Furthermore, since a better understanding of 

their radiative forcing needs accurate information about absorption strengths, the integrated cross 

section measurements in a wavenumber range as wide as possible can be useful.  

The present Chapter deals with the jet-cooled high-resolution study of the CF3Br spectrum 

in the ν1 band region around 1085 cm-1. The high resolution analysis of the ν1 fundamental has been 

carried recently [229]; here the study is extended to the weaker absorptions coming from 2ν5 and ν2 

+ ν3 for both the bromine isotopologues.  

The previous ro-vibrational investigations of these bands, which were carried out several 

years ago [230, 231] with a diode laser spectrometer, were lacking of some important spectral 

regions: for example, the P branch of 2ν5 at 200 K was completely overlapped by the stronger R 

branch of the ν1 fundamental, so the analysis was restricted to the R branch transitions. In addition, 

the K-structure of both these bands appeared not completely resolved even at a resolution of about 

0.002 cm-1 and the accuracy of the measurements, limited by the secondary standards employed, 

was estimated around 0.003 cm-1. In the present work the use of a slit-jet expansion has permitted 

for the first time to access the resolved P branch transitions, thus recording the high-resolution 

spectrum of 2ν5 between 1090 and 1102 cm-1. In the region of ν2 + ν3, a new and more complete 

data set has been obtained from the analysis of either the cold (about 50 K) free-jet spectrum and 

that recorded at the stratospheric temperature of 200 K. The measurements cover about 85% of the 

range 1110 – 1130  cm-1, thus furnishing P and R transitions at higher J values than the previous 



 

 

 

171

data. As a consequence, a more reliable and accurate set of spectroscopic parameters has been 

obtained for 2ν5 and ν2 + ν3 of both bromine isotopologues. Furthermore, many features belonging 

to various hot bands have been identified, and the corresponding molecular constants have been 

determined. In addition, the vibrational cross sections have been measured for all the absorptions in 

the spectral range between 450 and 2500 cm-1, thus obtaining the integrated band intensities for 

many fundamental and combination bands and extending the analysis to spectral regions not 

previously investigated [232 – 235].  

 

 

99..11..  EEXXPPEERRIIMMEENNTTAALL  DDEETTAAIILLSS  

 

Details of the home built supersonic free-jet system have been given previously in Chapter 

5. In these measurements, the pulsed supersonic planar expansion of the gas sample composed by 

15% of CF3Br in helium was regulated by a modified solenoid valve (General Valves, Series 9) 

driven by a controller (Iota One, General Valve Corporation). Laser scans (about 0.3 cm-1 wide, 

duration of about 1 ms) and gas pulses (about 2 ms) were properly synchronized by using an 

electronic delay generator: a four channel digital oscilloscope (Tektronix TDS 3014) was used to 

acquire simultaneously the jet spectrum and the signals employed for reference purpose. Up to 128 

scans were averaged together without appreciably increasing the observed linewidths. The 

stagnation pressure was varied between 150 and 180 kPa, while the pump system kept the 

background pressure below 0.3 Pa, thus minimizing absorptions coming from the rotationally warm 

background gas. Linewidths up to 7⋅10-4 cm-1 (FWHM) were measured in the free-jet spectrum, 

mainly limited by residual Doppler broadening and laser jitter noise. From spectral simulations a 

rotational temperature of about 50 K was estimated. For the spectra recorded at 200 K, a 92.3 cm 

path-length cell was employed; the observed line-widths were generally better than 1.2⋅10-3 cm-1. 

The wavenumber calibration was based on SO2 line positions measured in a room temperature 

reference cell.  

The infrared absorption cross sections were obtained from experiments carried out in a 134.0 

(± 0.5) mm path-length stainless steel cell, equipped with KBr windows; the temperature in the cell, 

continuously monitored, has been kept constant at 298.0 K (± 0.5 K). The infrared spectra were 

recorded on the Bruker Vertex 70 FTIR instrument presented in Section 5.2; a total of 128 

interferograms for both the sample and the background spectra were co-added and transformed  into 

the corresponding absorbance spectrum using boxcar apodization and Mertz phase correction. The 

spectra were recorded at resolutions of 0.2 and 0.5 cm-1: different pressures of CF3Br (Matheson, 
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purity > 99%) were used, both pure and mixed with nitrogen (SIAD, purity > 99%) to a total 

pressure of 101 kPa. The pressures were measured employing different capacitance vacuum gauges 

(Alcatel model ARD 1001, 1002 and 1003 with a full scale range of  1000, 100 and 10 mbar, 

respectively), each with a quoted manufacturer’s full scale accuracy of 0.15%. A 15 minute delay 

between filling of the cell and recording of the spectrum was adopted. The same experimental 

procedure for sample handling outlined in Section 8.2 for vinyl fluoride was adopted. 

 

 

99..22..  HHIIGGHH  RREESSOOLLUUTTIIOONN  SSPPEECCTTRRAA::  DDEESSCCRRIIPPTTIIOONN  OOFF  TTHHEE  22νν55  AANNDD  νν22  ++  νν33  BBAANNDD  

RREEGGIIOONNSS  

 

The CF3Br molecule is a prolate symmetric rotor belonging to the C3V symmetry point 

group. Therefore it has nine infrared active normal modes of vibration which are of either A1 (ν1 – 

ν3) or E (ν4 – ν6)  symmetry. A survey spectrum recorded at 0.5 cm-1 resolution is presented in 

Figure 9.1. 

The vibrations of A1 symmetry 

species are non-degenerate, 

whereas the modes having E 

symmetry are doubly 

degenerate. Since the relative 

abundances of the 79Br and 81Br 

isotopes is 50.7% and 49.3%, 

respectively, the two bromine 

isotopologues, CF3
79Br and 

CF3
81Br, are present in almost 

equal amounts. Therefore, the 

diode laser spectrum of natural 

CF3Br appears rather crowded, 

being also present features 

coming from several hot bands. 

Concerning the vibrations here investigated, the 2ν5 band is a hybrid band and it is composed of 

two components: 0
52ν  which is the parallel component, and 2

52 ±ν  which is the perpendicular 

component. Strictly speaking, the two components behave as two different bands which are coupled 
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Figure 9.1. Survey spectrum of CF3Br between 700 and 1300 cm-1. The 
strongest bands fall in this spectral region. Experimental conditions: P = 90.4 
Pa; T = 298 K; PLC = 13.4 cm; 0.5 cm-1 resolution. 



 

 

 

173

together by vibration-rotation interactions. On the other hand, being the combination of two parallel 

bands, the ν2 + ν3 vibration is in turn a parallel band. 

The region between 1090 and 1102 cm-1 is characterized by the ν1 band R branch and the 

parallel component of the 2ν5 

overtone, centred at about 1095 

cm-1. The proximity of the 

bromine isotopologue band 

origins (about 0.12 cm-1) causes 

a considerable overlapping of 

the K-structure. Furthermore, 

even at 200 K, the P branch 

transitions appear completely 

buried under the stronger 

absorption features of the near 

ν1 fundamental (band origins at 

1084.76902 and 1084.52168 

cm-1 for CF3
79Br and CF3

81Br, 

respectively). Only the spectrum recorded in a free-jet expansion has permitted the access to this 

spectral region, leading to the assignment of some P(J) multiplets, which otherwise are completely 

masked by the R(J) features of ν1 . Figure 9.2 reproduces the spectrum around 1093.6 cm-1, where 

the multiplets P(14 – 15) and P(13 – 14) of CF3
79Br and CF3

81Br, respectively, are located.  

The upper trace, referring to the 

200 K spectrum, clearly shows 

how the absorptions of the ν1 

fundamental completely cover 

the weaker 2ν5 transitions 

which, conversely, are evident 

in the colder (50 K) slit-jet 

spectrum. A similar spectral 

simplification is achieved in the 

Q-branch region, where 

transitions with high and low (J, 

K) values occur together. This 

effect can be observed in Figure 
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Figure 9.2. CF3Br spectrum around 1093.6 cm-1. Upper trace: spectrum 
recorded at 200 K showing the RK(J) multiplets of the ν1 fundamental. Lower 
trace: slit-jet spectrum illustrating the PK(J) lines of 2ν5

0 overtone. i refers to 
CF3

79Br, ii refers to CF3
81Br. 
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Figure 9.3. Portion of the 2ν5
0 Q branch around 1095.6 cm-1. Upper trace: 

spectrum recorded at 200 K. Lower trace: slit-jet spectrum; QK(J) bandheads 
labelled by i and ii refer to CF3

79Br and CF3
81Br, respectively. 



 

 

 

174

9.3: at 200 K (upper trace) the structure appears congested and partially masked by the R-branch 

transitions belonging to the ν1  fundamental, while in the supersonic expansion (lower trace) the 

two bandheads of CF3
79/81Br 2ν5 overtone are well separated.  

Figure 9.4 reports a wide portion of the free-jet spectrum: owing to the noticeable cooling, it closely 

resembles that of a parallel band, with a rather dense Q branch extending to lower wavenumbers 

and well-defined clusters separated by about 2B that constitute the P and R branches. 

In the same figure it is also shown the computed spectrum calculated employing the spectroscopic 

Hamiltonian parameters obtained in the present investigation: as it can be seen, there is a good 

agreement between the computed and experimental spectra.  No transitions belonging to the 

perpendicular component of 

this overtone band (i.e. 2ν 2
5
± ) 

have been observed in the range 

1090 – 1102 cm-1.  

The ν2 + ν3 combination 

band shows the typical parallel-

type structure: compared to the 

2ν5 overtone the density of lines 

is greater, because the term Δ(A 

– B), mainly ruling the K-

component positions within a 

given multiplet, is much 

smaller. Another difference is the presence of many hot bands, whose intensities are considerable 

even at low temperature: the strongest identified features belong to the ν2 + 2ν3 – ν3 and ν2 + ν3 + 

ν6 – ν6 hot bands of both the isotopologues. As shown in Figure 9.5 the absorptions due to ν2 + ν3 + 

ν6 – ν6 are still clearly observable in the spectrum recorded at 200 K. Indeed, the lower vibrational 

states of both the ν2 + 2ν3 – ν3 and ν2 + ν3 + ν6 – ν6 hot bands have at 200 K a relative Boltzmann 

population with respect to the ground state of about 16% and 22%, respectively. In Figure 9.5 it is 

also demonstrated how the absorptions due to hot bands are no longer observable in the slit-jet 

spectrum. Another example of the rotational cooling, achieved thanks to the supersonic expansion, 

is highlighted in Figure 9.6 by comparing the width of the Q branch of the ν2 + ν3 of CF3
79Br at 200 

K with that obtained in the supersonic jet.  
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Figure 9.4. Portion of the survey free-jet spectrum of the 2ν5
0 overtone. 

Upper trace: experimental spectrum. Lower trace: simulated spectrum (T = 
50 K, FWHM = 0.0007 cm-1). 
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Figure 9.5. A portion of CF3Br ν2 + ν3 band region near 1116 cm-1. Upper trace: 200 K spectrum. Lower trace: slit jet 
spectrum. Note how in the free jet spectrum the Q-branch of the ν2 + ν3 + ν6 –  ν6 hot band completely disappears. i 
refers to CF3

79Br, ii refers to CF3
81Br. 
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Figure 9.6. Portion of the ν2 + ν3 band of CF3Br around 1120.0 cm-1. Upper trace: spectrum recorded at 200 K, the 
QK(J) branch of CF3

79Br is indicated. Lower trace: slit-jet spectrum, RK(J) multiplets of CF3
81Br ν2 + ν3 are labelled. 
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99..33  RROOVVIIBBRRAATTIIOONNAALL  AANNAALLYYSSIISS  OOFF  22νν55  AANNDD  νν22  ++  νν33  

 

 The ro-vibrational analysis, which has led to the spectroscopic constants of both the 0
52ν  

and the ν2 + ν3 parallel bands, has been carried out by fitting the assigned transitions to the 

theoretical model represented by the Hamiltonian of equation 3.42. As fitting-prediction software, 

the Picket’s CALPGM package has been employed [236]: an uncertainty of 0.0007 cm-1 has been  

attributed to well resolved single lines, whereas for blended or scarcely resolved features, an 

uncertainty of 0.002 cm-1 has been assumed. 

The spectroscopic constants of the 0
52ν  band for the both the 79/81Br isotopologues obtained 

from the free-jet spectrum together with the molecular constants obtained by the whole set of data 

(i.e. slit jet and 200 K spectra) are presented in Table 9.1. The complete analysis has led to the 

identification of 375 and 353 lines for CF3
79Br and CF3

81Br, respectively.  

 
Table 9.1. Spectroscopic constants (cm-1) for the 2ν5

0 band of CF3Br a 

 CF3
79Br CF3

81Br 

 Slit jet Slit jet and 200 K Slit Jet Slit Jet and 200 K 

0ν~  1095.6276(2) 1095.62746(11) 1095.4955(2) 1095.49544(11) 

B' 0.0700141(9) 0.0700150(2) 0.0693629(8) 0.0693639(2) 

B" 0.069985970 b 0.069985970 b 0.069333439 b 0.069333439 b 

Δ(A – B) × 103 –0.532(2) –0.5314(12) –0.530(3) –0.5341(13) 

DJ' × 108 0.75(8) 0.794(9) 0.69(7) 0.788(9) 

DJ" × 108 0.8989 b 0.8989 b 0.8868 b 0.8868 b 

DJK' × 107 0.41(3) 0.440(5) 0.42(3) 0.375(6) 

DJK" × 107 0.43393 b 0.43393 b 0.42720 b 0.42720 b 

ΔDK × 108 - - - 0.22(7) 

N. of data 188 375 179 353 

σ × 103 0.35 0.46 0.59 0.55 

Jmax 32 53 33 53 

Kmax 15 33 15 36 
a Quoted errors refer to one standard deviation. 
b From Ref. [215]. 
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Although the overall agreement between experimental and computed spectra is good, concerning 

the K ≤ 3 transitions small discrepancies from the computed line positions have been observed in 

some of the multiplets analyzed of both the isotopologues. Because no irregularities have been 

found in the near ν1 and ν2 + ν3 bands, as possible perturber the 2
52 ±ν  vibration, with different 

rotational interactions, has been considered; however, the inclusion of the corresponding terms in 

the Hamiltonian did not improve the overall results. The lack of directly observed transitions of 
2

52 ±ν , as well as of other bands in the investigated region, has made a better characterization 

impossible: furthermore, this interacting scheme may be complicated by the interaction of 
2

52 ±ν  with other dark states represented by the ν5 + 2ν6 combination band. 

Regarding the ν2 + ν3 band, different spectral sections in the P, Q and R branches have been 

investigated and the K-structure in the P(J) and R(J) multiplets has been resolved and 

unambiguously assigned. Table 9.2 reports the spectroscopic parameters for the 79/81Br 

isotopologues obtained from the free-jet spectrum and those obtained by the whole set of data (slit 

jet together with 200 K spectra). The complete analysis has led to the identification of 347 and 635 

lines for CF3
79Br and CF3

81Br, respectively.  

As stated in the previous Section and shown in Figure 9.5, in the region between 1100 and 

1130 cm-1 the spectrum recorded at 200 K reveals several absorptions coming from different hot 

bands. The strongest identified absorptions  belong to  ν2 + 2ν3 – ν3  and  ν2 + ν3 + ν6 – ν6 : for  the  

hot  band  of ν6, the  perpendicular  component  is  too  weak  to  be  observed  and   therefore  the  

analysis has dealt only with the parallel component. Since  the  observed  features are  very  weak  

and   generally  the   K-structure is  unresolved, the   rotational   analysis  has   been   limited   to the  

J  peaks. The  analysis has  been  carried  out using  the polynomial  method, and the  J  peaks have  

been fitted  to  the  following   equation: 

 

ν~ (m) = A + B⋅m + C⋅m2 + D⋅m3       (9.1) 

 

with  

A = 0
~ν  

B = B ' +  B"  

C =  B '  −  B"   

D = − 2 (D '
J + D"

J ) 
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and m = −J for the P branch and J + 1 for the R branch. The  set of  spectroscopic  parameters  

obtained  for CF3
79Br  and  CF3

81Br  is  reported  in  Table  9.3. 

 
Table 9.2. Spectroscopic constants (cm-1) for the ν2 + ν3 band of CF3Br a 

 CF3
79Br CF3

81Br 

 Slit jet Slit jet and 200 K Slit Jet Slit Jet and 200 K 

0ν~  1120.0511(2) 1120.05110(10) 1118.0000(2) 1117.99994(10) 

B' 0.0698300(7)      0.06983037(10) 0.0691789(5) 0.06917932(8) 

B"  0.069985970 b 0.069985970 b 0.069333439 b 0.069333439 b 

Δ(A – B) × 104 –0.35(3) –0.383(4) –0.42(2) –0.444(2) 

DJ' × 108 0.87(5) 0.900(2) 0.87(3) 0.8890(12) 

DJ" × 108 0.8989 b 0.8989 b 0.8868 b 0.8868 b 

DJK' × 107 0.44(4) 0.4070(9) 0.41(2) 0.3989(6) 

DJK" × 107 0.43393 b 0.43393 b 0.42720 b 0.42720 b 

ΔDK × 108 0.24 c 0.25(3) 0.24 c 0.257(12) 

N. of data 86 347 99 635 

σ × 103 0.49 0.49 0.39 0.49 

Jmax 37 85 43 88 

Kmax 21 42 24 48 
a Quoted errors refer to one standard deviation. 
b From Ref. [215]. c From Ref. [231]. 
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Table 9.3. Spectroscopic constants (cm-1) for the ν2 + 2ν3 – ν3 and ν2 + ν3 + ν6 – ν6 hot bands of CF3Br a 

 CF3
79Br CF3

81Br 

 ν2 + 2ν3 – ν3 ν2 + ν3 + ν6 – ν6 ν2 + 2ν3 – ν3 ν2 + ν3 + ν6 – ν6 

0ν~  1120.9422(5) 1118.5611(4) 1119.1300(4) 1116.5180(4) 

B' 0.069767(6) 0.069703(6) 0.069131(6) 0.069047(7) 

B" 0.069934(6) 0.069861(6) 0.069298(6) 0.069204(7) 

(DJ' + DJ") × 108 1.84(14) 2.4(2) 2.44(15) 1.9(2) 

N. of data 63 50 52 48 

σ × 103 0.51 0.27 0.39 0.33 

Jmax 64 85 52 71 
a Quoted errors refer to three standard deviations. 
 

 

99..44..CCRROOSSSS  SSEECCTTIIOONN  MMEEAASSUURREEMMEENNTTSS  BBYY  MMEEDDIIUUMM  RREESSOOLLUUTTIIOONN  FFTTIIRR  SSPPEECCTTRRAA  

 

 The absorbance cross-section per molecule (cm2 molecule-1) of the sample, )~(νσ , has  been  

calculated from the measured infrared absorbance using the relationship given in Equation 7.3. The 

integrated cross section Gint (cm2 molecule-1 cm-1) is then derived from the absorbance cross section 

by means of equation 7.4. If two or more strongly overlapped bands without a clear separation are 

present in a given spectral interval, a single integration has been performed.  

At the beginning of the experiments some spectra have been recorded at two different 

resolutions (0.2 and 0.5 cm-1) for different pressures of both the pure CF3Br and its mixture with N2. 

A portion of the recorded spectra is given in Figure 9.7, where it is shown the ν2 band at different 

pressures of CF3Br. The validity of the Beer – Lambert’s law has been checked by plotting the 

integrated absorbance as a function of the sample pressure. A linear dependence has been observed 

over the whole concentration range used in the present investigation, as shown in Figure 9.8. The 

calculated band intensities, corresponding to the same concentration of the sample and different 

spectral resolution, have been found to be equal within the error of the measurements. Therefore the 

cross sections have been determined from the spectra of the pure gas measured at the resolution of 

0.5 cm-1, because they generally have a better signal-to-noise ratio, especially for the weaker 

absorption features.  
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Figure 9.7. Example of the series of spectra recorded at different CF3Br pressures for the determination of the 
vibrational cross sections. The reported band is the ν2 normal mode. Experimental details: T = 298 K, PLC = 13.4 cm, 
0.5 cm-1 resolution, CF3Br pressures are given in figure. 
 

The survey spectrum of bromotrifluoromethane in the range 450 – 2500 cm-1 reveals several 

absorption bands: by taking into account their different intensities, the infrared spectrum has been 

divided into three main regions. The first one is located between 450 and 715 cm-1 and it is 

characterized by the weak absorptions 

originating from the ν5  fundamental 

(at 548 cm-1) and the 2ν3 overtone (at 

700 cm-1): here the pressure of the 

sample has been kept in the range 10 

– 80 hPa.  The second range, located 

between 720 and 1250, shows two 

strong fundamentals (ν1 and ν4), a 

medium one (ν2) and some weak 

combination (ν1 + ν3, ν5 + ν6, ν2 + 

ν3 ) and overtone bands (2ν5): here 
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Figure 9.8. Linear dependence of the integrated absorbance on the 
pressure within the three integration regions corresponding to the 
strongest absorption. 
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the intensities have been measured with the pressure in the range 10 – 300 Pa. Finally, between 

1250 and 2500 cm-1 the spectrum contains many very weak features, corresponding to various 

combination and overtone bands: here the pressure has been varied in the range 10 – 80 hPa.   

The retrieved integrated absorption cross sections together with their statistical errors are 

reported in Table 9.4. The estimated experimental uncertainty is around 5.5%. For comparison, in 

Table 9.4 the most recent literature data [234, 235] are listed as well. In the range 720 – 1250 cm-1 

the integration limits have been chosen to facilitate the comparison among the different sets of data. 

In the other regions many bands appear not completely resolved and so the data refer to several 

bands grouped together: in the range 1360 – 1800 cm-1 the absorptions appear so strongly 

overlapped that the integration limit has been extended to measure their overall intensities. Figure 

9.9 shows the resulting averaged photo-absorption spectrum for some regions investigated in the 

present analysis.  

 
Table 9.4. Integrated absorption cross sections (10-18 cm molecule-1 cm) of CF3Br in the range 450 – 2500 cm-1 

INTEGRATED ABSORPTION CROSS SECTION INTEGRATION LIMITS 

[cm-1] This work a Drage et al. b Orkin et al. c 

720 – 790 5.6(2) 5.5 (8%) 5.45 (4%) 

1040 – 1150 77.8(1.4) 74 (7%) 79.7 (2%) 

1150 – 1250 78.7(9) 74 (7%) 78.3 (2%) 

500 – 600 0.380(4) 

670 – 715 0.379(2) 

810 – 880 0.150(2) 

1250 – 1360 1.249(5) 

1360 – 1800 0.624(17)  

1800 – 1910 0.177(8) 

1940 – 2000 0.131(3) 

2120 – 2240 0.125(7) 

2240 – 2340 0.717(10) 

2340 – 2480 0.65(2) 

 
 
 
 
a In parentheses standard deviations in units of the last 
significant digits are given. The estimated experimental 
uncertainties are 5.5% the reported value. 
 
 
b From Ref. [235]. The estimated uncertainty includes 
the statistical as well as the systematic uncertainty. 
 
 
c From Ref. [234]. Uncertainties are the 95% confidence 
intervals and do not include the systematic uncertainty. 
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99..55  EEVVAALLUUAATTIIOONN  OOFF  RRAADDIIAATTIIVVEE  FFOORRCCIINNGG  AANNDD  GGLLOOBBAALL  WWAARRMMIINNGG  PPOOTTEENNTTIIAALL  

 

The overlap between the infrared spectrum of a greenhouse gas (GHG) and the portion of 

the blackbody spectrum  emitted by the Earth’s surface that is not absorbed by naturally occurring 

atmospheric gases is referred to as the radiative forcing capacity of the greenhouse gas. The 

radiative forcing is therefore the amount of energy per unity area per unit time absorbed by a 

greenhouse gas. In the absence of the greenhouse species, this energy would be lost into space. 

However, the greenhouse impact of a gas also depends on its atmospheric lifetime. For these reason, 

the global warming potential index, GWP, has been introduced to quantify the greenhouse capacity 

of a gaseous compound and therefore its ability to contribute to the global warming. The GWP is 

the radiative forcing weighted by the residence time of the gas in the atmosphere.  

Since halocarbons strongly absorb infrared radiation between 500 and 1500 cm-1, they are 

potentially strong greenhouse gases. Their greenhouse capacity is magnified by at least two factors. 

First, many of their absorption bands lie in the atmospheric window region between 8 and 12 μm 

(800 – 1200 cm-1) where there is a minimum in the atmospheric absorption. Second, the majority of 

halocarbons are molecules which contain C—F bonds. The vibrational transitions involving this 

chromofore generally have large absorption cross sections. In addition, the C—F bond is relatively 

unreactive in the oxidizing environment of the atmosphere and therefore fluorinated halocarbons 

have long atmospheric residence lifetimes. 

Several models for the determination of the radiative forcing have been developed. These 

models are used to evaluate the upward, downward and net irradiances at each level in a model 

atmosphere which is assumed as a standard. This atmosphere is parameterized by the vertical 

profiles of pressure, temperature, atmospheric-constituents-mixing-ratio and amounts of clouds at 

different positions comprised between the sea level and about 10 mbar. These models are usually 

computationally expensive and a radiative transfer model has to be defined.  

Pinnock et al. [237] have proposed a simple method for the evaluation of the instantaneous 

radiative forcing: they used a narrow band radiative forcing model to calculate the instantaneous, 

cloudy sky, radiative forcing per unit cross section as a function of wavenumber for the global 

annual mean Earth sky. The radiative forcing per unit cross section for the average Earth sky, F, is 

simulated by subdividing the spectral interval 0 – 2500 cm-1 in 250 bands each of width 10 cm-1 and 

then considering the effects for an increase of a 1-ppbv in the concentration of a GHG. The resultant 

radiative forcing, F, is shown in Figure 9.10.  

By using this narrow-band radiative forcing model it is possible to estimated the radiative 

forcing of a GHG from the integrated absorption cross sections measured from the infrared 
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spectrum of the involved GHG. The radiative forcing, RF, in Watts per square meter for a 1-ppbv 

increase is given by 

 

∑
=

=
N

i
ii

iFRF
1

σσ          (9.2) 

 

where i
iF σ , expressed in W m-2 (cm-1)-1 (cm2 molecule-1)-1, is the radiative forcing per unit cross 

section per wavenumber in the spectral interval i and iσ  is the absorption cross section in cm2 

molecule-1,  averaged over the spectral interval i. 
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Figure 9.9. Averaged  absorption  cross sections (0.5 cm-1 resolution, T = 298 K) of CF3Br  in  the region  500 – 2500 
cm-1. 
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The assumption for this model is that the concentration of a GHG in the atmosphere is small, so that 

its absorption can be considered optically thin. Since halocarbons do satisfy this requirement, their 

radiative forcing can be calculated by using equation (9.2).  

 It has been pointed out that the contribution of a GHG to the global warming is expressed by 

the GWP and the latter depends on both the radiative forcing and the atmospheric lifetime of the 

GHG. More precisely, the Global Warming Potential parameter is defined as the potential of 1 kg of 

a compound to contribute to radiative forcing relative to that of 1 kg of a reference compound [235, 

238]: 
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where RF is the radiative forcing, m is the molecular mass in g mol-1, τ is the atmospheric lifetime 

in years, and TH is the time horizon. As reference gas, either CO2 or CFC-11 (Freon-11, CFCl3 ) are 

used. 

A mean value of 0.300 W m-2 ppbv-1 (with an estimated accuracy of 5.5% and a standard 

deviation of 2%) for the radiative forcing of CF3Br has been obtained by adopting the above 

described narrowband model and considering all the data in the range 450 – 2500 cm-1. This result 

is in very good agreement with the 

value of 0.31 W m-2 ppbv-1 given by 

Drage et al. who took into account only 

the absorptions between 720 and 1250 

cm-1. This occurs since this region is 

characterized by the strongest bands of 

CF3Br, as it can be seen from Figure 

9.9.  Consequently, the maximum 

radiative forcing of CF3Br is within this 

spectral interval. This is shown in 

Figure 9.10 where the photo-absorption 

cross section spectrum is superimposed 

to the narrow band radiative forcing: the strongest CF3Br absorptions fall in the regions of 

maximum radiative forcing. 
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Figure 9.10. Narrow band radiative forcing F (orange dashed line) 
for average Earth sky and averaged absorption cross section Gint 
(violet solid line) of CF3Br (0.5 cm-1 resolution, T = 298 K). 
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The GWP of CF3Br has been calculated by taking carbon dioxide as reference gas for time 

horizons of 20, 100 and 500 years. The reason for calculating the GWP at different time horizons is 

twofold [234]: (i) for some environmental feedbacks it is important to evaluate both the short and 

long term effects of a GHG; (ii) the degradation process of CO2 on a global scale is complicated by 

the exchange among different reservoirs and hence it cannot be described correctly by a single 

atmospheric lifetime. The lifetime and the radiative forcing for CO2 have been taken from Ref. 

[235] and are 150 years and 1.1⋅10-5 W m-2 ppb-1, respectively. A period of 65 years has been taken 

for the atmospheric lifetime of CF3Br [235]. The obtained GWPs are listed in Table 9.5, where they 

are compared with the most recent literature values. The agreement between the GWP here obtained 

with those of Drage et al. [235] is very satisfactory, whereas there are large discrepancies with 

respect to those published by Orkin et al. [234]. These results reflect the strong influence of the 

applied radiative transfer models on the evaluation of the radiative forcing. Indeed, while the 

present determinations as well as those of Drage et al. are based on the narrow band model, Orkin et 

al. used the experimentally measured spectrum of the outgoing Earth’s radiation obtained from the 

NIMBUS-4 satellite at a latitude of 15° N [236]. 

 
Table 9.5. Global warming potentials (×1018) of CF3Br for time horizon of 20, 100 and 500 years. 

Time Horizon [years] This work Drage et al. [235] Orkin et al. [234] 

20 7.2 7.7 5.5 

100 5.5 5.8 5.0 

500 3.5 3.7 1.9 

 

Finally, some considerations about the accuracy are probably needed. The narrow band 

model relies on some approximations which limit its accuracy when compared with line-by-line 

calculation of the radiative forcing. On the other hand, the line-by-line approaches are 

computationally expensive and require accurate spectroscopic line parameters which are not always 

available. In their work, Pinnock et al. stated that the radiative forcing obtained with the narrow 

band model agree within ±0.3% with the radiative forcing computed by a more complex 

formulation of the radiative transfer model. One of the biggest source of uncertainty is probably 

represented by the atmospheric lifetimes. Indeed, not only the decays of the gas concentrations are 

modelled as a first order kinetic which may be inappropriate for some gases, but the available 

values have a wide variability: the lifetime of CF3Br varies from 65 years to 110 years [235]. By 

considering the estimated accuracy of the radiative forcing here determined and its deviations from 
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the values given by Drage et al., it can be stated than the accuracy of the measurements can be taken 

in the range 6 – 10%. 
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1100..  FFrreeqquueennccyy  DDoowwnn--CChhiirrppeedd  QQCCLL  

SSppeeccttrroossccooppyy::  TTiimmee  DDeeppeennddeenntt  

MMeeaassuurreemmeennttss  ooff  CCoolllliissiioonnaall  PPrroocceesssseess  iinn  aa  

DDiicckkee  NNaarrrroowweedd  SSppeeccttrraall  LLiinnee  ooff  

WWaatteerr  VVaappoouurr    
 

 

 One of the most widespread and useful applications of conventional high resolution infrared 

spectroscopy, trace gas detection, relies on the use of line shape functions derived from 

measurements of molecular absorption spectra [19]. An accurate knowledge of the line parameters 

is not only essential for reliable atmospheric retrievals of gas concentrations, but may also be 

employed to infer information about the intermolecular interactions driving the inelastic collisional 

relaxation processes. Within this approach the absorption lines are fitted in the frequency, or inverse 

wavelength, domain to theoretical line shape functions, which account for different physical 

processes that occur during the scattering event. The model that best reproduces the experimental 

measurements is then assumed to offer the most likely explanation of the collision dynamics. In this 

way, phenomena such as confinement narrowing [55], speed dependent cross sections [51, 240 – 

243] and line mixing [53, 244] have been studied. Information about intermolecular potentials is 

gained by comparing the retrieved pressure broadening coefficients with those computed by semi-

classical [65, 66, 68, 69] or quantum mechanical calculations [246 – 247]. 

 On the other hand, time dependent spectroscopic techniques have been demonstrated to be 

more appropriate tools for studying molecular relaxation rates. With the advent of the laser, 

transient phenomena analogous to those observed in magnetic resonance experiments [76] were 

observed in the medium infrared and near-infrared regions. These coherent transient effects not only 

depend upon the dynamics of the radiation – matter interaction, but can also be used to study 

collisional decay processes [20]. By using microwave and infrared – microwave double resonance 
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spectroscopy, Oka and collaborators [21] studied energy transfer and derived selection rules for the 

collision induced transitions.  The effects of MJ changing collisions [247] and of velocity changing 

collisions [248] were also  studied. More recently, Rohart et al. [60] investigated the velocity 

dependence of the collisional cross sections of methyl fluoride perturbed by foreign gas collisions. 

They proposed that the most suitable approach was the use of a time domain speed-dependent Voigt 

profile, based on a phenomenological description of the speed dependence. 

 The present chapter is intended to demonstrate that the frequency down-chirped radiation 

emitted by a Quantum Cascade laser, used in the intra-pulse method, is capable of giving 

complementary information about collisional processes in gases to that obtained by the methods 

outlined above. This builds upon the way in which such a spectrometer may be used to create and 

study saturation [80], molecular alignment [81] and transient gain [121]. One of the problems which 

may be studied in this way is the collisional narrowing of some of the absorption lines of water 

vapour.  

Understanding the mechanism of the collisional narrowing of the few water lines which 

exhibit oblate top behaviour has been a longstanding challenge in water spectroscopy, since the 

earliest experiments at Lincoln Laboratory of MIT [249 – 252]. These unusual absorption lines 

show a significant narrowing of the pressure broadened half width. This narrowing has been mainly 

attributed to confinement narrowing, which can be accompanied by the speed dependence of the 

line parameters [253 – 255]. The Dicke narrowing of the 

absorption lines of the ν2 band of water is observed to 

mostly affect ro-vibrational transitions having high J and 

Kc values, i.e. when the rotation is mainly about the C 

axis, which  lies perpendicular to the molecular plane, as 

sketched in Figure 10.1. 

 The first intra-pulse observation of the unusual 

behaviour of  the  line broadening of 150,15 ← 161,16 and 

151,15 ← 160,16 doublet of water vapour ν2 fundamental 

band was made by McCulloch et al. [80]. This doublet is 

centred at 1276.6262 cm-1 and appears unresolved at the instrumental resolution, since the 

separation between the K components is about 1.8⋅10-3 cm-1. In the present Chapter the time 

dependence of the collisional broadening of this unresolved doublet is investigated, by making use 

of the change in the chirp rate which occurs in a QCL excited with a long duration current pulse. 

The aim is twofold: (i) demonstrating the chirp rate dependence of the collisional cross sections; (ii) 

A

B

C

 
Figure 10.1. Water molecule and orientation 
of the principal axes of inertia.  
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showing the type of information which can be gained by using this experimental technique when 

applied to the study of molecular relaxation processes.  

 

 

1100..11..  EEXXPPEERRIIMMEENNTTAALL  MMEETTHHOODD  AANNDD  DDAATTAA  IINNVVEERRSSIIOONN  

 

 The Quantum Cascade laser spectrometer used for the measurements has been described in 

Section 5.4. The distributed feedback laser, operating around 7.8 μm, was excited by a rectangular 

current pulse of 1.5 μs duration, and at a repetition rate of 2.5 kHz. The substrate temperature of the 

QCL was maintained at a constant value by a Peltier thermoelectric cooler.  

 The operation of the spectrometer relies on the rapid local heating induced in the QCL by 

the current pulse, which changes the refractive index and the spacing of the built-in distributed 

feedback grating, and generates an optical pulse with a frequency down-chirped spectrum. The 

tuning range and chirp rate ( )dtdν  of the frequency swept output from the laser were determined 

by the use of a solid Ge etalon with a free spectral range of 0.0195 cm-1. The rate of the frequency 

down-chirp decreases along the temporal profile of the pulse, it varies in a non-uniform fashion and 

depends on the amplitude of the current pulse, its repetition frequency, and the substrate 

temperature. Figure 10.2 shows the wavenumber tuning and the chirp rate of the employed QCL, 

for an initial temperature of –25 °C and a drive voltage of 14.5 V.  

 By changing the base 

temperature of the QCL, it is possible 

to change the position of the centre of 

the unresolved 150,15 ← 161,16 and 

151,15 ← 160,16 doublet within the 

tuning range of the laser. Since the 

laser down-chirp rate decreases 

throughout the duration of the pulse 

(as exemplified in Figure 10.2), with 

the fastest chirp rate occurring at the 

beginning of the pulse and the 

slowest one at the end, this allows the 

absorption line to be interrogated at different chirp rates. Three different chirp rates were chosen by 

changing the injection current and the initial temperature of the QCL. These chirp rates, 

corresponding to 20, 35 and 75 MHz ns-1, will be referred to as slow, medium and fast, respectively. 
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Figure 10.2. Wavenumber tuning and chirp rate of the 7.8 μm QCL 
employed in the experiments operating at -25 °C and 14.5 V (see 
Table 10.1). 
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The experimental conditions adopted to obtain the different chirp rates are summarized in Table 

10.1. The unresolved 150,15 ← 161,16 and 151,15 ← 160,16 K doublet at the three chirp rates is shown 

.in Figure 10.3. As the chirp rate is varied, the time taken by the electromagnetic radiation to sweep 

through the inhomogeneously broadened spectral line varies from about 6 ns at slow chirp rate to 

about 1.5 ns at fast chirp rate,  thus changing the time scale of the experimental observations. 

For each chirp rate, spectra of the Dicke narrowed absorption line perturbed by helium, 

neon, argon, nitrogen and carbon dioxide were acquired. In all the experiments, the water vapour 

partial pressure were set to 2.5 ± 0.2 Torr, and the foreign gas pressures were increased from 2 up to 

a maximum of 600 Torr. The path length adopted for the experiment was 37 m, corresponding to 76 

passes through the cell. Each of the observed spectra was the result of an average of 8000 intra-

pulse spectra recorded in consecutive pulses. 

 
Table 10.1. Experimental conditions adopted to record the water absorption line at slow, medium and fast chirp rates 

 dtdν  [MHz ns-1] Laser Temperature [°C] Drive Voltage [V] 

Slow chirp 20 –25.0 13.0 

Medium chirp 35 –25.0 14.5 

Fast chirp 75 –15.0 15.5 

Pulse duration: 1.5 μs; Repetition rate: 2.5 kHz 

 

The experimental absorption features were fitted to a Voigt profile, by employing the Visual 

Line-Shape Fitting Program presented in Chapter 6. During the fits, the Doppler half width was 

fixed to a value determined from the low pressure spectrum of pure water. According to equation 

7.1, this effective Doppler half width actually represents the molecular Doppler half width 

convolved with the instrumental function, which was assumed Gaussian. From the effective 

Doppler half widths, eff
Dγ , the instrumental line widths, QCL

Dγ , were derived. They are listed in Table 

10.2, together with the theoretical values predicted by means of the uncertainty relation, equation 

5.10. The agreement among the two sets of data is very good, thus indicating that the instrumental 

function is really a Gaussian (or nearly) distribution.  
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Figure 10.3. Dicke narrowed water line recorded at different chirp rates:  (―) 20 MHz ns-1, (--) 35 MHz ns-1 and (-⋅-) 
75 MHz ns-1. Panel (a) shows the spectra recorded by the detector, and panel (b) shows the corresponding transmission 
spectra. In order to illustrate the frequency down-chirp during the pulse, the etalon fringe pattern is also shown. 
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Table 10.2. Effective Doppler half widths obtained at the different chirp rates, and comparison of the corresponding 
QCL instrumental line widths with the theoretical predictions of the uncertainty relation. 

Chirp Rate eff
Dγ  [10-3 cm-1] fitQCL,

Dγ  [10-3 cm-1] QCL,theory
Dγ  [10-3 cm-1] 

Slow 2.6(2) 1.8(2) 1.6 

Medium 2.8(3) 2.0(3) 2.1 

Fast 3.7(3) 3.2(3) 3.1 

 

The water vapour self-broadening contribution to the line width was obtained from the 

spectrum of pure water vapour, and was taken into account in the retrievals of the foreign gas 

pressure broadening coefficients. Even if the Voigt profile is not fully suited to fit the absorption 

spectral lines, which are  partially asymmetric especially at lower pressures, it is important to note 

that the aim of the experiment is not a classical determination of  spectroscopic line parameters, as 

that carried out for sulphur dioxide and vinyl fluoride. Rather, the interest is focused in the relative 

value of the pressure broadening coefficients at different chirp rates. Under these circumstances the 

deviations from the Voigt profile appear to be similar at the various chirp rates, and hence the 

resulting retrieved coefficients are consistent with each other. Further, this approach also leads to a 

direct comparison with existing literature values.  

The pressure broadening coefficients were determined as slope of the straight lines which 

result when the best-fit half widths are plotted against the gas buffer pressure. When narrowing 

occurred, only the higher pressures points corresponding to a linear relation  between the half width 

and the buffer gas pressure were employed for deriving the pressure broadening coefficients. 

During these fits the data points were weighted on the basis of their error. 

  

  

1100..22  RRAAPPIIDD  PPAASSSSAAGGEE  SSIIGGNNAALLSS  AANNDD  CCHHIIRRPP  RRAATTEE  DDEEPPEENNDDEENNCCEE  OOFF  CCOOLLLLIISSIIOONNAALL  

PPRROOCCEESSSSEESS::  WWAATTEERR  VVAAPPOOUURR  

 

Collisions with Neon and Argon 

 

 The pressure broadening coefficients, retrieved for all the buffer gases at the investigated 

chirp rates, are listed in Table 10.3. It should be pointed out that, although the asymmetric 

absorption lines were fitted using  a symmetrical function, the present data are close to those 

determined by Eng et al. [250, 252] by tunable lead salt diode laser spectroscopy. Indeed, for the 

transitions 160,16 ← 151,15 and 161,16 ← 150,15 (which are the R-branch equivalent of the P-branch 



 

 

 

193

transitions here investigated) they give a pressure broadening parameter (full width half maximum) 

of 0.56(6) MHz Torr-1 [252] and 0.26(2) MHz Torr-1 [250] for nitrogen and argon, respectively. 

This partly justifies the approach of fitting the lines on the basis of the simple and computationally 

inexpensive Voigt profile. 

Within the group of investigated collision partners, collisions of water with the noble gases argon 

and neon induced similar behaviour. The main feature of their interaction with water is a strong 

narrowing of the absorption line, which is mainly due to the effect of the velocity changing 

collisions. The narrowing is shown in Figure 10.4 for collisions with Ar, at slow and fast chirp 

rates. Similar behaviour is observed for Ne. As can be seen, a very pronounced decrease of the half 

width, with respect to that of pure water vapour, occurs as a consequence of the addition of the rare 

gases. The narrowing persists up to a pressure of about 270 Torr. The resultant line width has a 

minimum between 75 and 200 Torr, which is in a good agreement with the pioneering observations 

of Eng and co-workers [250]. Indeed, they stated that a minimum is reached in the pressure range 

between 50 and 200 Torr. In particular, from Figures 2 and 3 of Ref. [250], it can be deduced that 

for Ar the minimum occurs at about 140 Torr. In this case, at slow chirp rate the minimum is 

observed at 133 Torr. The good agreement between the present experimental observations and the 

measurements made at MIT confirms the reliability of the retrieved data, thus excluding the effects 

of strong instrumental artefacts.   

 
Table 10.3. Obtained pressure broadening coefficients, HWHM, of the Dicke narrowed water line, at the investigated 
chirp rates for the various collisional partners 

Broadening Coefficient [MHz Torr-1] Chirp Rate 

[MHz ns-1] He Ne Ar N2 CO2 

20 0.241(9) 0.071(11) 0.114(5) 0.206(7) 1.01(3) 

35 0.143(4) 0.047(5) 0.088(2) 0.204(7) 1.14(3) 

75 0.174(4) 0.043(5) 0.086(4) 0.301(7) 1.15(4) 

 

 This suggests that it is possible to use this instrumental method to explore the role played by the 

chirp rate on the interaction between a molecular gas and the chirped laser radiation, and to 

determine how this interaction is affected by collisional processes and transport effects. Figure 10.4 

clearly displays the dependence of the collisional cross sections and the dynamics of the 

intermolecular interactions upon the chirp rate, and hence on the time taken to sweep through the 

absorption line. It is evident that the effect of the velocity changing collisions is more pronounced at 

slow chirp rate and in the low pressure regime. On the other hand, in the high pressure regime, 

where the normal pressure broadening behaviour is recovered, the slow chirp measurements also 
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show efficient line broadening. This is due to the larger number of collisions between water and 

buffer gas which take place at slow chirp rate, i.e. when the observation time is longer.  

From Table 10.3 it can be seen that the neon broadening coefficients are smaller than those 

of argon, i.e. Ar exhibit less narrowing than Ne. Nevertheless, the effectiveness of the narrowing is 

expected to increase as the ratio ba mm  decreases, where ma and mb indicate the masses of the 

absorber and the buffer gas, 

respectively. In other words, it 

is more likely that heavier 

collisional partners cause a 

change in the velocity of the 

target molecule. A possible 

explanation for the observed 

behaviour is the greater 

polarizability of the argon atom 

compared to that of neon, as 

also pointed out by Pine in HF 

broadening measurements [55]. 

As a result, the dipole – induced 

dipole interaction, which is 

mainly responsible for the H2O 

– rare gas atom collisions [21], 

is stronger for Ar than for Ne.   

 A narrowing of the inhomogeneous broadening due to collisions can be related to the 

macroscopic polarization, as demonstrated by Rohart et al. [60] and Köhler and Mäder [256]. In 

particular, Rohart et al. showed that, when the Doppler broadening is reduced, molecules remain 

polarized for a longer time. In the present frequency down-chirped experiments, the rapid sweep 

through an absorption line induces a polarization, which interferes constructively with the laser field 

to generate a delayed pulse of amplified emission. In the experiments on water – neon broadening it 

has been observed that  the magnitude of  this pulse is directly related to the degree of narrowing, as 

shown in Figure 10.5. A similar effect occurs when argon is used as a collision partner. The 

amplitude of the emission peak progressively increases as the pressure of rare gas is raised. This 

gain signal reaches a maximum at a total pressure of about 50 Torr, then it starts to decrease owing 

to collisional damping. This represents a clear experimental observation of how the reduction of the 

inhomogeneous broadening is linked to the macroscopic polarization of the gas. Moreover, since 
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Figure 10.4. Plot of the water line half width with increasing Ar partial 
pressures. Notice the strong narrowing affecting the line for pressures smaller 
than 250 Torr. ( ) Slow chirp rate; ( ) Fast chirp rate. The dashed second 
order polynomial fits are displayed to help the recognition of the data trend. 
The medium chirp results are not displayed for clarity.  
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the gas pressure at which the maximum gain occurs does not correspond exactly to the pressure at 

which the minimum width is reached, it is clear that the collision processes do not affect the 

constructive polarization interference leading to gain, and the line width of the absorptive part of the 

signal, identically. 

 

1276.615 1276.620 1276.625
-0.01

0.00

0.01

0.02

1276.60 1276.61 1276.62 1276.63 1276.64 1276.65

0.00

0.02

0.04

0.06

0.08

A
bs

or
ba

nc
e

Wavenumber [cm-1]

 PH
2
O = 2.38 Torr

 PNe = 2.62 Torr
 PNe = 23.7 Torr
 PNe = 47.7 Torr
 PNe = 75.5 Torr
 PNe = 99.3 Torr

A
bs

or
ba

nc
e

Wavenumber [cm-1]

 
Figure 10.5. Increase of the transient emission as the Ne pressure is increased up to 47.7 Torr. The emission signal 
then starts to decrease as the Ne pressure is increased further. The magnitude of the emission peak is strictly related to 
the macroscopic polarization of the gas sample.  
 

 

Collisions with Helium and Nitrogen 

 

 The collisional effects of neither the lightest rare gas helium, nor molecular nitrogen, 

resemble those produced by collisions of water with argon or neon. The collisions of either helium 
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or nitrogen with water produce very little narrowing, whereas their primary effect is to broaden the 

absorption line. The trend of the pressure broadened collisional half width is reproduced in Figure 

10.6 (a) and (b) for helium and nitrogen, respectively. When nitrogen is used, a very small line 

narrowing is produced by velocity changing collisions, but at nitrogen pressures greater than 52 

Torr the line width increases linearly with the pressure of N2. With helium, the pressure broadening 

coefficient of water decreases when moving from a slow to a medium chirp rate. This effect has 

been attributed to the reduction in the observation time. The cause for this greater decrease in the 

pressure broadening for helium than for nitrogen has been ascribed primarily to the difference in the 

intermolecular interaction potentials: that between helium and water may be described as a dipole – 

hard sphere interaction, whereas that  between water and nitrogen is a stronger dipole – quadrupole 

interaction. In a very simplified picture, the helium atoms move with Brownian-like motion, while 

nitrogen molecules follow a diffusive motion, whose driving force is the attraction by water 

molecules. As a result, when the time of observation is shortened, the number of collisions between 

water and helium is far more reduced than those between water and nitrogen, as the electrostatic 

interaction between nitrogen and water molecules drive their motion, whereas helium atoms move 

almost randomly. For both He and N2 collisions with water, the pressure broadening coefficients 

increase on changing from medium to fast chirp rate. This may be due to the short sampling time, 

resulting in a selection of  the higher velocity atoms or molecules, with resultant more energetic 

collisions which produce faster relaxation rates. 
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Figure 10.6. Collisional half-width as a function of the buffer gas pressure: (a) helium – water collisions; (b) nitrogen – 

water collisions. ( ) slow chirp rate; ( ) medium chirp rate; ( ) fast chirp rate. 

 

 The difference between the intermolecular interaction potentials of water with nitrogen and 

helium may also help to explain why, at slow chirp rate, collisions between water and helium are 
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more effective in broadening the absorption line of water than those with nitrogen. At slower chirp 

rate the number of collisions increases, but the scattering process between water and helium is of 

shorter range than that between water and nitrogen. Oka [21] pointed out that, when such short 

range collisions occur, the electric dipole-like propensity rules for collision induced transitions are 

no longer valid, and a wider range of collision-induced transitions may occur. As a result, a greater 

number of internal states, into which the absorber molecule can be scattered, becomes available. It 

should also be pointed out that for these collisions the short-range repulsive force may play a 

significant role [21]. 

 

 

Collisions with Carbon Dioxide 

 

 Collisions between water and carbon dioxide produce a very different effect on the shape of 

the absorption line of water. Besides being the most efficient collisional partner of those broadening 

the spectral line of water, it is also the only one able to cause sufficient broadening that a 

symmetrical line shape is measured when relatively low pressures of CO2 are used. An example of 

this effect is shown in Figure 10.7. Further, when CO2 is used as buffer gas, the absorption line 

shows no collisional narrowing, and the pressure broadened half width increases linearly with 

pressure, as shown by Figure 10.8.  

The CO2 pressure 

broadening coefficients are 

on average four times 

greater than those obtained 

for N2. In addition, CO2 is 

very efficient in killing the 

rapid passage effects with a 

small amount of added gas, 

i.e. in the pressure region 

from 35 – 50 Torr. Above 

this pressure range, the 

rapid passage distortion of 

the line shape is 

completely suppressed, and 

the line shape can be well 
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Figure 10.8. Linear increase of the line width of the water line in the CO2 
broadening experiments. ( ) Slow, ( ) medium, ( ) fast chirp rate. 
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described by the Voigt function, as illustrated in Figure 10.7.  
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Figure 10.7. Symmetric line shapes recovered when CO2 is used as buffer gas. (◦) Experimental spectrum: OH2

P  = 

2.54 Torr, 
2COP  = 32.7 Torr, dν/dt = 35 MHz ns-1, path length = 37 m; (―) Voigt fit; (―) residuals. The residuals 

have been displaced for clarity. The water line and the carbon dioxide transitions are indicated, the lines marked by an 
asterisk are due to CH4 impurities contained in the CO2 sample. A zoom of the water vapour absorption line is shown 
in the lower trace. 
 

This behaviour is very unusual for the spectra obtained with a QCL spectrometer using the intra-

pulse method [117]. Since the absorption spectrum of the 18O12C16O isotopomer was measured as 

well [122] (see Figure 10.7), it has been possible study the effects of the collision interaction on 
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both the perturber and the perturbed molecules. The unusual effects of CO2 as collisional partner 

were also detected in nitrous oxide broadening experiments, whose detailed analysis is the subject 

of the next chapter. 

A comparison of the effect of about 22.5 Torr of a buffer gas on the shape of the water 

absorption line is given in Figure 10.9, for each of the collisional partners.  
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Figure 10.9. Effect of about 22.5 Torr of the different foreign gases on the water absorption line. While N2 (c), He (d), 
Ne (e) and Ar (f) play a similar role on the shape of the absorption, which remains unchanged respect to that of pure 
water (a), CO2 (b) is very effective in quenching the rapid passage effects and recovering of a symmetrical pressure 
broadened line shape. 
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As can be seen, despite their different pressure broadening coefficients, collisions with N2, 

He, Ne and Ar (panels c – f) produce very similar effects on the overall line shape, which remains 

almost unchanged from that of pure water (panel a). In contrast, carbon dioxide (panel b) produces a 

very efficient quenching of the asymmetries caused by rapid passage.  

The very strong differences observed between carbon dioxide and all other investigated 

gases, in particular nitrogen, cannot be simply explained in terms of the effects normally included in 

the description of their intermolecular interactions. Indeed, in the standard treatment of pressure 

broadening, both CO2 and N2 interact with water mainly through dipole – quadrupole interaction 

[257], and hence they are expected to play similar collisional effects on the absorption line shape 

and on the relaxation rates of water. Based on these results, given the analogies among the 

collisional effects of  nitrogen and rare gases, the unusually effective interactions between water 

and carbon dioxide cannot be purely related to an increase of the quadrupole moment of the foreign 

gas, when nitrogen is replaced by carbon dioxide.  

 Such an explanation may be satisfactory when static techniques, such as TDL or FTIR 

spectroscopy, are used, but not when the effects of the time dependent processes are measured 

directly. In the present case, the time dependence of the relaxation processes, measured by using 

different chirp rates, has allowed the measurements of intermolecular collision effects which cannot 

be understood from the standard interaction potentials. A more plausible explanation may involve a 

very efficient energy transfer between colliding molecules, which can be caused by scattering into a 

large number of ro-vibrational levels of carbon-dioxide. 

In summary, it has been not only demonstrated the time dependence of the collisional cross 

sections and the related relaxation processes, but also information on the intermolecular and 

transport processes, responsible for some unusual collisional effects shown by the Dicke narrowed 

absorption lines, has been gained. 
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1111..  FFrreeqquueennccyy  DDoowwnn--cchhiirrppeedd  QQCCLL  

SSppeeccttrroossccooppyy::  TTiimmee  DDeeppeennddeenntt  

MMeeaassuurreemmeennttss  ooff  NNiittrroouuss  OOxxiiddee  aanndd  

CCaarrbboonn  DDiiooxxiiddee  CCoolllliissiioonnaall  RReellaaxxaattiioonnss    
 

 

 In the previous chapter, the results obtained for the 150,15 ← 161,16 and 151,15 ← 160,16 Dicke-

narrowed doublet of the ν2 band of water vapour have shown that the time dependence of the 

collisional processes may be investigated by the use of the frequency down-chirped electromagnetic 

radiation emitted by a long pulse duration QCL.  

In the present Chapter the frequency down-chirped measurements are extended to the ro-

vibrational lines of the ν1 band of nitrous oxide perturbed by a range of collision partners. The 

investigation involves a demonstration of the chirp rate dependence of the collisional cross sections, 

and also the study of the molecular relaxation processes which affect nitrous oxide. The ν1 band of 

nitrous oxide is a simpler system than water, as the complications arising from the motional 

narrowing are not present, and the l-doubling, equivalent to the K doubling in water, only occurs in 

the states in which the ν2 bending vibration is excited.  

Another difference between transitions studied in nitrous oxide and water is that the 

transition dipole moments of the ν1 ro-vibrational transitions of nitrous oxide are much larger than 

those of the Dicke narrowed lines of water. As a result, the N2O molecules interact strongly with the 

radiation field produced by the QCL. The resulting rapid passage signals observed in pure nitrous 

oxide, and with nitrogen as collision partner, have previously been described and analyzed [81]. In 

the present measurements, one of the most interesting collision partners among those that have been 

used, carbon dioxide, is a linear molecule of nearly the same mass and similar rotational constants 

as nitrous oxide. As observed in water vapour broadening experiments, it shows a completely 

different behaviour from the other collision partners, inducing very efficient broadening of the 

absorption lines of nitrous oxide and causing symmetrical line shapes to be observed at low partial 
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pressures  of CO2. The effects of carbon dioxide may be inferred by studying the weakly allowed 

transitions [258] of the unsymmetrical isotopomer 18O12C16O, which interleave the absorption lines 

of N2O. In order to demonstrate the difference in overall intensity between the absorption lines in 

the ν1 band of nitrous oxide and those of the 10002-0000117 band of 18O12C16O, and their ability to 

couple to the radiation field, total band intensities and transition dipole moments of both Fermi 

resonance pairs of carbon dioxide and nitrous oxide are given in Table 11.1. For sake of 

completeness and comparison purposes, the corresponding properties of  ν2 band of water are also 

given. The carbon dioxide bands denoted as 10001 and 10002 form a dyad of levels, which are 

mixtures of the ν1 fundamental and 0
22ν  overtone18 [2]. These are strongly coupled through Fermi 

resonance. 

 
Table 11.1. Total band intensities  and transition dipole moments for the absorption bands of  nitrous oxide, carbon 
dioxide and water vapour in the 8 μm region 

Molecule Isotope a Band b Band centre [cm-1] Sv [cm-2 atm-1] R  [D]c 

0200-0000 1168.1323 7.00 2.57  × 10-2 N2O d 446 1000-0000 1284.9033 2.080 × 102 1.336 × 10-1 
    

10002-00001 f. l. 
(0200-0000) 1259.425 7.93 × 10-4 4.06  × 10-3 

CO2
 e 628 10001-00001 f. u. 

(1000-0000) 1365.843 8.91 × 10-4 4.13  × 10-3 

    
H2O f 161 010-000 1634.967 9.74 × 10-2 1.224  × 10-1

a Isotopic notation : 446 = 14N14N16O, 628 = 16O12C18O, 161 = 1H16O1H. 
b In carbon dioxide the two bands are treated as a Fermi resonance doublet, 1 and 2, denoted as lower, f. l. ≡ 2. and 

upper, f. u. ≡ 1. The equivalent vibrational levels in nitrous oxide are indicated in brackets.  
c R , the matrix element of the rotationless electric dipole moment, in Debye. 
d from Ref. [259];  e  from Ref. [258];  f  from Ref. [15]. 
 

 

1111..11..  EEXXPPEERRIIMMEENNTTAALL  PPRROOCCEEDDUURREE  AANNDD  DDAATTAA  IINNVVEERRSSIIOONN  

 

 As the Quantum Cascade laser spectrometer, and the experimental and data analysis 

procedures have been described in Sections 5.4 and 10.1, respectively, only a brief outline of the 

experimental approach will be given. 

                                                 
17 The notation used to denote the CO2 bands is the following: v1v2lv3s, where s denotes e (1) or f (2) and pertains to the 
vibrational angular momentum l. 
18 The ν2 fundamental band is located at about 672.2 cm-1. 
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 The frequency down-chirped radiation emitted by the QCL is caused by the heating of the 

laser during a current pulse. With a pulse duration of about 1.5 μs  the tunability range is usually 

about 3 cm-1. By changing the injection current and the initial temperature of the QCL it is possible 

to change the spectral window covered by the spectrometer, and hence move the relative positions 

of the absorption lines within the tuning window. In particular, by operating at lower temperature 

and higher current, the spectral window is displaced toward higher wavenumbers. As the tuning 

range within a window may be larger than the shift of the centre of a tuning window, there is a 

considerable overlap between successive windows. The total spread of the spectral region covered 

may be extended to about 5 – 6 cm-1, by superimposing the spectra acquired under different initial 

temperature – injection current conditions. Three different combinations of temperature – current 

were adopted: they will be referred to as slow, medium and fast chirp rates, and they correspond to 

a progressive shift of the acquired spectral region toward lower wavenumbers. The QCL operating 

conditions employed to achieve the different chirp rates are given in Table 11.2. 

 
Table 11.2. QCLs operating conditions for the adopted chirp rates 

 He, Xe, N2 Broadening CO2 Broadening 

 Temperature [°C] Voltage [V] Temperature [°C] Voltage [V] 

Slow chirp rate –24.0  10.5 –25.0 13.0 

Medium chirp rate –20.0 10.5 –25.0 14.5 

Fast chirp rate –2.0 10.5 –15.0 15.5 

Pulse duration [μs] 1.5 1.5 

Repetition rate [kHz] 20 2.5 

 

The experimental absorption features were fitted to the Voigt employing VLSFP. As pointed 

out in the previous Chapter, although the lines are asymmetric, the asymmetries at different chirp 

rates affect the absorption lines in a similar way, thus ensuring the mutual consistency of the 

pressure broadening coefficients retrieved at different chirp rates. On the other hand, given their 

chirp rate dependence, the retrieved broadening coefficients are not strictly connected to those 

obtained from time independent spectroscopic techniques, and therefore they will be referred to as 

effective, or apparent, broadening parameters. 

 The perturbing gases helium, xenon, nitrogen and carbon dioxide were chosen on the basis 

of their masses and type of intermolecular interactions involved in the collisions with nitrous oxide. 

Unfortunately, as the xenon cylinder contained only a small amount of gas, a limited data set has 
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been obtained for this perturber. The obtained xenon broadening coefficients are reported for 

completeness. The N2O partial pressures were varied between 0.013 and 0.125 Torr, depending on 

the chosen optical path (usually 37 m or about 70 m), and were kept fixed within a broadening 

experiment. The buffer gas pressures were progressively increased up to a total pressure of 400 Torr 

and the measurements were carried out at room temperature.  

 

 

1111..22..  TThheeoorryy::  MMooddeelllliinngg  tthhee  RRaappiidd  PPaassssaaggee  SSiiggnnaallss  

 

 The structure of the rapid passage signals may be modelled by solving the coupled Maxwell-

Bloch equations. According to the theory presented in Section 3.9, in these equations each transition 

is treated as a two level system, whose resonance frequency is 0ω . The electromagnetic radiation 

emitted by the QCL induces the formation of a dipole that dephases from the driving field at a rate 

2γ ; the rate of the population decay from the upper level is 1γ .  

 In the modelling of the fast passage signals 

observed in NMR [76] and microwave [78] 

spectroscopy, the spectral lines are generally 

assumed to be homogeneously broadened. 

However, owing to the Doppler effect, in the MIR 

region the absorption spectral lines are 

inhomogeneously broadened to a significant 

amount. Following the approach of Stoner et al. 

[77], who took into account the broadening due to inhomogeneity of the magnetic field in ESR 

experiments, the inhomogeneous Doppler broadening was introduced into the Maxwell – Bloch 

equations by treating each velocity component as an individual emitter, as schematically shown in 

Figure 11.1. Indeed, during the frequency sweep of the laser, each homogeneously broadened 

velocity component of the Maxwell – Boltzmann velocity distribution is swept through 

sequentially, so that the velocity packets are excited as a phased array [80]. The total response over 

the inhomogeneously broadened line was then obtained by summing over the different contributions 

from the emitters. The phased array behaviour causes a stronger damping of the oscillatory structure 

and leads to a better agreement between theoretical predictions and experimental observations.  

 Besides, as the QCL radiation is linearly polarized, it gives rise to molecular alignment and 

optical pumping [81, 121]. Duxbury et al. showed that, in order to account for these effects, 

allowance should be made for the projection of molecule-fixed transition dipole moment on the 

Frequency detuning [a. u.]

Figure 11.1. Schematic diagram of the contributions of 
the different homogeneously broadened components in 
a inhomogeneously broadened spectral line. 
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space fixed direction of the laser field [81]. When no magnetic fields are present, there are MJ 

degenerate transitions and one non-degenerate transition with MJ = 0. Given the selection rule ΔMJ 

= 0, this lead to MJ + 1 effective transition components for each ro-vibrational transition. The 

effective transition dipole moment for a particular MJ component value depends on the 

corresponding direction cosines. From Table 3.2 it follows that for a linear molecule, the transition 

dipole moment corresponding to the quantum number MJ is given by 
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where v"v' vμ  is the vibrational transition dipole moment. 

 In the calculations the so-called “bundled” approach of Ref. [81] was used. Accordingly, 

each ro-vibrational transition was assumed to comprise a limited number of two level systems, each 

of which interacts independently with the laser field. Each of these two level systems has an 

effective transition dipole moment, derived by multiplying the vibrational transition moment by an 

average direction cosine. The latter results from a weighted average of the direction cosines of the 

MJ components which are grouped in the same two level system. The resulting effective transition 

dipole moments have to meet the requirement that the sum of the squares of the effective direction 

cosines must be equal to the sum of the squares of the complete set of direction cosines for the same 

ro-vibrational transition. 

 An alternative way of looking at the behaviour of frequency swept optical pulses was 

developed by Rothenberg and Grischowsky in 1986 [260]. By sending a frequency swept optical 

pulse through a sodium cell, they were able to record oscillatory signals similar to those measured 

in the mid-infrared region by using a QCL spectrometer in the intra-pulse method. In his theoretical 

treatment Rothenberg [261] derived an analytic solution for the output field emitted from the cell as 

the sum of the input field and that radiated by the medium. The resultant oscillatory structure may 

therefore be though of as a self-induced heterodyne between the input radiation and the field 

radiated by the resonant system. The QCL therefore proves to be a very efficient way of inducing 

this type of behaviour in the nanosecond time regime. A combination of the approach here adopted 

with that of Rothenberg may prove to be an effective way of improving the modelling the resultant 

line shapes. 
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1111..33  RRAAPPIIDD  PPAASSSSAAGGEE  SSIIGGNNAALLSS  AANNDD  CCHHIIRRPP  RRAATTEE  DDEEPPEENNDDEENNCCEE  OOFF  CCOOLLLLIISSIIOONNAALL  

PPRROOCCEESSSSEESS::  NNIITTRROOUUSS  OOXXIIDDEE  AANNDD  CCAARRBBOONN  DDIIOOXXIIDDEE  

 

Nitrous Oxide  Effective Broadening Parameters and Relaxation Processes 

 

A typical spectrum recorded using the QCL spectrometer is presented in Figure 11.2 (a). 

The time dependent increase in the spacing of fringes, obtained by using a solid Germanium etalon, 

clearly shows the degree of frequency chirping. The delayed emission signals, which follow the 

absorption features, are also visible. These occur owing to the constructive interference between the 

laser and the induced polarization in the gas, as described in the previous Section. They are a 

consequence of the lack of collisional damping of this interaction since, at low concentrations of 

nitrous oxide, the mean time between successive collisions is longer than or comparable to the time 

required by the radiation to sweep through the absorption line, a necessary condition for the 

observation of a self-induced heterodyne signal. 

A part of the spectral region studied, together with the labelling of the absorption lines, is 

displayed in Figure 11.2 (b). This Figure is the result of the superposition of two spectral windows 

covered by varying the initial temperatures and injection currents of the laser, as described in the 

experimental Section. The assignments of the observed absorption lines of N2O, their line strengths 

and their pressure broadening coefficients are listed in Table 11.3. The various chirp rates, at which 

the spectral lines were acquired, are given in Table 11.4. It is evident that the lines observed in the 

carbon dioxide broadening experiments do not quite match those acquired in the spectra perturbed 

by helium, xenon and nitrogen. This is due to the slightly different chirp characteristics of the laser 

used for the CO2 broadening measurements, as the earlier laser failed between the two sets of 

experiments.  
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Figure 11.2. Upper panel.  A typical spectrum recorded by the intra-pulsed QCL spectrometer: (―) etalon fringe 
pattern, 0.0195 cm-1 free spectral range; (―) N2O spectrum: ON2

P  = 0.12 Torr, PLC = 37 m. Lower panel: Expanded 
spectral regions of the spectrum of nitrous oxide selected by changing the laser starting temperature and driving 
voltage: (―) -15 °C, 15.5 V; (--) -25°C, 14.5 V. Both the spectra were acquired using 1.5 μs pulse amplitude, 2.5 kHz 
repetition rate. Nitrous oxide line labelling as given in Table 11.3. 
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Table 11.3. Observed N2O transitions, assignment, line strength and N2-broadening coefficient 

Line 0ν~  [cm-1] a Vib. State J' J" S0 
[10-20 cm molecule-1] a 

0
N2

γ  [MHz Torr-1] b 

1274.0859 21
1 10

1 (e) 19 20 0.8593  
P(20) 

1274.0991 21
1 10

1 (f)   0.8588  

P(12) 1274.6166 10
1 11 12 14.76 3.29(2) 

1274.9885 21
1 10

1 (e) 18 19 0.8790  
P(19) 

1274.9987 21
1 10

1 (f)   0.8870  

P(11) 1275.4929 10
1 10 11 14.23 3.32(2) 

1275.8877 21
1 10

1 (e) 17 18 0.9032  
P(18) 

1275.8952 21
1 10

1 (f)   0.9072  

P(10) 1276.3658 10
1 9 10 13.55 3.37(4) 

1276.7836 21
1 10

1 (e) 16 17 0.9193  
P(17) 

1276.7886 21
1 10

1 (f)   0.9233  

P(9) 1277.2353 10
1 8 9 12.70 3.39(2) 

1277.6761 21
1 10

1 (e) 15 16 0.9274  
P(16) 

1277.6790 21
1 10

1 (f)   0.9314  

P(8) 1278.1012 10
1 7 8 11.73 3.45(2) 

1278.5653 21
1 10

1 (e) 14 15 0.9274  
P(15) 

1278.5662 21
1 10

1 (f)   0.9314  

P(7) 1278.9637 10
1 6 7 10.60 3.48(4) 

a from Ref. [15]. 
b from Ref. [259]. 
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Table 11.4. Different chirp rates at which the nitrous oxide absorptions have been studied 

Chirp Rates [MHz ns-1] 

He, Xe, N2 broadening CO2 broadening Line 

Slow Medium Fast Slow Medium Fast 

P(20) - - 34.7 - - - 

P(12) - - 41.4 - - - 

P(19) - 36.2 49.4 - - 34.6 

P(11) - 45.8 62.4 - - 39.9 

P(18) - 55.9 75.6 - - 52.2 

P(10) 32.8 70.1 94.8 - 31.8 69.8 

P(17) 39.7 87.8 114.4 21.3 39.5 85.5 

P(9) 49.7 107.9 - 33.0 55.9 100.5 

P(16) 62.0 - - 51.7 76.3 - 

P(8) 77.5 - - 64.4 94.9 - 

P(15) 98.4 - - - - - 

P(7) 118.7 - - - - - 

 

The effective foreign gas broadening coefficients of nitrous oxide, retrieved from the 

analysis of the spectra, are listed in Table 11.5. The variation of these coefficients with chirp rate, 

and hence with the time of observation, is plotted in Figure 11.3. As can be seen, there is a general 

tendency for the effective pressure broadening coefficients to increase from slow (~ 30 MHz ns-1) to 

medium (~ 70 MHz ns-1) chirp rates. There is then little change when the chirp rate is increased 

further. By increasing the chirp rate, the time taken by the radiation to sweep through the spectral 

line decreases, and this is equivalent to a decrease in the time of observation. A reduced observation 

time will reduce the average number of collisions which occur during the passage of the radiation 

through the absorption line, and hence it is expected to lead to a smaller effective pressure 

broadening coefficient. This clearly contrasts with the experimental observations. A possible 

explanation is that, when the observation time is reduced, the collisions between fast moving 

molecules give the major contribution to the observed spectrum. Since the slowest molecules relax 

less rapidly [19, 262], their contributions at longer observation times are enhanced. The reduction in 

the observation time (i.e. faster chirp rate) thus induces an increasing role of the collisions between 

fast moving molecules leading concomitantly to a more efficient apparent decay rate. The effect is 

then very similar to selecting a limited number of high velocity components from a Maxwellian 

molecular velocity distribution. The observed pressure broadening coefficient is the average effect 
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of these high velocity collisions which, involving a higher energy, are more effective in scattering 

the N2O molecules into other internal states. In other words, molecules moving faster also relax 

faster, as pointed out by Mattick et al. [262], Rohart et al. [60], and Köhler and Mäder [256]. The 

increase of the effective pressure broadening coefficients with the chirp rate is more noticeable for 

xenon and carbon dioxide, while it is less pronounced for helium, whose retrieved coefficients seem 

to be less affected by the chirp rate. This is in good agreement with the theoretical predictions. 

Indeed, the speed dependence of the relaxation rates is expected to be more evident as the 

ratio ba mm  decreases, where ma and mb are respectively the masses of the active and buffer 

species.  
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Figure 11.3. Chirp rate dependence of the retrieved effective nitrous oxide – foreign gas broadening coefficients: (a) 

0
2 HeON −γ ; (b) 0

2 XeON −γ ; (c) 0
22 NON −γ ; (d) 0

22 COON −γ . Transitions:  P(12);  P(11);  P(10);  P(9);  P(8). The 
dotted lines are added to allow the trends to be easily visualised.  



 

 

 

211

 
Table 11.5. Obtained helium, xenon, nitrogen and carbon dioxide effective broadening coefficients in MHz Torr-1, HWHM, for the investigated nitrous oxide ν1 transitions 

Slow Chirp Measurements Medium Chirp Measurements Fast Chirp Measurements 
Line 0

Heγ  0
N2

γ  0
CO2

γ  0
Heγ  0

N2
γ  0

CO2
γ  0

Heγ  0
Xeγ  0

N2
γ  0

CO2
γ  

P(12) - - - - - - 2.45(2) 2.59(3) 3.31(2) - 

P(11) - - - 1.98(4) 3.20(3) - 2.59(3) 2.96(8) 3.47(4) 4.30(11) 

P(10) 2.03(2) 2.90(3) - 2.15(4) 3.67(6) 4.38(7) 2.54(6) 3.23(8) 3.60(6) 5.2(2) 

P(9) 2.29(2) 3.50(4) 4.30(11) 2.13(8) 3.59(8) 4.54(11) - - - 5.2(2) 

P(8) 2.49(8) 3.67(7) 4.06(11) a - - 4.1(2) a - - - - 
a The value is affected by instrumental distortions of the absorption line shape due to the vicinity of the beginning of the laser pulse.



 

 

 

212

 Since the interaction time with the laser radiation plays a key role in determining the 

observed line shape, the effective pressure broadening coefficients are more closely correlated with  

the relaxation rates derived from time dependent measurements than with those obtained using time 

independent absorption spectroscopy. Further, the results show how a partial understanding of the 

speed dependence of the collisional cross sections, arising from their time dependence, could be 

gained by using frequency down-chirped QCL spectroscopy. 

As it was observed for water vapour, carbon dioxide is not only the most efficient gas for 

broadening the absorption lines of the radiating species, but it is also unusually effective in 

changing the shape of the absorption lines. This is illustrated in Figure 11.4, where a comparison is 

made among the effects of nearly equal amounts of different buffer gases on the shape of the 

spectral lines of nitrous oxide. As demonstrated in this Figure, when carbon dioxide is used as a 

collision partner, the resultant broadening may exhibit features which are characteristic of either 

nitrogen or helium collisions. Indeed, as far as their effect on the rapid passage induced emission 

spike is concerned, CO2 and N2 act in a similar way. The first additions of CO2 greatly reduce the 

amplitude of the gain peak, and normal pressure broadening behaviour is observed for Pbuffer > 30 

Torr. On the other hand, at low pressures of buffer gas (up to about 30 Torr), both CO2 and He play 

an important role in reducing the peak absorbance of the signal. In contrast, collisions with nitrogen 

have little effect over this pressure range. 

From these results it may be concluded that the intermolecular collisions are quite selective, 

since the ability of  different collision partners to modify either the magnitude of  the transient gain 

spike or the absorptive part of the spectral line are very distinctive, particularly that of carbon 

dioxide. Secondly, in the conventional studies of pressure broadening, it is common to explain the 

effects in terms of scattering events calculated using an electrostatic model, with a progressive 

increase of the quadrupole moment along the series of collision partners, helium, nitrogen and 

carbon dioxide. The results here obtained demonstrate that all of the experimental observations 

cannot reconcile with predictions made purely on the basis of such a model. 

One of the effects omitted in the electrostatic model is the possibility of resonant energy 

transfer between collision partners. It appears to be highly possible that an intermolecular energy 

transfer may take place between nitrous oxide and carbon dioxide molecules during molecular 

collisions. In particular, the scattering efficiency of carbon dioxide could be explained by an 

interaction which involves a ro-vibrational energy exchange. This kind of relaxation process has 

been taken into account in earlier studies on molecular amplifiers [263] and optically pumped gas 

lasers [264]. Vibrational relaxations involves collisions which induce intra-molecular forces along 

the normal modes of a molecule. Such forces may not be directly related to either the interaction 
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potential, or to the distance of closest approach between the colliding species. Within this 

framework, the formation of weakly bound van der Waals complexes may promote intermolecular 

energy transfer. The structure of the (CO2)2, (N2O)2, (CO2–N2O) and (CO2–H2O) dimers have been 

widely studied by molecular beam spectroscopy [265 – 269]. The (CO2)2, (N2O)2, (CO2–N2O) 

dimers have slipped parallel structures and their alignments are modelled using a distributed 

quadrupole moment [270 – 273].  
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Figure 11.4. Comparison of the different effects on the N2O absorption line shapes caused by collisions with helium, 
nitrogen and carbon dioxide. He broadening: ON2

P = 0.013 Torr; PLC = 66 m; (―) HeP  = 0 Torr; (―) HeP  = 9.2 Torr; 

(--) HeP  = 29.7 Torr. N2 broadening: ON2
P  = 0.013 Torr; PLC ≈ 66 m; (―) 

2NP  = 0 Torr; (―)
2NP  = 10.7 Torr; 

(⋅⋅⋅)
2NP  = 21.1 Torr; (--)

2NP  = 34.2 Torr. CO2 broadening: ON2
P  = 0.12 Torr; PLC = 37 m; (―) 

2COP  = 0 Torr; 

(―)
2COP  = 9.8 Torr; (⋅⋅⋅)

2COP  = 20.4 Torr; (--)
2COP  = 35.2 Torr. 

 

It is also interesting to note the saturation of the absorption lines, which arises when very 

low pressures of nitrous oxide are used. Saturation effects using intra-pulsed QCL were first 

described by McCulloch et al. [80], who observed the variation with the pressure of the peak 

absorbance of some representative transitions of ethylene. In the analysis of the current experiments 

the saturation is derived from the integrated line intensities. As can be seen in Table 11.3, under 
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stationary conditions, the relative integrated line intensity of the P(12), P(11) and P(10) N2O 

transitions is expected to follow the order ( ) ( ) ( )
0

10
0

11
0

12 PPP SSS >> , where S0 denotes the integrated 

line strength, or integrated absorption coefficient. Nevertheless, when a low pressure sample is 

interrogated by the down-chirped radiation, the integrated intensities of the three lines follow a 

completely reversed order.  

This is illustrated in Figure 

11.5 in the case of helium 

broadening. It can be seen that the 

magnitudes of the integrated 

intensities appear to follow the order 

( ) ( ) ( )
0

12
0

11
0

10 PPP SSS >>  at P < 15 Torr. 

When P ≅ 18 Torr, the three lines 

have nearly the same integrated 

absorption coefficient, and after that 

the usual ratios for the magnitudes of 

the relative intensity is recovered. 

Further, an increase of the integrated 

intensities follows the first addition 

of He. Such behaviour can be 

understood by considering the 

increase of the total number density 

as helium is added. The effect of the increased density is to increase the number of collisions able to 

“quench” the saturation, by removing molecules from the upper state and hence allowing more 

radiation to be absorbed. The anomalous decrease in the integrated line intensities does not seem an 

artefact due to data inversion, because it appears to follow a regular trend and it is reproducible at 

different chirp rates and for different collisional partners. A possible explanation may be the 

adsorption of the nitrous oxide molecules on the cell walls. Nevertheless, the adsorption does not 

affect the foreign pressure broadening coefficient. Indeed, due to the small N2O pressures 

employed, the self-broadening contribution to the collisional half widths is negligible in comparison 

to both the broadening induced by the buffer gas and the Doppler one. This is confirmed by the 

observation of the linear dependence of the collisional half width upon the gas buffer pressure.  

Finally, it is instructive to compare the present results with those obtained from the water-

vapour broadening experiments. It is expected that the broadening parameters retrieved from water 

and nitrous oxide experiments exhibit a different behaviour, since they represent two very different 
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Figure 11.5. Saturation of the absorption lines observed when a low 
pressure sample of nitrogen is interrogated by the down-chirped 
radiation emitted by the intra-pulsed QCL. At PTotal < 18 Torr the lines 
appear to have a relative integrated intensity which is the reverse of 
that predicted by the integrated absorption coefficient. As the 
collisional damping increases the usual behaviour is recovered.  
P(12);  P(11);  P(10). 
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types of system. Nitrous oxide is characterized by very strong transition dipole moments, and hence 

a very strong coupling to the radiation field. The strength of the transitions allows the use of very 

low absorber pressures within the gas cell. A combination of these effects is responsible for the 

observed strong rapid passage signals. On the other hand, water represents a more complicated 

system. The complications arise from different factors which include: (i) the effect of the velocity 

changing collisions, causing the narrowing of the spectral line; (ii) the participation of speed 

dependencies of the collisional cross sections; (iii) the relatively weakness of the absorption line, 

and hence the need for higher sample pressures to be employed; (iv) the MJ changing collisions, 

which can play an important role; (v) the unresolved K doublet which constitutes the absorption 

line. Nevertheless, the investigations on the behaviour of water and nitrous oxide have two common 

features. The first one is the chirp rate dependence of the effective broadening parameters, which is 

strictly related to the time dependence of the collisional processes. The second is the unusual effect 

of carbon dioxide as collision partner, which suggests that in both cases the method of 

intermolecular energy transfer differs from that expected to be caused by dipolar or quadrupolar 

interactions. 

 

 

Carbon Dioxide Rapid Passage Signals 

 

During the carbon dioxide broadening measurements, some absorptions due to the 
18O=12C=16O unsymmetrical isotopomer were observed. In the main isotopomer, these transitions 

are infrared inactive because of its D∞h symmetry. Nevertheless, in the  reduced C∞v symmetry of 

the  18O12C16O isotopic species, the 18O atom slightly shifts the molecular centre of mass from the 

centre of charge,  allowing the IR non-active vibrational modes to become observable. The 

observed ro-vibrational transitions, listed in Table 11.6, belong to the lower 10002 – 00001 

component  of the Fermi coupled bands, which have been analyzed by Toth in a very complete 

study of the CO2 high resolution spectrum between 1200 and 1430 cm-1 [258].  

Besides the carbon dioxide transitions, weak lines due to minor methane impurities 

contained in the CO2 cylinder were detected [121]. Such impurities were also noted by Toth, in the 

gas cylinders which he used for his measurements [258]. His estimate was a level of 2 to 5 ppm by 

volume, which is similar to the concentrations found in the present measurements. 

The large effects of carbon dioxide in broadening the absorption lines and suppressing the 

rapid passage signals in nitrous oxide, when it acts as buffer gas, find their correspondence in the 

rapid quenching of the 18O12C16O rapid passage signals, when the isotopomer acts as an active 
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species perturbed by collisions with the major isotopic species. This property is shown in Figure 

11.6, where a comparison is made between the spectrum of fully mono-substituted 18O carbon 

dioxide (trace a) and the carbon dioxide spectrum perturbed by 0.12 Torr of nitrous oxide (trace b) 

or 2.5 Torr of water vapour (trace c).  
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Figure 11.6. Effect of collisional damping on the rapid passage signals of carbon dioxide. Trace a: spectrum of an 
enhanced concentration of 18O12C16O. (―) 0.51 Torr; (―) 0.71 Torr; (--)1.12 Torr. Trace b: CO2 in natural isotopic 
abundance perturbed by a fixed amount of nitrous oxide ( ON2

P  = 0.12 Torr): (―) pure N2O; (―)
2COP = 8.17 Torr; (--) 

2COP = 9.98 Torr; (⋅⋅⋅)
2COP = 25.4 Torr. Trace c: CO2 in natural isotopic abundance perturbed by a fixed amount of 

water vapour ( OH2
P  = 2.54 Torr): (― ) pure H2O; (―)

2COP = 5.35 Torr; (--)
2COP = 10.02 Torr; (⋅⋅⋅)

2COP = 22.6 Torr. 

Line labelled w1 refer to the ν2 151,15 ← 160,16, 150,15 ← 161,16 unresolved K doublet of H2O; line labelled w2 refer to 
the 83,5 ← 93,6 transition of the ν2 band of HDO.  
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Table 11.6. Assignment, line strength and self-broadening coefficient of the observed ro-vibrational transitions 
belonging to the 10002 – 00001 band of 18O12C16O 

Line ν0 [cm-1] a J' J" S0 
[10-25 cm molecule-1] a 

0
selfγ  [MHz Torr-1] a 

R(20) 1274.85161 21 20 5.735 3.81 

R(21) 1275.58379 22 21 5.582 3.77 

R(22) 1276.31567 23 22 5.402 3.73 

R(23) 1277.04724 24 23 5.199 3.69 

R(24) 1277.77849 25 24 4.977 3.65 
a From Ref. [258]. 
 
Table 11.7. Parameters used for numerical integration of Maxwell – Bloch equations 

Value 
Parameter 

Line R(20) Line R(23) 

Number of time steps 105 

Number of velocity component 400 

   
Transition dipole moment [D] 4.13 × 10-3 4.06 × 10-3 

CO2 self broadening, full width half 

maximum [MHz Torr-1] 
7.6 7.4 

CO2 - N2O broadening, full width half 

maximum [MHz Torr-1] 
7.2 7.2 

   
Chirp rate [MHz ns-1] 34 95 

Laser power [mW] 40 

Path length [m] 20 

 

In order to understand this behaviour, the experimental observations have been compared 

with theoretical predictions obtained by solving the coupled Maxwell – Bloch equations for the 

carbon dioxide absorber. The equations have been integrated numerically by using an home made 

program written in C. The initial polarization −∞→tP  and the initial population difference −∞→tw   

have been set to 0 and –1, respectively, which mean absence of polarization and all the molecules in 

the ground state. In the program code, the QCL has been assumed to show a linear chirp rate, a 

constant peak power and a constant mode waist in the absorption cell through the absorption 

transition. The effect of reorienting, MJ changing- collisions has not been taken into account. The 

calculations have been carried out by considering both carbon dioxide self- and foreign broadening 
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for transitions lying at chirp rates of about 30 and 100 MHz ns-1. The input parameters for the 

Maxwell – Bloch simulation program are given in Table 11.7.  

The experimental features are shown in Figure 11.7, while the shapes resulting from the 

Maxwell – Bloch calculations are illustrated in Figure 11.8. By comparing these two Figures it can 

be seen that, despite the larger oscillatory structure predicted by the calculations at low pressures, 

the simulated signals are in satisfactory agreement with the experimental spectra. Therefore, it is 

reasonable to conclude that the rapid quenching of the rapid passage signals is mainly due to the 

small transition dipole moment of carbon dioxide, and the damping is mainly caused by the CO2 

self-broadening, i.e. by collisions of the active 18O12C16O molecules with those of the main isotopic 

species. 
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Figure 11.7. Effects of the collisional damping on the 
shape of two CO2 absorption lines. Trace a: R(20) transition 
recorded at a chirp rate of 34 MHz ns-1. Trace b: R(23) 
transition recorded at a chirp rate of 95 MHz ns-1. (―) 
18O12C16O, P = 1.1 Torr. Natural isotopic abundant CO2 
perturbed by 0.12 Torr of nitrous oxide: Ptotal = (―) 8.28, (-
-) 15.12, (-⋅-) 25.5, (⋅⋅⋅) 35.4, (―) 53.1, (--) 99.5 Torr. 

Figure 11.8. Theoretical effects of the collisional damping 
on the shape of two CO2 absorption lines centred  at chirp 
rates of 34 and 95 MHz ns-1, respectively, obtained by 
solving the Maxwell – Bloch equations. Trace a: R(20) 
transition, 34 MHz ns-1. Trace b: R(23) transition, 95 MHz 
ns-1. (―) 18O12C16O, P = 1.1 Torr. Natural isotopic 
abundant CO2 perturbed by 0.12 Torr of nitrous oxide: Ptotal 
= (―) 8.3, (--) 15, (-⋅-) 25.5, (⋅⋅⋅) 35, (―) 53, (--) 99.5 Torr. 

 

Besides the larger oscillatory structures predicted at low pressure, the signal calculated at 

slower chirp rate show a more pronounced broadening than the observed spectra. Recently, there 

has been more experimental and theoretical work on the structure of the rapid passage signals of the 

5s – 5p transitions in another of the alkali atoms, rubidium [274, 275]. In their first paper Zamith et 

al. considered the two level system excited by the linearly chirped pulse as being undamped [274]. 



 

 

 

219

Using a model similar to that developed by Rothenberg [261], they obtained a good representation 

of the rapid passage structure, but their calculations predicted a less rapid decay of the amplitude of 

the oscillatory signals with respect to that observed experimentally. In a subsequent paper, Delagnes 

et al. [275] included the effect of interference between the electric field radiated on and off 

resonance, in addition to the self-heterodyne effect [261, 274], and obtained better agreement 

between experimental and calculated signals. It is possible that a similar correction, involving 

interference between the on and off resonant fields, may be necessary to model the decay of 

molecular rapid passage signals of the type here described.  
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CCoonncclluussiioonnss  aanndd  OOuuttllooookk  
 

 

Summary 
 

The ever increasing need for improvements in the accuracy of remote sensing measurements 

of Earth’s and planetary atmospheres, has led to numerous recent efforts to obtain improved 

spectroscopic parameters for molecules of atmospheric and astrophysical interest. In particular, line 

shapes are crucial elements for remote sounding techniques and for understanding of the Earth’s 

atmospheric properties. Further, their detailed knowledge sheds light on the physics of the 

interaction between molecular gases and electromagnetic radiation and on the involved collisional 

processes. 

With this background, the main target of this PhD thesis was to set up the procedure to 

perform laboratory measurements of the line parameters for molecules having an environmental and 

astrophysical relevance. This task represented both an experimental and an  analytical problem.  

Experimentally, the study of the line shape absorption profiles required a precise knowledge 

of the instrumental function, in order to account for the spectrometer contribution to the shape of 

the spectral lines. Hence, investigations were made to characterize the instrumental function of the 

tunable diode laser spectrometer employed in the experiments: the instrumental response resulted to 

be Gaussian (or nearly) shaped. Further, the distortions caused by spectrometer components and 

optics were identified, and then avoided or minimized as much as possible. Also the sample 

handling procedure and the experimental conditions were carefully controlled. 

Analytically, the line parameter determination requires an efficient data analysis software 

and accurate line shape models, which account for the different chemical-physical processes taking 

place in a gas phase sample. These processes go from inhomogeneous Doppler and homogeneous 

collisional broadening, passing through collisional narrowing and speed dependence effects, 

arriving to the complex line mixing processes and the very refined models which consider the 

combined effects of the different phenomena and their correlations.  

The programming efforts led to the development of a line-shape analysis software, called Visual 

Line-Shape Fitting Program (VLSFP), which was implemented to fit the experimentally recorded 

spectral lines. VLSFP performs the fit of the spectral features on the basis of different theoretical 

line shape functions which include Gaussian, Lorentz and Voigt profiles, as well as the Galatry and 



 

 

 

221

Nelkin – Ghatak ones, which respectively represent the weak- and strong-collision models 

accounting for Dicke narrowing effect.  The fitting routine, which is executed as a background task, 

is based on a box constrained Levenberg – Marquardt algorithm; the experimental lines can be 

fitted singularly or simultaneously. The program, written combining C# and Visual Basic 

programming languages, can be fully controlled from its graphical interface. Besides displaying the 

experimental and the computed spectrum together with their residuals, the interface lets the user to 

run and stop the fitting procedure. At the end of the fit, the obtained parameters are displayed 

together with their errors. A number of additional tools and options are further accessible from 

menu and tool bars: they let the user to control the details of the fit and to input the experimental 

conditions, such as temperature, pressure and optical path. The application has been implemented 

following an Object Oriented Programming approach, which permits an easier maintenance and 

future developments. 

The experimental procedure and VLSFP were first applied to the determination of the line 

parameters of sulphur dioxide. These measurements also furnished a test for the fitting code and led 

to further improvements of the experimental method and data processing. 

Sulphur dioxide is a very important molecule of proved atmospheric and astrophysical importance. 

It actively enters into the sulphur cycle and its main sources arise from human activities. Further, it 

is present in the Venus atmosphere and in the interstellar medium, particularly in star forming 

regions. The self-broadening coefficients and integrated absorption coefficients were determined 

experimentally in the atmospheric region around 9.2 μm. The self-broadening coefficients were also 

calculated theoretically, employing a semi-classical formalism based on the Anderson – Tsao – 

Curnutte approximation. In addition, the vibrational absorption cross sections of the three 

fundamental bands were measured from medium resolution spectra recorded with a FTIR 

interferometer. The determination of the self-broadening and integrated absorption coefficients was 

made through the analysis of the spectra recorded with a tunable diode laser spectrometer. The 

majority of ro-vibrational transitions belonged to the ν1 fundamental band of the 32SO2 

isotopologue, but also absorptions belonging to both  the ν1 + ν2 – ν2 hot band of 32SO2 and to the 

ν1 band of 34SO2 were observed, and the corresponding line parameters were obtained. The self-

broadening coefficients obtained theoretically were in good agreement with the experimental ones, 

thus indicating that SO2 interacts mainly through dipole – dipole interaction, with only a small 

contribution coming from the quadrupole electrostatic potential. The good agreement between 

obtained parameters and literature values ensured that the experimental procedure and the data 

inversion were not affected by strong artefacts and it also demonstrated the reliability of VLSFP. 
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 The retrieval of the line shape parameters was then extended to vinyl fluoride, for which no 

literature values were available. Vinyl fluoride is a compound widely used by industry, and once in 

the atmosphere it can react with hydroxyl radicals and ozone. The high resolution spectra were 

measured in the ν7 band region around 8.9 μm by TDL spectroscopy. The analysis was complicated 

by the high density of lines, many of which were strongly overlapped or even not resolved. 

Anyway, the self-broadening coefficients and integrated absorption coefficients of a large number 

of lines, belonging to either the ν7 fundamental or the ν7 + ν9 – ν9 hot band, were determined. The 

line shapes showed deviations from the Voigt profile, which were satisfactorily modelled by using 

the strong collision model represented by the Nelkin – Ghatak profile. These fits, which led to the 

determination of the self-narrowing coefficients, suggested that the collisional broadening and 

narrowing had similar magnitudes.  

 Besides line parameter determinations, either high resolution ro-vibrational analysis and 

low-medium resolution investigations were performed. A detailed study of the gas phase vibrational 

spectrum of vinyl fluoride was carried out both experimentally and theoretically. The vibrational 

analysis was performed on spectra recorded at low and medium resolution by employing a FTIR 

spectrometer. The observed absorption features were identified as fundamentals, overtones and up 

to three quanta combination bands, leading to an almost complete understanding of the infrared 

spectrum within the range 400 – 8000 cm-1. Some of  the partially resolved rotational structures 

were also analyzed, and preliminary rotational parameters for the ν1 and ν2 fundamentals and a 

number of combination bands were determined. Finally, the integrated absorption cross sections in 

the 400 – 3500 cm-1 region were measured for the first time. The obtained values well agreed with 

those retrieved by ab initio calculations, carried out at the CCSD(T)/cc-pVTZ level of theory. The 

quantum mechanics calculations at the CCSD(T)/cc-pVQZ level led to the determination of an 

hybrid force field, from which accurate values of anharmonicity constants and rotational and 

centrifugal distortion parameters were obtained. The comparison of the theoretical rotational 

constants with the experimentally available ones showed a very remarkable agreement, suggesting 

that the determined hybrid force field represented a very realistic description.  

The obtained results provided basic information, which can be used for high–resolution infrared 

studies as well as to improve theoretical investigations about the reactivity of vinyl fluoride toward 

hydroxyl radical and ozone. 

 The ro-vibrational investigations concerned the analysis of the high resolution diode laser 

spectrum of CF3Br in the region between 1090 and 1130 cm-1. In order to simplify the spectral 

structure which was rather crowded, the spectra were recorded in a supersonic planar expansion and 

at the reduced temperature of 200 K. The rotational temperature reached in the supersonic 
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expansion was about 50 K. The combination of supersonic slit-jet expansion data with those 

recorded at 200 K was successfully employed  to obtain a set of parameters for the 0
52ν  and ν2 + ν3 

bands of both CF3
79Br and CF3

81Br isotopologues, with a resulting improved accuracy with respect 

to the previous studies. Together with the data of the near ν1 fundamental previously reported, the 

obtained Hamiltonian parameters provided a nearly complete understanding of the ro-vibrational 

fine structure of CF3Br in the region around 9 μm. In addition, from medium resolution FTIR 

spectra, the vibrational cross sections were measured over the spectral region between 500 and 2500 

cm-1. From these, the radiative forcing and Global Warming Potentials of this environmental 

hazardous compound were derived, thus furnishing useful data for radiative transfer models and 

global climate calculations.  

 Finally, as the last topic treated in this thesis, investigations on collisional processes and 

relaxation rates were carried out. In particular the time dependence of the collisional cross sections 

was explored, by using the frequency down-chirped radiation emitted by a Quantum Cascade Laser 

spectrometer employed in the intra-pulse method.  

Frequency domain investigations of the spectral absorption line shapes are widely employed 

to explore the physics behind molecular collisions and to infer the intermolecular interactions which 

drive them. On the other hand, time domain spectroscopic techniques have always been effectively 

used to provide a deeper understanding of intermolecular interactions. Since they are more directly 

related to the effects of molecular collisions on the polarization of a gas, the time domain 

measurements provide a rich source of information about molecular relaxation rates. 

 Intra-pulse Quantum Cascade laser spectroscopy lies at the interface between frequency and 

time domain techniques. Indeed, besides giving a spectrum which can be conveniently analyzed in 

the frequency domain, it presents features typical of a coherent transient experiment.  

Two series of experiments were designed to investigate the physics of the interaction of chirped 

infrared laser radiation with low pressure gases. In the first series, the collisional and transport 

processes responsible for the observed line shape of the ν2 water vapour unresolved transition pair, 

150,15 ← 161,16 and 151,15 ← 160,16, were investigated. The study was carried out by analyzing the 

behaviour of this line using three different chirp rates, while collisionally perturbing the water 

molecules by means of a range of atomic and molecular collision partners. In particular, the effects 

of collisions between water and helium, neon, argon, nitrogen and carbon dioxide, at chirp rates of 

20, 35 and 75 MHz ns-1, were studied.  

Among the rare gases used, neon and argon caused a significant narrowing of the water absorption,  

with Ne giving the larger narrowing. A demonstration was made that a narrowing of the absorption 

line may be related to an increase of the macroscopic polarization of the gas sample. He and N2 
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showed a fairly similar effect on the water absorption line, with nitrogen giving a small narrowing 

of the spectral half width. The observed differences between the broadening effects of He and N2, 

and their variation with the chirp rate, were interpreted in terms of different motion properties of the 

two buffer gases within the time scale investigated. Finally, CO2 played an unusually effective role 

in broadening the water absorption feature, and quenching the rapid passage signals. It was also the 

only gas, among the studied ones, able to perturb the water sufficiently strongly that a symmetrical 

line shape was recovered.  

 A second series of experiments was directed to extend to nitrous oxide the studies on the 

time dependence of the collisional processes. In particular, the chirp rate dependence of the 

collisional cross sections of nitrous oxide perturbed by helium, xenon, nitrogen and carbon dioxide 

was studied for a number of ν1 ro-vibrational transitions. A general result was that the retrieved 

pressure broadening parameters tend to increase with increasing chirp rates. The increase was more 

pronounced for xenon, carbon dioxide and nitrogen. The trend was interpreted as resulting from a 

sort of speed dependence of the relaxation rates, since at faster chirp rates only the high velocity 

components of the molecular speed distribution were mainly involved in the collision processes. 

Given its peculiar behaviour, carbon dioxide was investigated both as a buffer gas and as an 

absorbing molecule. As observed for water vapour, when it played the role of collisional partner it 

was very effective in broadening the absorption lines of nitrous oxide and quenching their rapid 

passage signals. These effects were mirrored when carbon dioxide played the role of active species. 

In fact, the rapid passage signals of the 18O12C16O absorption lines were readily suppressed by 

addition of a small amount of gas, which could be either a foreign gas or the main isotopic species 
12C16O2. These experimental observations were compared with the signals obtained from the 

solution of the optical Bloch (or Maxwell – Bloch) equations. The results suggested that the small 

transition dipole moment was mainly responsible for the rapid quenching of the rapid passage 

signals in CO2. The very different behaviour demonstrated by carbon dioxide with respect to the 

remaining damping gases, particularly nitrogen, seemed difficult to reconcile with a theoretical 

model which takes into account only an electrostatic potential and attributes the differences only to 

an increase of quadrupole moment along the series helium, neon, argon, nitrogen, carbon dioxide. 

Rather, a resonant intermolecular energy transfer, related to ro-vibrational relaxation, was proposed. 

Summarizing, not only the chirp rate dependence of the collisional cross sections was demonstrated, 

but it was shown that the experimental absorption line shapes and the related parameters are 

affected by a great number of factors. Some of these factors, such as the transition dipole moment, 

are intrinsically associated with the nature of the absorbing species. Other factors, such as the 
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motional narrowing and the speed dependence of the relaxation rates, are directly connected to the 

physics of the collisional processes and their time dependence.  

 

 

Possible Developments 
 

 The possibilities of development of the issues tackled in this thesis are probably limited only 

by personal imagination. Spectroscopic line parameters depend on the molecular species, its 

temperature and concentration, and the presence of other gases. These conditions are very 

inhomogeneous in the atmospheres and hence, even for a given molecule, the shape of a spectral 

line varies depending on its surroundings. Therefore, it is clear the importance of making 

spectroscopic measurements of both line-by-line parameters and absorption cross sections under a 

variety of conditions, which span over a large range of pressures (from dPa to MPa) at different 

temperatures and for a variety of buffer gases. Among these, the measurements at different 

temperatures, which allow the study of temperature dependence of the broadening parameters, 

would only require the presence of a temperature controlled cell. 

 As far as the measurements in the presence of buffer gases are concerned, it would be 

interesting to retrieve the pressure broadening coefficients of sulphur dioxide and vinyl fluoride 

perturbed by nitrogen and oxygen. These would provide useful data for remote sounding of the 

Earth’s atmosphere. In addition, given the astrophysical importance of SO2, hydrogen and helium 

foreign broadening measurements may be carried out. 

 On the other hand, in the determination of vinyl fluoride line parameters some questions still 

need to be addressed. One is the assignment of the ν7 + ν9 – ν9 hot band transitions. A second 

involves further investigations about the causes for the observed deviations from the Voigt profile. 

This issue would also require further developments on VLSFP, in order to include line shape 

functions which take into account the effects of the speed dependence, line mixing and the 

correlation between internal state changing-, dephasing-collisions and velocity changing collisions. 

The implementation of correlated, soft or hard, collision models will be the most straightforward, 

since the majority of the program code does already exist. A further improvement of VLSFP would 

be the addition of a so-called multispectrum fitting routine, in which spectra recorded under 

different conditions can be fitted simultaneously. Although this is not strictly necessary for the 

study of spectra recorded with laser spectrometers, it would speed up the analysis procedure and, at 

least in principle, it would yield to an improved precision of the retrieved parameters. The 

implementation of the multifitting procedure can be achieved with a rather small programming 
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effort, since the major modifications involve the graphical interface and the routines used to load 

the data input. 

 Developments and improvements may involve the instrumentation, as well. Besides the 

above mentioned temperature-controlled cell, a multipass cell would be useful. A longer optical 

path would yield the possibility of obtaining stronger signals and hence higher signal-to-noise ratio. 

Further, lower sample pressures can be used and this would give the opportunity of a better 

modelling of the instrumental function. The spectral acquisition would benefit of a computer 

controlled digitizer with higher vertical resolution: this would improve the signal-to-noise ratio 

further, and would permit to correct for the laser drift, thus reducing the contribution of the 

instrumental function to the spectral line shapes. 

 Among the other topics, some words need to be spent about the potential of QCL 

spectrometers used in the intra-pulse method in exploring the physics of the interaction of the 

chirped infrared radiation with gas phase samples. The QCL-based approach for chirped 

spectroscopy is still at the beginning, and researches in this area appear to be unique. In this thesis, 

it has been shown that the frequency down-chirped technique may be conveniently employed to 

infer information about the physics of the absorption process itself, as well as that of intermolecular 

collisions. In the absorption process the way in which different collisional partners affect the 

absorptive part of the signal can be studied. Besides, the delayed rapid passage emission, which is 

directly related to the macroscopic polarization of the gas, can be studied as well. Therefore it is 

possible to gain useful information on the processes which occur during the molecular collisions 

and the related energy transfers. Hence, the studies on the line shapes observed in the frequency 

down-chirped spectra should be encouraged. In particular the development of appropriate 

theoretical line shape functions taking into account the chirp rate dependence would be important, 

since there is wealthy of information about relaxation rates, collisional processes and intermolecular 

energy transfers that can be obtained by employing this kind of spectroscopy.  
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Appendix A. Contact Transformations 
 

 

 The method of contact transformation is based on the replacement of the original 

Hamiltonian by an equivalent but simpler Hamiltonian. The Schrödinger equation 

 

 ψψ EH =ˆ   

 

is transformed to  

 

φφ EH =~ , SiSi eHeH ˆˆ ˆ~ −= , ψφ Sie ˆ
=  

 

where Ŝ  is an Hermitian operator so that Sie ˆ  is unitary. Since the two Hamiltonians are connected 

by a unitary transformation, the eigenvalue spectrum and the normalization of wave function are 

preserved. If the transformed Hamiltonian H~  is diagonal in some basis φ, then the diagonal 

elements E are the eigenvalues of Ĥ  whose eigenfunctions are φψ Sie ˆ−= .  

More generally, the matrix H~  may not be completely diagonal but has a block-diagonal 

form. In the procedure it is assumed that Ĥ  is separated into terms of different order of magnitude 

with a book-keeping parameter λ, as 

 

...ˆˆˆˆˆ ++++= 3
3

2
2

10 HHHHH λλλ  

 

where λ can takes the values 0 or 1. A succession of contact transformations by the operators 1Sie ˆλ , 

2
2Sie ˆλ ,… is then performed. The first contact transformation gives the Hamiltonian ( )1H~ : 

 

 ( ) ( ) ( ) ( ) ( ) ...~~~~ˆ~ ˆˆ
++++== − 1

3
31

2
21

1
1

0
1 11 HHHHeHeH SiSi λλλλλ  
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In carrying out the transformation 1Ŝ  is chosen so that ( )
0

1
0 HH ˆ~ =  and ( )1

1H~  is diagonal in the 

representation of the wave functions of 0Ĥ  which are taken as basis function for the perturbation 

treatment. The procedure is then repeated by applying a second contact transformation on ( )1H~ : 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ...~~~~~~ ˆˆ
++++== − 2

3
32

2
22

1
2

0
12 2

2
2

2

HHHHeHeH SiSi λλλλλ  

 

where 2Ŝ  is again chosen such that ( ) ( )
0

1
0

2
0 HHH ˆ~~ ==  and ( ) ( ) ( )2

2
22

1
2

0 HHH ~~~ λλ ++  become diagonal. 

 The final result, ( ) HH ~~ =∞  is the block-diagonal Hamiltonian: 

 

 ...~~~~~ ++++= 3
3

2
2

10 HHHHH λλλ  

 

where 

  

00 HH ˆ~ = ; [ ]0111 HSiHH ˆ,ˆˆ~ +=  

[ ]0212 HSiHH ˆ,ˆˆ~ +=  [ ]0323 HSiHH ˆ,ˆˆ~ += . 

 

 In this way the Hamiltonian is brought to a block-diagonal from. 
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Estratto per riassunto della tesi di dottorato 

L’estratto (max. 1000 battute) deve essere redatto sia in lingua italiana che in lingua inglese e nella lingua 
straniera eventualmente indicata dal Collegio dei docenti. 
L’estratto va firmato e rilegato come ultimo foglio della tesi.  
 

Studente: NICOLA TASINATO ________________________  matricola: 955380 ____________ 

Dottorato: SCIENZE CHIMICHE ___________________________________________________ 

Ciclo: XXII_________  

 

Titolo della tesi1 : INFRARED SPECTROSCOPY OF ATMOSPHERICAL AND ASTROPHYSICAL 
RELEVANT MOLECULES: SPECTRAL ANALYSIS, LINE PARAMETER RETRIEVALS AND 
STUDY OF COLLISIONAL DECAY PROCESSES ______________________________________ 

Abstract: This thesis encompasses different topics in the research field of IR spectroscopy, 
which includes line-by-line parameter and absorption cross sections retrievals, medium and high 
resolution analysis, and investigations about collisional processes. The research involving the line-
by-line analysis has led to the development of a line-fitting software, VLSFP. Then, the line 
parameters of SO2 and H2C=CHF has been determined in the 8 – 9 μm atmospheric window by 
TDL spectroscopy. At medium resolution, the FT-IR spectrum of H2C=CHF has been investigated 
experimentally and through CCSD(T) ab-initio calculations. At high resolution, the spectrum of 
CF3Br, has been analysed in the 2ν5

0 and ν2 + ν3 band regions. Absorption cross sections have 
been measured for SO2, H2C=CHF and CF3Br. Finally, the physics of the interactions of chirped IR 
laser radiation with low pressure gases, H2O, N2O and CO2, have been investigated by the 
frequency down-chirped radiation emitted by a QCL spectrometer employed in the intra-pulse 
method.  

 
Questa tesi abbraccia diverse tematiche nell’ambito di ricerca della spettroscopia IR, che 

includono: la determinazione dei parametri di riga e delle sezioni d’urto d’assorbimento, le analisi a 
media e alta risoluzione e gli studi dei processi collisionali. Nella ricerca relativa all’analisi riga per 
riga, è stato implementato un programma per l’interpolazione delle righe spettrali, VLSFP. 
Mediante misure di spettroscopia a diodo laser, sono quindi stati determinati i parametri di riga 
dell’SO2 e del H2C=CHF nella regione della finestra atmosferica intorno agli 8 – 9 μm. A media 
risoluzione, lo spettro FT-IR del H2C=CHF è stato studiato sperimentalmente e per mezzo di calcoli 
ab-initio CCSD(T). Ad alta risoluzione, lo spettro del CF3Br, è stato analizzato in corrispondenza 
della bande 2ν5

0 e ν2 + ν3. Sono inoltre state misurate le sezioni d’urto di SO2, H2C=CHF e CF3Br. 
Infine, la fisica dell’interazione tra radiazione laser IR caratterizzata da “chirp” e gas a bassa 
pressione, H2O, N2O e CO2, è stata investigata per mezzo della radiazione “frequency down-chirp” 
emessa da uno spettrometro QCL operante nel metodo “intra-pulse”. 
 
 

Firma dello studente 
 
—————————— 

                                                 
1 Il titolo deve essere quello definitivo, uguale a quello che risulta stampato sulla copertina dell’elaborato consegnato. 
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