
Università Ca' Foscari di Venezia

Dipartimento di Informatica

Dottorato di Ricerca in Informatica

Ph.D. Thesis: 955835

Lexical and Numerical Domains for Abstract

Interpretation

Giulia Costantini

Supervisor

Prof. Agostino Cortesi

Academic Year 2012/2013

Author's e-mail: malvoria@gmail.com

Author's address:

Dipartimento di Informatica
Università Ca' Foscari di Venezia
Via Torino, 155
30172 Venezia Mestre � Italia
tel. +39 041 2348411
fax. +39 041 2348419
web: http://www.dsi.unive.it

To Rebecca, the light of my eyes

Abstract

The goal of this thesis is to contribute to the �eld of formal methods employed for
the static veri�cation of computer program properties. The context is the Abstract
Interpretation framework, one of the various possible techniques to perform static
analyses. In particular, we focus on the design of novel abstract domains to analyze
the basic building blocks of computer programs: lexical and numerical variables, as
well as relationships between variables.

We start by considering lexical variables, i.e. strings, which have become very
important in the last years because of the spread of programs building HTML pages,
dynamically creating SQL queries or XML documents and so on. Ensuring the secu-
rity of such applications is fundamental. However, most of the existing approaches
to string analysis are speci�c in one way or another (for example, they can only
verify one property, or they can be used within only one language, etc.). We build
a highly generic framework to approximate string values. We do this by de�ning
a suite of abstract domains not focused on a speci�c language or property. The
domains that we design are very di�erent in terms of precision and performance:
in particular, three of them are simple and can only verify basic properties but
they have a low computational cost. The other two domains are more complex and
costly, but they are also very precise. The user of the framework can then choose
the most appropriate domain to use for the speci�c analysis to perform, based on
the computational constraints and the kind of property to be veri�ed.

Then, we move to numerical domains. We focus on a speci�c �eld, i.e. that of
hybrid systems, with the purpose of improving the precision of an existing abstrac-
tion, the IVSF domain [24]. Such domain abstracts the inputs of hybrid systems
coming from the environment through interval-valued step functions. This abstrac-
tion is rough because each step of the abstract function consists of a simple �xed
interval. We de�ne a new domain where the abstraction inside each step is made by
two linear functions, allowing for a greater degree of precision. We also introduce a
sound abstraction function for both domains (IVSF and our new domain, TSF) and
we give the abstract semantics of arithmetic operations over continuous functions,
to allow for possible future applications of TSF outside hybrid systems.

Finally, we consider the problem of analyzing programs where variables are
strongly related. The two main existing approaches to this issue are relational
abstract domains and power-set extensions. Both approaches share strong perfor-

mance limits (especially the power-set extensions) reducing their practical appli-
cability. Taking inspiration from the practical �eld of physics simulations inside
computer games software, we de�ne a novel parametric abstract domain which ap-
proximates the whole state of the program (i.e., the values of all variables) through
a tuple of abstract values (coming from a base abstract domain), one for each vari-
able. An abstract element of our domain is made by a set of such tuples, tracking a
disjunctive kind of information. The name of the domain (Parametric Hypercubes)
outlines the idea that each tuple represents an hypercube in the space of variable
values: an abstract state is composed by a set of hypercubes. The parametric na-
ture of the domain makes it �exible and usable in various contexts, not only physics
simulations.

In order to provide experimental evidence of their actual applicability, we imple-
mented our domains and we applied them to a suite of case studies. The framework
for string analysis has shown the trade-o� between performance and precision of the
various domains, ranging from quick and rough to slower but more precise analyses.
The most precise domain of the framework yields to optimal results in a challenging
case study which required the use of the widening because of a loop with unknown
condition. The improved version of IVSF (TSF) has indeed shown to be more pre-
cise: we applied our domain to the same case study used in the presentation of IVSF
and veri�ed that we reach better results without a�ecting the performance of the
computation. Finally, the domain of Parametric Hypercubes gave very encourag-
ing results when applied to a small but signi�cant case study coming from games
software (a bouncing ball) and was e�ective when applied to a generic context as
well.

Acknowledgments

I always said I would have skipped the acknowledgments part of my thesis, because
I believe that the people I want to thank already know how much I am indebted
to them. However, now that I actually �nd myself at the end of my Ph.D., I think
that they deserve to have a written mention (because verba volant... but scripta
manent !). So, here we are:

To Tino, my professor and advisor: thank you because you taught me many
things, which not only apply to Computer Science but, more importantly, to life in
general. You consistently encouraged me to aim high. You showed me how to see
a glass half-full, instead of half-empty. Each time I knocked to your door, I knew
I would �nd a welcoming smile and a positive attitude. Thank you also because,
during the course of my Ph.D., you always had my best interests at heart.

To Pietro: thank you for your never-ending support. Your continuous presence
(even if from long-distance and outside your strict academic duties) has made this
journey much easier and enjoyable. Questions, advices, clari�cations... you were
there for anything I needed! I think very highly of you, both professionally and per-
sonally. For me, you have not only been a supervisor, but also a friend.

To my parents (these days better known as �nonno Aldo� and �nonny�), the two
people I know I can count on, ever. Your love is so big that you stand by side
even when I'm wrong; you put up with my bad tempers; when I'm in need, you do
everything in your powers to help me. You are great parents and wonderful grandpar-
ents. Thank you for always being there. I really hope to have made you proud of me.

To Eppe, my husband, my best friend, the father of my child, and my biggest
supporter: thank you for believing in me even when I didn't, and for pushing me
to reach my potential. We grew together: now and then, the road had its bumps,
but I hope we will continue sharing the journey of life side by side, because we are
much stronger united than apart. Thank you because, if it weren't for your insightful
stubbornness, we wouldn't be where we are now... a pretty damn good place to be!
Dank je wel, mijn liefde.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Methodology . 2

1.2.1 Abstract Interpretation . 2
1.2.2 Static Analyzers . 4

1.3 Context . 6
1.3.1 Lexical Variables . 7
1.3.2 Numerical Variables . 7
1.3.3 Relationships Between Variables 8

1.4 Objectives . 9
1.5 Contributions . 12
1.6 Thesis Overview . 14

2 Abstract Interpretation Background 17
2.1 Sets and Sequences . 18
2.2 Interval Arithmetic . 18
2.3 Preorders, Partial and Total Orders 19
2.4 Lattices . 19
2.5 Functions . 20
2.6 Fixpoints . 20
2.7 Traces . 22
2.8 Galois Connections . 22
2.9 Soundness and Completeness . 24
2.10 Fixpoint Approximation . 26
2.11 Product Operators . 26

2.11.1 Cartesian Product . 27
2.11.2 Reduced Product . 29
2.11.3 Reduced Cardinal Power . 32
2.11.4 Examples . 35

3 A Generic Framework for String Analysis 39
3.1 Introduction . 40
3.2 Case Studies . 44
3.3 Notation . 46
3.4 Language Syntax . 46
3.5 Concrete Domain and Semantics . 47
3.6 Abstract Domains and Semantics . 49

ii Contents

3.6.1 Character Inclusion . 51
3.6.2 Pre�x and Su�x . 56
3.6.3 Bricks . 62
3.6.4 String Graphs . 81
3.6.5 Discussion: Relations Between the Five Domains 94

3.7 Experimental Results . 98
3.8 Related Work . 102
3.9 Discussion . 105

4 The Trapezoid Step Functions Abstract Domain 107

4.1 Introduction . 109
4.2 Case Study . 112
4.3 Language Syntax . 113
4.4 Concrete Domain and Semantics . 114
4.5 Abstract Domain . 117

4.5.1 Normal Form and Equivalence Relation 118
4.5.2 Validity Constraints . 119
4.5.3 Abstract Elements . 120
4.5.4 Partial Order . 121
4.5.5 Re�ne Operator . 123
4.5.6 Greatest Lower Bound . 125
4.5.7 Least Upper Bound . 133
4.5.8 Abstraction and Concretization Functions 138
4.5.9 Compact Operator . 139
4.5.10 Widening . 141
4.5.11 The Lattice D] . 146

4.6 Abstraction of a Continuous Function 146
4.6.1 IVSF Abstraction Function, Fixed Step Width 147
4.6.2 IVSF Abstraction Function, Arbitrary Step Width 147
4.6.3 TSF Basic Abstraction Function, Arbitrary Step Width 148
4.6.4 TSF Basic Abstraction Function, Fixed Step Width 149
4.6.5 Dealing with Floating Point Precision Issues in TSF 149
4.6.6 Dealing with Floating Point Precision Issues in IVSF 151

4.7 Abstract Semantics . 152
4.8 Experimental Results . 159

4.8.1 Varying the Number of Steps 159
4.8.2 The Integrator Case Study . 160
4.8.3 Combination of TSF with IVSF 161

4.9 Related Work . 163
4.10 Discussion . 164

Contents iii

5 The Parametric Hypercubes Abstract Domain 165
5.1 Introduction . 167
5.2 Case Study . 171
5.3 Language Syntax . 173
5.4 Concrete Domain and Semantics . 173
5.5 Abstract Domain . 174

5.5.1 Lattice Structure . 175
5.5.2 Abstraction and Concretization Functions 177
5.5.3 Widening Operator . 178
5.5.4 Enhancing Precision: O�sets 179

5.6 Abstract Semantics . 181
5.6.1 The Abstract Semantics of Arithmetic Expressions, I 182
5.6.2 The Abstract Semantics of Boolean Conditions, B 183
5.6.3 The Abstract Semantics of Statements, S 184

5.7 Tuning the Analysis . 187
5.7.1 Initialization . 187
5.7.2 Tracking the Origins . 188
5.7.3 Width Choice . 189

5.8 Experimental Results . 191
5.8.1 Setting Up . 191
5.8.2 Varying the Minimum Width Allowed 192
5.8.3 Finding Appropriate Starting Values 192
5.8.4 Varying Other Parameters . 196
5.8.5 Discussion . 198
5.8.6 Extending the Case Study from 2D to 3D 200

5.9 Related Work . 202
5.9.1 Abstract Domains . 202
5.9.2 Hybrid Systems . 204

5.10 Other Applications . 205
5.11 Discussion . 209

6 Conclusions 211

Bibliography 215

iv Contents

List of Figures

1.1 Abstract Interpretation analysis . 3
1.2 The structure of Sample . 6

3.1 The case studies . 44
3.2 Syntax . 46
3.3 The results of CI . 55
3.4 The results of PR and SU . 62
3.5 The abstract domain BR with K = {a, b} 70
3.6 The results of BR . 79
3.7 An example of string graph . 82
3.8 An example of string graphs normalization 84
3.9 A complete example of string graphs normalization 86
3.10 Computation of the lub . 88
3.11 The results of SG . 93
3.12 The hierarchy of abstract domains . 98
3.13 Two additional case studies . 99

4.1 The hybrid system modelling a bouncing ball [115] 111
4.2 Simple integrator . 112
4.3 Syntax . 113
4.4 Example of a trapezoid de�ned on [0, 3] 117
4.5 A TSF abstract element on the domain [0, 10] 119
4.6 A TSF abstract element on the domain [0, 10] which violates the sec-

ond validity constraint at t = 3 . 120
4.7 A TSF abstract element on the entire domain R+ 121
4.8 Partial order . 123
4.9 Re�ne operator . 124
4.10 Examples of the glb sub-step splitting 128
4.11 The glb does not always preserve the second validity condition 129
4.12 Examples of the lub sub-step splitting 135
4.13 Concretization function . 138
4.14 Merging of two steps within the compact operation 140
4.15 Notation . 141
4.16 The abstraction on the step [a, b] . 148
4.17 Creation of the step around stationary point π 150
4.18 Creation of steps without stationary/in�ection points 151
4.19 TSF (left) and IVSF (right) abstractions of sin(x), with 4 steps, on

the domain [0, 2π] . 161

vi List of Figures

4.20 TSF (left) and IVSF (right) abstractions of sin(x), with 4 steps, on
the domain [0, π

2
] . 162

5.1 Bouncing ball case study . 171
5.2 Bouncing ball generation . 172
5.3 Syntax . 173
5.4 The abstract state of the case study after the initialization of the

variables (focusing the attention only on px, py, when their widths
are, respectively, 10.0 and 25.0) . 176

5.5 The abstract state of the case study after the �rst iteration of the
loop (focusing the attention only on px, py, when their widths are,
respectively, 10.0 and 25.0) . 177

5.6 Varying the minimum width allowed - Plots 193
5.7 Varying the position to reach to exit the screen 197
5.8 Varying the starting horizontal velocity 197
5.9 Varying the starting vertical position 198
5.10 Varying the starting vertical velocity 199
5.11 Varying the starting horizontal position 199
5.12 Analysis tool . 200
5.13 The bouncing ball case study extended in three dimensions 201
5.14 A generic case study with implicit dependencies between variables . . 206

List of Tables

3.1 Shortcuts of string constants in prog1 45
3.2 String operators in Java , C# and PHP 48
3.3 Concrete semantics . 48
3.4 The abstract semantics of CI . 53
3.5 The abstract semantics of PR . 59
3.6 The abstract semantics of SU . 60
3.7 The abstract semantics of BR . 77
3.8 The abstract semantics of SG . 90
3.9 Comparison of the abstract domains results 94
3.10 Results of prog3 . 100
3.11 Results of prog4 for variable sql1 . 101
3.12 Results of prog4 for variable sql2 . 101

4.1 Concrete semantics . 115
4.2 Precision of TSF and IVSF varying the number of steps 160
4.3 Values computed by TSF and IVSF on intgrx 161

5.1 Concrete semantics . 174
5.2 Varying the minimum width allowed (MWA) 192
5.3 Varying the horizontal velocity (vx) 195
5.4 Results of the analysis of the 3D bouncing ball case study 202

viii List of Tables

1

Introduction

1.1 Motivation

Computer programs often contain errors. Executing a bugged program can lead to
failures with catastrophic consequences, especially when the program manipulates
important data (think about databases containing sensitive information) or when
it is used to control electronic instrumentation (like in avionics or medical devices).
Two extreme examples are the over�ow bug that caused the failure of the Ariane 5
launcher in 1996 [7] resulting in the self-destruction of the rocket 37 seconds after
launch, and the cumulated imprecision errors in a Patriot missile defense system
that caused it to miss its Scud missile target, resulting in 28 people being killed in
1992 [2].

For this kind of programs, testing is not enough, since it is only able to expose
a �nite subset of all the traces (i.e., possible executions) of the program. When
stronger guarantees about the correctness of a program are needed, static analysis
must be used. Static analysis is suite of di�erent techniques sharing a common
approach to soundly verify speci�c properties of programs, by approximating all
their traces. In the last years, the commercial application of static analysis tools
has grown considerably, especially in the veri�cation of properties of software used in
safety-critical computer systems and to locate potentially vulnerable code (Section
7.3 of [113] cites many of such applications). Three examples of this growth come
from the medical, nuclear and embedded software industries: (i) the U.S. Food and
Drug Administration (FDA) has identi�ed the use of static analysis for medical
devices as means to improve the quality of their software [6]; (ii) the UK Health
and Safety Executive recommends the use of static analysis on Reactor Protection
Systems [4]; and (iii) a recent study by VDC Research reports that 28.7% of the
embedded software engineers surveyed currently use static analysis tools and 39.7%
expect to use them within 2 years [3].

In this thesis, we wish to contribute to the �eld of formal methods used in the
veri�cation of the correctness of programs. In particular, the focus of this thesis
will be the creation of novel abstract domains to improve the analyses of lexical
and numerical properties of programs within the Abstract Interpretation framework.
In Section 1.2 we intuitively describe how Abstract Interpretation works and the
variety of existing tools (static analyzers) used to put such technique into practice,
i.e. to automatically analyze programs. In Section 1.3 we do a brief survey of the

2 1. Introduction

objects manipulated by programs and the existing techniques to deal with their
static analysis. Based on these �ndings, in Section 1.4 we pinpoint exactly some
areas where we see the possibility of improvements and we explain in detail which
goals we expect to reach with this thesis. In Section 1.5 we recap the results obtained
through our research and how they respond to the objectives established in Section
1.4. In Section 1.6 we explain how this thesis is structured.

1.2 Methodology

To perform static analysis on a program, one has to choose between various spe-
ci�c techniques, the main ones being data�ow analysis, control �ow analysis, model
checking, program veri�cation and Abstract Interpretation [132].

Abstract Interpretation [55] is a mathematical theory that allows one to build
up completely automatic static analyses that may apply directly on the source code.
This is not the case of model checking, another static analysis approach, as it requires
a model of the program (usually a Kripke structure) provided by the user as an input.
It also di�ers from theorem proving techniques, as they often require an interaction
with a specialized user (i.e., someone that thoroughly knows how the theorem prover
works) to generate the proofs. During the last years, Abstract Interpretation has
been widely used and also successfully applied to some important scenarios [18]. For
these reasons, we choose to work inside the Abstract Interpretation framework.

1.2.1 Abstract Interpretation

Abstract Interpretation is a mathematical theory of approximation of semantics de-
veloped by Patrick Cousot and Radhia Cousot in 1977 [53, 57], invented in order to
deal systematically with abstractions and approximations. Applied to static anal-
ysis of programs, Abstract Interpretation allows to approximate an uncomputable
concrete semantics with a computable abstract one. The approximation makes the
result correct but incomplete. In fact, the inferred properties are satis�ed by all the
possible results of the concrete semantics, but if a property is not inferred in the
abstract semantics it may still be satis�ed by the concrete one. The main idea of
Abstract Interpretation is to de�ne the semantics of a program as the �xpoint of a
monotonic function.

We can informally generalize the basic idea of Abstract Interpretation as follows:

• The starting point is the concrete domain together with the concrete seman-
tics. The concrete domain is used to de�ne a formal description of a com-
putation state, while the concrete semantics is a function de�ned on the
concrete domain, function which associates a meaning to program statements.
The concrete semantics is the most precise mathematical expression of the
behaviour of a program.

1.2. Methodology 3

• An abstract domain has to be determined, which is an approximation of the
concrete domain. An abstract domain models some properties of the concrete
computations, leaving out super�uous information.

• From the abstract domain we can derive an abstract semantics and prove its
correctness. The abstract semantics allows us to execute the program on the
abstract domain in order to compute the properties modelled by such domain.

• Applying a �xpoint algorithm we can statically compute a concrete ap-
proximation of the concrete semantics. If the abstract domain chosen for the
analysis respects a certain condition (ACC; see Chapter 2 for more details),
the abstract semantics can be computed in a �nite time. Otherwise, we need
a widening operator in order to make the analysis convergent, still obtaining
sound (even if more approximated) results.

This approach is schematically depicted in Figure 1.1, where α represents the ab-
straction function (which maps concrete values into abstract ones), γ represents the
concretization function (which maps abstract values into concrete ones), f represents
the concrete semantics and f# represents the abstract semantics.

Figure 1.1: Abstract Interpretation analysis

Abstract Interpretation, then, is a general theory which formalizes the notion of
approximation. Such approximation can be more or less precise, depending on the
considered observation level. The most important concept in Abstract Interpretation
is that of abstract domain, i.e., a class of properties together with a set of operators
to manipulate them. Each abstract domain embeds some sort of approximation and
it does not exist a single, all-purposes abstract domain. Various factors in�uence
the choice of the abstract domain to use during a speci�c analysis, for example the

4 1. Introduction

kind of property to verify, the language constructs used in the analyzed program,
the amount of available computing resources, and so on. However, a single abstract
domain can generally be used in more than one context. Creating a new abstract
domain for each new speci�c application is not feasible in the long run, since it
would produce an excessive proliferation: abstract domains should, ideally, be as
reusable as possible. One of the big challenges of Abstract Interpretation is exactly
to create abstract domains which can be used in as many contexts as possible, while
retaining a satisfactory level of precision and performance. Obviously, such domains
can be de�ned from scratch, or by improving (in terms of performance or precision)
existing ones.

1.2.2 Static Analyzers

Abstract Interpretation allows, among other applications, the design of static analy-
ses that are sound by construction. Many generic static analyzers based on Abstract
Interpretation have been proposed in the recent years. These static analyzers sup-
port the use of di�erent domains (in order to obtain faster and more approximated
or slower and more re�ned analyses) and they can analyze di�erent properties. The
main advantage of this approach is that the most part of an analyzer can be reused
to analyze di�erent properties, and tuned at di�erent levels of e�ciency and preci-
sion through approximation and re�nement. A brief overview of some known static
analyzers based on the Abstract Interpretation framework follows:

Astrée is a static program analyzer aiming at proving the absence of Run Time
Errors (RTE) in programs written in the C programming language. Astrée
analyzes structured C programs, with complex memory usages, but without
dynamic memory allocation and recursion. This encompasses many embedded
programs as found in earth transportation, nuclear energy, medical instrumen-
tation, aeronautic, and aerospace applications, in particular synchronous con-
trol/command such as �ight controls [65, 140], or space vehicle manoeuvres
[21].

Polyspace is a static code analysis tool inspired by the failure of the maiden �ight
of Ariane 5 where a run time error resulted in destruction of the launch vehicle.
It is the �rst example of large-scale static code analysis by Abstract Interpre-
tation to detect and prove the absence of certain run-time errors in source
code for the C, C++, and Ada programming languages. Polyspace also checks
source code for adherence to MISRA C and other related code standards [66].

Fluctuat and HybridFluctuat Fluctuat's features include the static analysis of
C and ADA programs, sensitivity analysis of program variables, worst-case
generation, interactive analysis and analysis of hybrid systems. HybridFluc-
tuat [22] extends the static analysis of embedded programs by considering
the physical environment in which they are executed. The analyzer considers

1.2. Methodology 5

programs written in C-ANSI and ordinary di�erential equations presented as
C++ functions. The tool then automatically derives invariants on the whole
system.

Apron is a library dedicated to the static analysis of the numerical variables of a
program by Abstract Interpretation. Such library is intended to be a com-
mon interface to various underlying abstract domains and to provide addi-
tional services that can be implemented independently from the underlying
library/abstract domain. Currently, APRON provides C, Java and OCaml
interfaces.

Julia is a software tool [141] which performs the static analysis of full sequential
Java bytecode. This tool is generic in the sense that no speci�c abstract
domain (analysis) is embedded in it. Instead, abstract domains are provided
as external classes that specialise the behaviour of JULIA. Static analysis
is performed through a denotational �xpoint calculation, focused on some
program points called watchpoints (which can be automatically placed by the
abstract domain or manually provided by the user). JULIA can be instructed
to include a given set of Java library classes in the analysis, in order to improve
its precision. Moreover, it gives abstract domains the opportunity to soundly
approximate control and data-�ow arising from exceptions and subroutines.

Sample 1 (Static Analyzer of Multiple Programming LanguagEs) [72, 73, 75, 154]
is a generic analyzer based on the Abstract Interpretation theory. Sample
can be composed with di�erent heap abstractions, approximations of value
information (e.g., numeric domains or information �ow), properties of interest,
and languages. Several heap analyses, value and numerical domains have
been already plugged. The analyzer works on an intermediate language called
Simple. Up to now, Sample supports the compilation of Scala, Java bytecode
and Touchdevelop code to Simple.

Given the wide choice of analyzers available, we can rely on an existing one instead of
creating one from scratch, thus being able to focus only on the de�nition of abstract
domains which will be plugged in the chosen analyzer. We decided to use Sample
because it provides a good combination of accessibility (for example, Polyspace is
a commercial tool), genericity and �exibility (two important requirements since we
want to deal with di�erent kinds of applications). Figure 1.2 depicts the structure
of Sample. However, our contribution does not depend on the speci�c analyzer.
We will build new abstractions to improve the static analysis of programs: the
implementation of such abstractions is linked to Sample, but their mathematical
structures are completely �analyzer-independent�.

1http://www.pm.inf.ethz.ch/research/semper/Sample

http://www.pm.inf.ethz.ch/research/semper/Sample

6 1. Introduction

Figure 1.2: The structure of Sample

1.3 Context

Abstract Interpretation focuses on abstracting the data and operations of programs.
Programs manipulate data (i.e., values), and the operations that you can execute on
values strictly depend on their type. The most basic data types are often referred
to as primitive data types and they are the building blocks for more complex code.
Even though the actual range of primitive data types that are available is dependent
upon the speci�c programming language that is being used, the most classic primi-
tive data types are common to almost all languages. They are: numbers (integers
and �oating point), characters and boolean 2. Programs are then mainly built
by manipulating two basic building blocks: text (in the form of characters and their
composition, i.e. strings) and numbers. We will now analyze in more details the
existing approaches to the static analysis of these two data types, to �nd out pos-
sible limitations and opportunities for improvements. Moreover, since the variables
of a program almost always interact with each other, we will also reason about re-
lationships between them and explore how this issue has been dealt with until now
in Abstract Interpretation.

2For example, in Java there are eight primitive data types: int, long, short, byte, double, �oat,
char, boolean.

1.3. Context 7

1.3.1 Lexical Variables

In computer and machine-based telecommunications terminology, a character is a
unit of information that roughly corresponds to a grapheme, grapheme-like unit,
or symbol, such as in an alphabet or syllabary in the written form of a natural
language. Examples of characters include letters, numerical digits, common punctu-
ation marks (such as �.� or �-�), and whitespace. Characters are typically combined
into strings, an important and useful datatype which is implemented in nearly every
programming language (and in some of them it is also considered a primitive data
type). In computer programming, a string is traditionally a sequence of characters.
In formal languages, which are used in mathematical logic and theoretical computer
science, a string is a �nite sequence of symbols that are chosen from a set called an
alphabet. The connection between the two de�nitions is that a string data type is
a data type modelled on the idea of a formal string.

In the last years, the use of strings in programs has become widespread: SQL
queries, XML documents, HTML pages, re�ection and so on are part of many pro-
grams. It has become crucial to provide some way to analyze string-manipulating
programs, in order to guarantee at compile time that some negative scenarios will
never happen. In fact, a lot of approaches to string analysis have been developed
through the years, as the use of type systems [99, 100, 110], automata and context-
free grammars [35, 98, 144, 150], and abstract domains [33, 109]. What characterizes
most of these approaches is their speci�city : usually, they can be used only on a
small subset of all the possible veri�cation problems that can arise in string analy-
sis. Some are focused on a speci�c application domain (like the generation of XML
documents), some are not fully automatic (that is, they may require manual anno-
tations), some others support only few string operations. Also, for most of these
approaches the level of precision is completely �xed and not tunable depending on
the speci�c problem to tackle: in some cases, the analysis could be too precise and
slow, while in some others it could be unable to verify the property of interest.

1.3.2 Numerical Variables

In the past 30 years, the analysis of numerical properties of programs has been
intensively investigated, and a broad spectrum of abstractions has been developed
based upon results from linear algebra, arithmetic [87], linear programming [62] or
graph theory [123]. Some examples of numerical abstract domains found in the
literature are Polyhedra [31], Octagons [123], Octahedrons [38], TVPI [139], linear
(in)equalities [62], congruences [86, 87], a�ne relationships [108], and so on. Each
of these domains de�nes a representation for a set of properties of interest and algo-
rithms to manipulate them. They vary in expressiveness and in the cost/precision
trade-o�. In general, the scalability of algorithms which discover complex program
invariants is limited. However, techniques that partition the variables of the pro-
gram in small-size packets that are tractable by these algorithms have been recently

8 1. Introduction

applied to the veri�cation of large safety-critical software with success [18, 148]. For
�oating-point variables, there exist several methods for bounding the �nal error of
a program, including interval arithmetic, forward and backward analysis [97, 149],
or Abstract Interpretation-based static analysis (that includes Astrée [60, 128] and
Fluctuat [64, 84]).

1.3.3 Relationships Between Variables

Regardless of their type (numerical, lexical, boolean, etc.), the variables of a program
can have relationships between them: often it happens that the value of one variable
strongly in�uences the life of other variables. When such relationships are weak, the
precision of the result is not negatively a�ected by considering each variable on its
own. However, when dealing with programs with strongly inter-related variables,
the abstractions which consider separately each variable can su�er a lot in terms of
precision.

In Abstract Interpretation, the usual approach to deal with this issue is to use
relational domains. Relational domains are able to express relationships between
variables, that is, arithmetic properties involving several variables at a time, such
as x = y + z. Some examples of relational numerical abstract domains are: con-
vex polyhedra [62], octagons [123], di�erence-bound matrices [121], linear equali-
ties [108], and combinations thereof (like [32, 38, 71, 120, 139] and many others).
The convexity of such domains is the key of a tractable analysis of software for
bu�er over�ows, null pointer dereferences and �oating point errors. The problem is
that classical relational domains are more precise but also much more costly than
non-relational ones, compromising their applicability in practical settings. Another
problem of classical relational domains (like octagons or polyhedra) arises from their
convexity: their abstract union operator is an imprecise over-approximation of the
concrete union, because (in the case of non-convex sets of values) it introduces spu-
rious values in the analysis. Convexity, then, causes the analysis to fail in many
common cases because it limits the ability of these domains to represent sets of
states. The classical example is an if− then− else statement which (based on
some unknown condition) assigns 1 or -1 to an integer variable (let us call it x).
After computing the least upper bound of the two possible �ow paths, convex do-
mains infer the information that [−1, 1] is the interval of possible values of x, thus
including also the 0 value (which x can never assume in the concrete semantics).

The simplest way to solve this problem is to introduce disjunction in the analysis,
in the form of power-set extension [55, 80]. The power-set extension of an abstract
domain re�nes the abstract domain by adding elements to represent disjunctions
precisely. The presence of disjunction helps in removing the convexity limitation,
but it also increases the complexity of the analysis: power-set domains can be ex-
ponentially more expensive compared to the base domain, due to the large number
of disjuncts that can be produced during the analysis. Furthermore, special tech-
niques to lift the widening from the base domain up to the disjunctive domain [16]

1.4. Objectives 9

are needed. It is fundamental to manage the high complexity of power-set extensions
by controlling the production of disjuncts during the analysis and avoiding their ex-
cessive proliferation. One well-known approach consists in syntactically bounding
the number of disjuncts: the challenge in this case becomes the choice of which
disjuncts to merge (to limit as much as possible the loss of precision). For example,
some path sensitive data-�ow analysis techniques implicitly manage complexity by
joining abstractions only when the property to be proved remains unchanged as a
result [63], or �semantically� by careful domain construction [16, 116]. Another tech-
nique for disjunctive static analysis has been proposed and implemented in [137]:
this analysis is formulated for a generic numerical domain, and an heuristic function
based on the Hausdor� distance is used to merge related disjuncts. Finally, another
known approach is trace partitioning [94, 136], a technique which annotates control
�ow objects by partial trace information. This idea was �rst introduced in [94],
but still their proposal was not practical, especially for large programs, while the
framework proposed in [136] is more general and �exible. In this framework, a token
representing some conditions on the execution �ow is attached to a disjunct, and
formulae with similar tokens are merged together. In this way, each element of the
disjunction is related to some property about the history of concrete computations,
such as �which branch of the conditional was taken�. The choice of the relevant
partitioning is a rather di�cult and crucial point. In practice, it can be necessary
to make this choice at analysis time.

1.4 Objectives

The purpose of this thesis is the study of new domains (both lexical and numerical)
to e�ectively contribute to the automatic veri�cation of software through the Abstract
Interpretation framework.

Note that an abstract domain can be designed following two possible methods:

• choosing a speci�c problem to address and creating a domain especially cal-
ibrated for it. The advantage of this method is that the resulting domain
should give very good result on the problem at hand, but it could be totally
useless in other contexts. Obviously, it is not feasible to create a new domain
for every kind of veri�cation problem, so the ideal result of this process would
be to obtain a domain which is usable also in other settings than the speci�c
one for which it was originally conceived.

• choosing the object to abstract (i.e., a certain data type) and creating an
abstraction for it which is as more generic as possible, i.e. with no speci�c
application in mind. The generality of this approach is at the same time
a strength and a weakness: one must be careful to not abstract too much,
otherwise the risk is that there is no practical context where the inferred
information is su�cient to verify interesting properties.

10 1. Introduction

For each of the three building blocks of programs pinpointed above (lexical variables,
numerical variables, relationships between variables), we are going to follow a dif-
ferent approach, based on what already exists in that context (in terms of abstract
domains or other static veri�cation techniques) and on the goal that we want to
reach. In particular:

1. In the case of lexical variables, in Section 1.3 we hinted at the various existing
approaches to string analysis, a topic which has gained more and more impor-
tance together with the di�usion of web technologies and databases. However,
almost all of these approaches tend to be quite speci�c. For example, some
verify the consistency of a generated document with respect to a speci�c stan-
dard (HTML, XML, etc.) and others are related to a speci�c programming
language and its constructs (Java, PHP, etc.). Also, other approaches impose
limitations on the kind of program that can be analyzed and others are not
fully automatic, requiring the intervention of the user of the analysis. Finally,
some approaches su�er from a potentially very high complexity, while others
are not precise enough to analyze non-trivial code.

What we think is missing in string analysis is a unifying approach, which is
able to deal with many kind of programs and properties, and which trade-
o� between precision and complexity can be tuned to the desired level. Our
purpose is to �ll this gap, by creating an abstraction that overcomes these
problems and limitations. We are then going to follow the second method
between the two explained before: choosing the object to abstract (the string
data type) and trying to create a highly generic and scalable abstraction.

2. In the case of numerical values, there already exist a lot of well functioning
approaches for their analysis (as shown in Section 1.3). In fact, numerical
values have always been the core of any program, and almost every application
could bene�t from numerical static analysis. However, exactly because of the
wide range of types of programs manipulating numbers, it is certainly useful to
create specialized abstract domains, which are able to better understand and
exploit the speci�c features of the chosen application domain (instead of using
simple and totally generic domains like Intervals). To contribute to numerical
analysis, then, we use the �rst method between the two explained above: we
choose a speci�c problem to address and we create an abstraction tailored for
that problem.

We choose the application �eld of hybrid systems, which has emerged and has
gained a lot of importance in the last years. A hybrid system is a dynamic
system that exhibits both continuous and discrete behaviour. We will talk in
more detail about hybrid systems in Chapter 4: for now note that, in order
to successfully analyze this kind of programs, the analysis techniques must
take into account the program interaction with the external world. One of the
most important interactions to consider is the one between the program and

1.4. Objectives 11

the physical environment [24, 52, 83]. The simplest abstraction of these inter-
actions consists in bounding both inputs and outputs within intervals. This
abstraction is sound but very rough, because it does not consider that a con-
tinuous variable cannot jump discretely from a value to another (for example,
from the minimum value of the abstracted interval to the maximum one). A
more precise abstraction should take into account this fact, and consider the
behaviour of a continuous variable as that of a continuous univariate function,
where the input variable is the time. The �rst step in this direction was taken
by Bouissou and Martel in 2008 [24], when they proposed a new approach to
abstract continuous functions. They presented an abstract domain called IVSF
(Interval Valued Step Functions), which basic idea is to partition the timeline
into (not necessarily regular) steps, and then to choose for each step an over-
and under-approximation of the function on this step. This approximation
inside each step is still very rough, since it is represented by a simple interval,
�xed throughout all the step. Our purpose is to improve the abstraction of
IVSF.

3. In the case of relationships between variables, two main approaches exist to
keep them into account, as explained in Section 1.3: relational domains or
power-set extensions (i.e., disjunction). On the one hand, the problems of re-
lational domains are the (high) complexity, the �xed kind of relationships that
they can track (i.e., x < y+ z) and the convexity of the representation (which
can decrease the precision of the result in certain cases). On the other hand,
the problem of power-set extensions is mainly their (very high) complexity.
Another important approach (trace partitioning) is based on the partitioning
choice, which could be di�cult to make for the user.

Then, we set as our goal to �nd a new approach to the analysis of programs
where variables are inter-related, trying to reduce the limitations of the other
existing approaches. We also choose a speci�c application domain to which
apply our abstraction. The inspiration for this part of our work, in fact, has
come from a speci�c application �eld, where static analysis is still not ef-
fectively applied: physics simulations within games software. Nowadays the
video-games industry has a great role in the economy, and the impact of reduc-
ing the testing and debugging time in video-game development could be very
big. Almost every game contains some physics and the variables of physics
simulations are always strongly inter-related: for these reasons, such �eld is
a very interesting workbench for our purpose. Moreover, physics simulations
are widely used also outside the game industry, so our result could hopefully
be useful in many other applications.

12 1. Introduction

1.5 Contributions

Our main goal during this thesis research has been to provide new advanced abstract
domains that are both �rmly grounded mathematically and of practical interest. As
explained in more detail in Sections 1.3 and 1.4, we found three venues where we
judged there was space for improvements. In particular, we set the following goals:

1. the creation of a unifying approach for string analysis, tunable in terms of
precision and performance;

2. the improvement of the existing abstraction IVSF to consider the continuous
inputs of hybrid systems;

3. the creation of a new approach to deal with relationships between variables,
speci�cally tailored to keep into account the peculiarities of physics simulations
within games software.

Each of these three contributions can be conceived in two layered levels. Firstly, we
give theoretical results: mathematical de�nitions, algorithms, and theorems. Sec-
ondly, most of these results have been implemented and plugged inside the Sample
static analyzer and tested on small program fragments. In particular, our contribu-
tions are the following ones:

1. We created a framework for string analysis which comprises �ve di�erent ab-
stract domains. In fact, creating a single abstract domain generic enough to
support precisely the analysis of di�erent kind of programs and properties is
a di�cult (if not impossible) task. For this reason, we thought that the best
solution to reach our goal would have been to create many domains, each one
with a di�erent level of precision (and therefore performance). In this way,
we o�er various abstractions (inside a uni�ed framework) and the user can
choose the most appropriate depending on the speci�c veri�cation problem to
be solved. For each domain we provided the semantics of some string operators
(the most commonly used when dealing with strings and which are present in
any language supporting strings). After plugging the implementation of our
domains into Sample, we tested the framework on some case studies. The ex-
perimental results are satisfactory and con�rm the di�erent levels of precision
and performance of the �ve domains. Note that the framework can be easily
extended to other string operators, by simply de�ning (and then implement-
ing) their abstract semantics on the �ve domains.

2. We created a new abstraction for univariate continuous functions. In fact, the
idea of [24] to represent the values of the inputs of a hybrid system through
a step-function depending on the time (IVSF domain) is certainly insightful.
However, the abstraction contained in each step of IVSF is too rough, since it is
simply a �xed interval for each time instant of that step. We decided to exploit

1.5. Contributions 13

their idea and to go one step forward: in particular, we kept the underlining
de�nition of the step-function but we modi�ed the abstraction inside each step.
In our abstraction, the possible values assumed by the function inside a single
step belong to the area enclosed by two lines which (instead of being horizontal
as in IVSF) are sloped. Geometrically, the shape of this area for a single
step resembles a trapezoid, from which comes the name of our novel abstract
domain TSF (Trapezoid Step Functions). The implementation of the domain
has shown that we indeed improved the precision of IVSF as it was our goal:
TSF is a strictly more precise (and still e�cient) approximation of continuous
functions with respect to IVSF. Also, we designed a sound abstraction function
which, given a continuous function (respecting certain conditions), creates its
abstraction in both IVSF and TSF. Finally, our result opens the door to new
applications and research directions, for example the one of cost analysis. To
this end, we already de�ned the abstract semantics of arithmetic operators on
the domain and we are now currently working to extend the domain de�nition
to work with bivariate functions, to allow for more complex cost functions.

3. We de�ned a new approach to consider relationships (both implicit or explicit)
between the variables of a program. We did this by creating a disjunctive non-
convex non-relational domain, generic with respect to the type of variables of
the program (since it is parametric on a base abstract domain).

Instead of de�ning an abstraction for the values assumed by single variables
(as it is usually the case in Abstract Interpretation: for example, numerical
domains abstract the value of a single numeric variable), we de�ned a struc-
ture which abstracts the tuple of values which compose the whole state of the
program (i.e., one value for each variable). Each abstract tuple can then be
seen as a valid set of concrete states of the program. The non-convexity comes
from the disjunctive nature of the domain, since an abstract element is made
by a set of abstract tuples. The parametric nature of the domain, instead,
comes from the fact that we did not �x a-priori the way in which the single
elements of the tuples are abstracted (i.e., how the single variables are ap-
proximated). However, since we wanted to focus on game physics simulations
(where variables are �oating point values), we also de�ned a novel speci�c ab-
straction for such values, exploiting the basic concept of Intervals mixed with
�xed partitioning of the value space (to improve performance) and with o�sets
inside the interval (to improve precision).

We applied this domain (called Parametric Hypercubes because each tuple of
values resembles an hypercube in the variables values space) to a small but
signi�cant case study coming from games (a bouncing ball, both in 2D and
3D) and the results have been encouraging, both in terms of performance
and precision. Regarding the practical applicability of our domain, note that:
(i) physics simulations are not only an important part of games software but

14 1. Introduction

are also the basic constituent of many other applications (hybrid systems,
ballistics, weather forecasts, environmental simulations and so on), meaning
that this domain could potentially be useful in such �elds as well; (ii) the
parametric nature of the domain gives the user great freedom in specialising
it, making it suitable for completely di�erent kind of applications than physics
simulations, as shown in Section 5.10.

1.6 Thesis Overview

The rest of the thesis is structured in �ve chapters. Each chapter begins with an
introductory paragraph and the list of its contents. The three central chapters
(Chapters 3, 4, 5) contain our contributions. In all three cases, we designed new ab-
stract domains which solve a particular veri�cation problem, as explained in Sections
1.4 and 1.5. For this reason, the three chapters follow the same general structure,
that is:

• Introduction, a section where the problem tackled by the chapter is informally
introduced and the existing literature on the subject is brie�y presented. In
particular, this section will usually start with an extensive treatment of the
general context to which the problem belongs, followed by a recap of the state-
of-the-art and our contribution to such �eld.

• Case Study, a section which explains the case study (one or more) chosen to
exhibit the features of our proposed solution to the problem.

• Notation, a section where we de�ne speci�c notation for the problem at hand
(if necessary) in addition to the general notation introduced in Chapter 2.

• Language Syntax, a section where we present the programs syntax supported
by our approach. Such syntax is usually inspired by the case studies of the
chapter.

• Concrete Domain and Semantics, a section which formally de�nes the con-
crete domain (i.e., the lattice of concrete objects we aim to abstract), and the
concrete semantics (i.e., the e�ect of operations which manipulate the concrete
objects).

• Abstract Domain and Semantics, a section where the abstract domain (i.e.,
the lattice of abstract elements which approximate the concrete ones) and the
abstract counterparts of the concrete operations are presented. The character-
ization of an abstract domain requires the de�nition of: the abstract elements
which compose the lattice, the partial order between elements, the top and
bottom elements, the lub and glb operators, the widening operator (to guar-
antee convergence of the analysis, when the height of the domain is in�nite),
and �nally the abstraction and concretization functions.

1.6. Thesis Overview 15

• Experimental Results, a section containing the empirical evaluation of the pro-
posed abstract domain(s) to show if and how our solution solves the problem
of the chapter.

• Related Work, a section which explores in detail the existing literature con-
cerning the problem tackled, comparing it to our solution. The purpose of this
section is to better understand if and how we reached the goal of the chapter.

• Discussion, a section which recaps the contribution of the chapter.

The results of Chapters 3, 4, 5 have been published in the proceedings of in-
ternational conferences with program committee [45, 46, 48]. Moreover, an article
based on the contents of Chapter 3 has been accepted for publication in the journal
SPE (Software: Practice and Experience) [47]; an article based on the contents of
Chapter 4 has been submitted to another journal and is currently being reviewed.
A part of Chapter 2 (the survey on product operators in Abstract Interpretation)
has also been published [42].

Chapter 2 introduces some of the necessary mathematical background. It is mostly
intended to de�ne the terminology and notation that will be used throughout
the thesis.

Chapter 3 presents a framework of abstractions for string-valued variables. We
start by de�ning the concrete semantics of strings on a selected subset of
string operators. Then, we move on to the de�nition of �ve abstract domains
for the static analysis of programs manipulating strings. The domains are
the following: (i) character inclusion, which tracks the characters certainly or
maybe included in a string; (ii) pre�x, which tracks how a string begins; (iii)
su�x, which (dually to pre�x) tracks how a string ends; (iv) bricks, which
represents a string through the composition of simpli�ed regular expressions;
(v) string graphs, which exploits the data structure of type graphs to represent
strings through trees with backward arcs. Each domain has a di�erent level
of precision and complexity. For every domain, we prove the fundamental
theoretical properties, which guarantee the soundness of the analysis, and we
de�ne the abstract semantics of the operators selected before. We show the
main features of such framework by applying each domain to the analysis of
some case studies, thus showing the di�erences in precision. Finally, we discuss
the relationships between the domains of the framework, creating a lattice of
abstract domains.

Chapter 4 de�nes the Trapezoid Step Functions (TSF) domain to abstract con-
tinuous functions, with the purpose of analyzing hybrid systems where the
behaviour of the physical environment does not depend on the discrete con-
trol. After brie�y recalling the de�nition of IVSF, the domain presented by
Bouissou and Martel [24], we generalize their approach: instead of assigning

16 1. Introduction

two numbers (for a lower and an upper-bound of sensor-values) to each time
interval, the introduced abstract domain assigns two linear functions to each
time interval. We present all the required lattice operations and for every
one of them we give a proof of correctness. We put particular e�ort into the
de�nition of a sound abstraction function, which has to keep into account the
computability on a �nite precision machine, where the �oating point represen-
tation induces rounding errors. We apply the domain to the analysis of two
case studies, and we show the increase in precision (without loss of perfor-
mance) with respect to the approach of IVSF. We also give the semantics of
arithmetic operations on functions, to allow for possible di�erent applications
(like cost analysis) of our domain.

Chapter 5 presents a novel disjunctive non-relational abstract domain (called Para-
metric Hypercubes) for the static analysis of physics simulations. The interest
in such kind of applications is due to the massive use of physics in game soft-
ware, a �eld where static analysis is still not e�ectively applied. To successfully
analyze this kind of programs, the abstraction must have a way to consider
relationships between variables, since every variable of a physics simulation
strongly in�uences the life of other variables. We chose to implicitly express
these relationships by tracking disjunctive information. More precisely, we
consider the variables space (where each axis represents the values of a certain
variable) and we divide it in hypercubes of �xed size. The state of the pro-
gram is associated to a set of such hypercubes. When executing a statement,
we produce a new set of hypercubes, by applying the operation separately
on each single hypercube. We present the syntax supported by our abstract
semantics, and we apply the analysis to a representative case study (a bounc-
ing ball). We show how this domain allows for interactive debugging, letting
the developer �nd the appropriate subset of starting values which make the
program correct (with respect to a certain property). The �rst experimental
results are satisfactory, both in terms of precision and performance. Note also
that, even though we focused on �oating-point variables, our approach can be
instanced in applications other than game software, because it is parametric
in the abstract domain used to abstract the single variables: we conclude this
chapter by showing an example of a di�erent application where our domain
proves to be useful as well.

Chapter 6 reports the conclusions and the perspectives for future work.

2

Abstract Interpretation

Background

In this chapter we introduce the mathematical background that will be used through-
out the thesis. In particular, we introduce some basic notation, and some well-known
theoretical results on lattices, �xpoints, and Abstract Interpretation theory. The
main �classical� references to Abstract Interpretation are [50, 53, 55, 132]. An Ab-
stract Interpretation-based program analysis can be tuned at di�erent granularities,
changing the trade-o� between e�ciency and precision. In some cases, it is also
possible to re�ne the results through the combination of di�erent domains: at the
end of this chapter we investigate the various kinds of product operators between
abstract domains 1.

Contents

2.1 Sets and Sequences . 18

2.2 Interval Arithmetic . 18

2.3 Preorders, Partial and Total Orders 19

2.4 Lattices . 19

2.5 Functions . 20

2.6 Fixpoints . 20

2.7 Traces . 22

2.8 Galois Connections . 22

2.9 Soundness and Completeness 24

2.10 Fixpoint Approximation 26

2.11 Product Operators . 26

2.11.1 Cartesian Product . 27

2.11.2 Reduced Product . 29

2.11.3 Reduced Cardinal Power 32

2.11.4 Examples . 35

1This part of the chapter is derived from [42].

18 2. Abstract Interpretation Background

2.1 Sets and Sequences

Let S,A,B be sets. |S| denotes the cardinality of S and A/B denotes the set A
where the elements of B have been removed. The set of all subsets of a set S will
be denoted by ℘(S). Set inclusion, union and intersection are respectively denoted
⊆,∪,∩. The sets of all natural, integer, rational, and real numbers will be denoted,
respectively, by N, Z, Q, and R.

Given a possibly in�nite set of symbols Σ, we denote by Σ∗ the family of �nite-
length strings (i.e., ordered sequences) from symbols in Σ (that is, Σ∗ = {s1 · · · sn :
∀i ∈ [1..n] : si ∈ Σ}), including the empty string ε. Given a sequence s, we use
the notation s[i · · · j] to indicate the subsequence starting at s[i] and ending at s[j]
(extremes included).

Given two lists l1, l2 of any kind, let concatList(l1, l2) be the function that returns
their concatenation.

2.2 Interval Arithmetic

The concept of interval arithmetics was presented by R. E. Moore in [129]. A closed
compact interval [a, a] is de�ned as the closed set of real values of the form

[a, a] = {c ∈ R|a ≤ c ≤ a}

where a is called the lower bound and a the upper bound.
The width of the interval is de�ned as the di�erence between its bounds (a− a).

We say that c ∈ R is in [a, a], and denote it c ∈ [a, a], if a ≤ c ≤ a. Moreover, we
say that [b, b] is included in [a, a] (or that [b, b] is a subinterval of [a, a]), and denote
it [b, b] ⊆ [a, a], if it holds that a ≤ b and b ≤ a. Further, [a, a] and [b, b] are equal,
denoted [a, a] = [b, b], if [a, a] ⊆ [b, b] and [b, b] ⊆ [a, a].

Unary and binary arithmetic operators on intervals, for n ∈ N, are de�ned as
follows:

[a, a] +̂ [b, b] =[a+ b, a+ b]

[a, a] −̂ [b, b] =[a− b, a− b]
[a, a] ×̂ [b, b] =[min((a× b), (a× b), (a× b), (a× b)),

max((a× b), (a× b), (a× b), (a× b))]

[a, a] /̂ [b, b] =

{
[a, a] ×̂ [1/b, 1/b] if b× b > 0

unde�ned if 0 ∈ [b, b]

2.3. Preorders, Partial and Total Orders 19

2.3 Preorders, Partial and Total Orders

A preorder vP over a set P is a binary relation which is re�exive (i.e., ∀x ∈ P :
x vP x) and transitive (i.e., ∀x, y, z ∈ P : x vP y ∧ y vP z ⇒ x vP z). For x ∈ P ,
the downward closure of x, written ↓ x, is de�ned by

↓ x := {y ∈ P : y vP x}

If vP is also antisymmetric (i.e., ∀x, y ∈ P : x vP y ∧ y vP x ⇒ x = y), then
it is called partial order. vP is a total order if, in addition, for each x, y ∈ P ,
either x vP y or y vP x. A set P equipped with a partial (resp., total) order vP is
said to be partially ordered (resp., totally ordered), and sometimes written 〈P,vP 〉.
Partially ordered sets are also called posets. A subset S of a poset 〈P,vP 〉 is said
to be a chain if it is totally ordered with respect to vP .

Given a poset 〈P,vP 〉 and S ⊆ P , y ∈ P is an upper bound for S if and only if
x vP y for each x ∈ S. An upper bound y for S is the least upper bound (or lub)
of S if and only if for every other upper bound y′ of S it holds y vP y′. The lub,
when it exists, is unique. Lower bounds and greatest lower bounds (glb) are de�ned
dually. 〈P,vP 〉 is said to be bounded if it has a minimum and a maximum element
(respectively, ⊥P and >P). A directed set is a poset in which any two elements, and
hence any �nite subset, has an upper bound in the set. A complete partial order
(abbreviated as cpo) is a poset such that every increasing chain has a least upper
bound.

A poset 〈P,vP 〉 is said to satisfy the ascending chain condition (ACC) [133] if
every ascending chain p1 vP p2 vP . . . of elements of P is eventually stationary,
that is, there is some positive integer n such that ∀m > n : pm = pn. Similarly,
〈P,vP 〉 is said to satisfy the descending chain condition (DCC) if there is no in�nite
descending chain. Every �nite poset satis�es both ACC and DCC.

2.4 Lattices

A poset 〈L,vL〉 such that, for each x, y ∈ L, both lub{x, y} and glb{x, y} exist, is
called a lattice. In this case, lub and glb are also called, respectively, the join and
the meet operations of the lattice. A poset where only the glb operation is well-
de�ned is called a meet-semilattice. A complete lattice is a lattice 〈L,vL〉 such
that every subset of L has both a least upper bound and a greatest lower bound. A
complete lattice 〈L,vL,tL,uL,>L,⊥L〉, with partial ordering vL, lub tL, glb uL,
greatest element (top) >L, and least element (bottom) ⊥L, is denoted L̂. Any �nite
lattice is complete. A complete lattice is always a cpo: it has both a least element
⊥L :=

⊔
∅ and a greatest element >L :=

⊔
L; also, each set S ⊆ L has a greatest

lower bound
d
S :=

⊔
{X ∈ L | ∀Y ∈ S : X vL Y }. An important example of

complete lattice is the power-set 〈℘(S),⊆,∪,∩, ∅, S〉 of any set S.

20 2. Abstract Interpretation Background

2.5 Functions

A function is a relation r such that if (x, y1) ∈ r and (x, y2) ∈ r, then y1 = y2. In
other words, a function is a relation that relates each element of the domain to at
most one element of the co-domain. Thus, given an element x ∈ dom(r), we denote
the element in the co-domain by r(x). In order to de�ne functions, we use the λ
notation: by f = λx.E, we denote a function f that relates the evaluation of the
expression E (which depends on x) to the element x of its domain.

By the notation f : X 7→ Y we mean that the domain of the function f is
included in X, and its co-domain is included in Y . Let f : X 7→ Y and g : Y 7→ Z,
then g ◦ f : X 7→ Z represents the composition of functions f and g, i.e. g(f(x)).

Given two posets 〈X;vX〉 and 〈Y ;vY 〉, a function f : X 7→ Y is:

• monotonic if it preserves the order of the elements, i.e. ∀x1, x2 ∈ X : x1 vX
x2 ⇒ f(x1) vY f(x2)

• join preserving if it preserves least upper bounds, i.e. ∀x1, x2 ∈ X : f(x1 tX
x2) = f(x1) tY f(x2), where tX ,tY are the least upper bound operators of
the two posets

• complete join preserving if it preserves least upper bounds for arbitrary subsets
of X, i.e. ∀X1 ⊆ X such that

⊔
X X1 exists, then f(

⊔
X X1) =

⊔
Y f(X1)

• continuous if it preserves the least upper bound of increasing chains, i.e. for
all chains C ⊆ X we have that f(

⊔
X C) =

⊔
Y {f(c) : c ∈ C}

Similarly, a function f : X 7→ Y is said to be meet preserving if it preserves the
greatest lower bound of two elements and complete meet preserving if it preserves
the greatest lower bound for any subset of X.

2.6 Fixpoints

Let f be a function on a poset 〈X;vX〉. The sets of pre-�xpoints, �xpoints, post-
�xpoints of f are respectively:

• prefp(f) = {x ∈ X : x vX f(x)}

• fp(f) = {x ∈ X : x = f(x)}

• postfp(f) = {x ∈ X : f(x) vX x}

In particular, ⊥ and > are, respectively, a pre-�xpoint and a post-�xpoint for
all operators.

The least �xpoint of a function f is denoted lfp(f) and is such as lfp(f) ∈
fp(f)∧∀p ∈ fp(f) : lfp(f) vX p. If f has a least �xpoint, this is unique. Similarly,

2.6. Fixpoints 21

the greatest �xpoint of a function f is denoted gfp(f) and is such as gfp(f) ∈
fp(f) ∧ ∀p ∈ fp(f) : p vX gfp(f). If f has a greatest �xpoint, this is unique.
Moreover, we denote by lfpvx f the least �xpoint of f that is greater than x with
respect to the order v and by gfpvx f the greatest �xpoint of f smaller than x with
respect the order v.

A monotonic function de�ned over a complete lattice admits a least and greatest
�xpoint: this is guaranteed by Tarski's theorem presented in [143]. This fundamental
theorem states that the set of �xpoints fp(f) of a monotonic function f is a complete
lattice:

Theorem 2.6.1 (Tarski's theorem). Let 〈L,vL,tL,uL,>L,⊥L〉 be a complete lat-
tice. Let f : L 7→ L be a monotonic function on this lattice. Then, the set of �xpoints
is a non-empty complete lattice, and:

lfpvL
⊥ f =

l

L

{x ∈ L : f(x) vL x}

gfpvL
⊥ f =

⊔
L

{x ∈ L : x vL f(x)}

Since such theorem is not constructive (i.e., it does not explain how to compute
the least and greatest �xpoint, it just states their existence), an alternative char-
acterization of the least �xpoint for monotonic functions de�ned over a complete
lattice can be given using the theorem presented in [54]. In this paper, Cousot &
Cousot give a constructive proof of Tarski's theorem without using the continuity
hypothesis.

Theorem 2.6.2 (Constructive version of Tarski's theorem). Let 〈L,vL,tL,uL,>L,⊥L〉
be a complete lattice. Let f : L 7→ L be a monotonic function on this lattice. De�ne
the following sequence:

f 0 = ⊥L
f δ = f(f δ−1) for every successor ordinal δ

f δ =
⊔
α<δ

fα for every limit ordinal δ

Then the ascending chain {f i : 0 ≤ i ≤ δ} (where δ is an ordinal) is ultimately
stationary for some ρ ∈ N that is fρ = lfp≤⊥f .

The set of �xed points of f is shown to be the image of X by preclosure opera-
tions de�ned by means of limits of stationary trans�nite iteration sequences. This
characterizion of �xed points by iterative schemes leads to practical computation or
approximation procedures and it allows the use of trans�nite induction for proving
properties of these �xed points.

22 2. Abstract Interpretation Background

2.7 Traces

Given a set S, a trace τ is a partial function N 7→ S such that

∀i ∈ N : i /∈ dom(τ)⇒ ∀j > i : j /∈ dom(τ)

This means that, if a trace is unde�ned for a certain n ∈ N, then it is also unde�ned
for all the successors of n: the domain of all non-empty traces is a segment of N.
The empty trace (i.e. the trace τ such that dom(τ) = ∅) is denoted by ετ . Let S be
a generic set of elements: we denote by S

−→
+ the set of all the �nite traces composed

by elements in S.
The length of a trace τ is formally de�ned as len(τ) = i+1 : i ∈ dom(τ)∧ i+1 /∈

dom(τ). If τ = ετ , then len(τ) = 0.
A trace is often represented as a sequence of states, i.e. σ0 → σ1 → . . . corre-

sponds to the trace {(0, σ0), (1, σ1), . . . }.
We represent with S

−→
+
T−→

the set of traces in S
−→
+ which cannot be extended further

with respect to the transition
T−→. Formally: S

−→
+
T−→

= {σ0 → · · · → σi : σ0 → · · · →

σi ∈ S
−→
+ ∧ @σj ∈ S : σi

T−→ σj}.
Two traces τ1 and τ2 can be concatenated and the result (written as τ1 →τ τ2)

represents the trace τ1 ∪ {i 7→ σ : ∃j ∈ dom(τ2) : i = j + len(τ1) ∧ σ = τ2(j)}.
Given a set of initial elements S0 and a transition relation

T−→⊆ Σ×Σ, the partial
trace semantics [55] builds up all the traces that can be obtained by starting from
traces containing only a single element from S0 and then iteratively applying the
transition relation until a �xpoint is reached.

De�nition 2.7.1 (Partial trace semantics [55]). Let Σ be a set of states, S0 ⊆ Σ a

set of initial elements, and
T−→⊆ Σ×Σ a transition relation. Let f : [℘(Σ)→ [Σ

−→
+ →

Σ
−→
+]] be the function de�ned as:

F (S0) = λT.{0 7→ σ0 : σ0 ∈ S0}∪

∪{σ0 → · · · → σi−1 → σi : σ0 → · · · → σi−1 ∈ T ∧ σi−1
T−→ σi}

The partial trace semantics is de�ned as:

PTJS0K = lfp⊆∅ F (S0)

2.8 Galois Connections

Abstract Interpretation has been widely applied as a general technique for the sound
approximation of the semantics of computer programs. In particular, abstract do-
mains (to represent data) and semantics (to represent data operations) approximate

2.8. Galois Connections 23

the concrete computation. When analyzing a program and trying to prove some
properties on it, the quality of the result is determined by the abstract domain
choice, since there is always a trade-o� between accuracy and e�ciency of the anal-
ysis.

As already explained in Chapter 1, the main idea of Abstract Interpretation is
to de�ne the semantics of a program as the �xpoint of a monotonic function. The
concrete semantics belongs to a concrete semantic domain C which is a partially
ordered set 〈C;vC〉. In such a setting, the partial order vC formalizes the loss of
information. The abstract semantics also belongs to a partial order 〈A;vA〉, which
is ordered by the abstract version vA of the concrete approximation order vC .

De�nition 2.8.1 (Galois connection, [53]). Let 〈C;vC〉 and 〈A;vA〉 be two posets.
Two functions α : C 7→ A and γ : A 7→ C form a Galois connection if and only if

∀c ∈ C : ∃a ∈ A : α(c) vA a⇒ c vC γ(a)

We denote this fact by writing 〈C;vC〉 −−−→←−−−α
γ
〈A;vA〉.

Theorem 2.8.1 ([53]). Let 〈C;vC〉 and 〈A;vA〉 be two partial orders and let α :
C 7→ A and γ : A 7→ C be two maps such that:

• α and γ are monotone

• α ◦ γ is reductive (i.e., ∀a ∈ A : α ◦ γ(a) vA a)

• γ ◦ α is extensive (i.e., ∀c ∈ C : c vC γ ◦ α(c))

Then, it holds that 〈C;vC〉 −−−→←−−−α
γ
〈A;vA〉.

Usually, we call the left part of the Galois connection as the concrete poset, and
the right one as the abstract poset. Similarly, γ is called the concretization func-
tion and α is the abstraction function. Galois connections enjoy several properties
(composition, uniqueness of the adjoint, preservation of bounds, etc.) which are ex-
plained in [56]. A Galois connection can be induced by an abstraction function that
is complete tA preserving, or dually by a concretization function that is complete
uC preserving (where tA and uC are respectively the upper bound operator on the
abstract lattice and the lower bound operator on the concrete lattice), as proved by
Proposition 7 of [56].

Theorem 2.8.2 (Galois connection induced by lub preserving maps). Let α : C 7→
A be a complete join preserving map between posets 〈C;vC〉 and 〈A;vA〉. De�ne:

γ = λa. tC {c : α(c) vA a}

If γ is well-de�ned, then:
〈C;vC〉 −−−→←−−−α

γ
〈A;vA〉

24 2. Abstract Interpretation Background

Theorem 2.8.3 (Galois connection induced by glb preserving maps). Let γ : A 7→ C
be a complete meet preserving map between posets 〈C;vC〉 and 〈A;vA〉. De�ne:

α = λc. uA {a : c vC γ(a)}

If α is well-de�ned, then:

〈C;vC〉 −−−→←−−−α
γ
〈A;vA〉

An interesting property of Galois connections is that they are compositional, i.e.
the composition of two Galois connections is still a Galois connection.

Theorem 2.8.4 (Composition of Galois connections). Suppose that 〈A;vA〉 −−−→←−−−
α1

γ1

〈B;vB〉 and 〈B;vB〉 −−−→←−−−
α2

γ2 〈C;vC〉. Then:

〈A;vA〉 −−−−−→←−−−−−
α2◦α1

γ1◦γ2 〈C;vC〉

2.9 Soundness and Completeness

The process of abstraction induces loss of information with respect to the concrete
domain and semantics. For this reason, the result of the application of the abstract
semantics does not necessarily coincide with the result of the concrete one. However,
as already hinted in Section 1.2.1, we require that properties which are veri�ed by
the abstract process, are veri�ed also in the concrete one: the analysis must be
sound. Instead, we accept that the abstract result includes more information (i.e.,
it is less precise) than the concrete one: the analysis can be incomplete.

We are now going to formally de�ne the concepts of soundness and completeness
of an abstract interpretation. We are also going to de�ne a metrics to compare the
precision of di�erent abstract domains related to the same concrete domain.

Soundness

It is very important to prove the correctness of the abstract semantics with respect
to the concrete one: the concretization of the results of the abstract semantics must
over-approximate the output of the concrete semantics.

De�nition 2.9.1 (Soundness). Let S : C 7→ C and S : A 7→ A be the concrete
and the abstract semantics respectively, where the two posets C,A form a Galois
connection (〈C;vC〉 −−−→←−−−α

γ
〈A;vA〉). The abstract semantics S is sound i� for all

the pre�xpoints p ∈ P ⊆ A of S, we have that:

γ ◦ SJpK wC SJγ(p)K

2.9. Soundness and Completeness 25

The soundness of an abstract semantics can be proved in many ways [57], each
relying a speci�c subset of properties of transfer functions, concrete and abstract
lattices, concretization and abstraction functions. Note that we showed the de�ni-
tion of soundness based on the computational process of the concrete domain, but
we could have expressed it also based on the computational process of the abstract
domain.

Completeness

We would like to understand which conditions are required for an abstract interpre-
tation to be complete, that is when the concrete and abstract processes of calculus
preserve the same precision. When de�ning the soundness, we could base our de�ni-
tion both on the abstract process and the concrete one; in the case of completeness,
however, the two characterizations are not equivalent. Following [117], we report
here the most known notion of completeness, which compares the computational
results in the abstract domain:

De�nition 2.9.2 (Complete abstraction [55]). Let C,A be two posets which form

a Galois connection (〈C;vC〉 −−−→←−−−α
γ
〈A;vA〉), and let S : C 7→ C be a concrete

function. Then, the abstract function S : A 7→ A is complete for S, on the abstract
domain α(C), if:

α ◦ S = S ◦ α

This notion (also called backward completeness, or B-completeness) requires that
the result of the abstract and concrete computations are the same in the abstract do-
main. If we decided to compare the results of the two computations in the concrete
domain, we would obtain another notion of completeness (called forward complete-
ness, or F -completeness), which holds i� S◦γ = γ◦S. This notion is less known with
respect to B-completeness, which is considered the standard notion of completeness
in abstract interpretation [82, 131].

When abstract domains (and their corresponding abstract operations) do not
respect the completeness property, it can be useful to measure their precision rela-
tively to each other. In fact, note that many Galois connections can be de�ned with
the same concrete domain as left part but di�erent abstract domains as right part,
where each abstract domain tracks a di�erent kind of information on the concrete
objects. Such abstract domains can be compared with regard to the precision of
the abstract representation. In particular, we de�ne that, given three partial orders
〈A1;vA1〉, 〈A2;vA2〉, 〈C;vC〉 and the maps αA1 : C 7→ A1, γA1 : A1 7→ C, αA2 : C 7→
A2, γA2 : A2 7→ C satisfying the properties required by Theorem 2.8.1, the abstract
domain A1 is more precise than A2 if and only if it holds that

γA1(αA1(x)) ⊆ γA2(αA2(x)) ∀x ∈ C

This de�nition compares the precision of the abstraction in itself, but it does not
involve the abstract operations associated to the domains (the semantics). Again, we

26 2. Abstract Interpretation Background

could informally estimate the relative degree of precision of the abstract semantics
of di�erent domains, by executing the analysis on a reference set of benchmarks
programs, and then comparing their results on such benchmarks.

2.10 Fixpoint Approximation

The concrete and abstract semantics of an Abstract Interpretation-based analysis
are de�ned as the �xpoint computation of monotonic functions.

If the abstract domain enjoys the ACC condition, then the abstract semantics
computation is guaranteed to terminate in a �nite time. If not, the convergence of
the analysis must be forced through the use of a widening operator. Informally, a
widening is a particular kind of join for which every increasing sequence is stationary
after a �nite number of steps, by extrapolating an approximation of the sequence
limit. Formally:

De�nition 2.10.1 (Widening [43]). Given an ascending chain d0 ≤ d1 ≤ d2 ≤ . . .
in a poset 〈C;≤〉, a widening operator ∇ : C 7→ C is an upper bound operator such
that the chain w0 = d0, w1 = w0∇d1, . . . , wi = wi−1∇di is ultimately stationary, i.e.
∃j ∈ N : ∀k ∈ N : k > j ⇒ wj = wk.

The analysis obtained using the widening operator is surely convergent and still
sound, even if the results are more approximated.

Theorem 2.10.1 (Widening soundness). Let 〈C;vC〉 and 〈A;vA〉 be two complete

lattices, α : C 7→ A and γ : A 7→ C be two functions such that 〈C;vC〉 −−−→←−−−α
γ

〈A;vA〉. Let S : C 7→ C and S : A 7→ A be two monotonic function such that
lfp(S) vC γ ◦ lfp(S).

Then, the sequence de�ned by

a0 = ⊥

ai =

{
S(ai−1) if S(ai−1) vA ai−1
S(ai−1)∇ai−1 otherwise

is ultimately stationary and its limit ak is a post-�xpoint of S. Hence, it soundly
approximates the concrete semantics, i.e. lfp(S) vC γ ◦ lfp(S) vC γ(ak).

2.11 Product Operators

An interesting feature of the Abstract Interpretation theory is the possibility to
combine di�erent domains in the same analysis. In fact, the Abstract Interpretation
framework o�ers some standard ways to compose abstract domains, ensuring the

2.11. Product Operators 27

preservation of the theoretical properties needed to guarantee the soundness of the
analysis. These compositional methods are called domain re�nements. A system-
atic treatment of abstract domain re�nements has been given in [76, 79], where a
generic re�nement is de�ned to be a lower closure operator on the lattice of abstract
interpretations of a given concrete domain. These kinds of operators on abstract
domains provide high-level facilities to tune a program analysis in terms of accuracy
and cost. Two of the most well-known domain re�nements are the disjunctive com-
pletion [55, 58, 77, 80, 106] and the reduced product [55], but they are not the only
ones. The reduced product can be seen as the most precise re�nement of the sim-
ple Cartesian product. Moreover, the reduced cardinal power is introduced by [55].
While the other domain re�nements have been, since their introduction, widely used
and explored, the reduced cardinal power has seen less further developments since
1979, with the notable exceptions of [81] and, successively, its application inside the
static program analyzer ASTRÉE.

In this section we aim at giving a survey of the di�erent product operators in-
troduced in the literature by providing a uniform terminology, an analysis of their
complexity, and of the implementation e�ort they require. In particular, we intro-
duce the three main ways of combining various abstract domains in the Abstract
Interpretation theory (namely, the Cartesian product, the reduced product, and the
reduced cardinal power). For the sake of simplicity, we will focus on the combination
of two abstract domains. Therefore, we suppose that two abstract domains A and
B are given, and that they are equipped with lattice operators: 〈A,≤A,tA,uA〉 and
〈B,≤B,tB,uB〉.

In addition, let C be the concrete domain. We suppose that this domain is
equipped with lattice operators as well: 〈C,≤C,tC,uC〉. We suppose that both A and

B are sound abstractions of C, that is, they form a Galois connection: 〈C,≤C〉 −−−→←−−−
αA

γA

〈A,≤A〉 and 〈C,≤C〉 −−−→←−−−
αB

γB 〈B,≤B〉, where αA, γA and αB, γB are the abstraction and

concretization functions of A and B, respectively. 2

Finally, abstract domains provide abstract semantic transformers. Formally, we
suppose that A provides SA : A → A, and B provides SB : B → B. These are
sound approximation of the concrete semantics SC : C → C. Formally, ∀a ∈ A :
SCJγA(a)K ≤C γA(SAJaK) and ∀b ∈ B : SCJγB(b)K ≤C γB(SBJbK).

2.11.1 Cartesian Product

The elements of this domain are elements in the Cartesian product of the two do-
mains, and the operators are de�ned as the component-wise application of the op-
erators of the two domains.

2There exist other approaches which can be used as well (e.g., when the best abstraction func-
tion does not exist [62]). However, the Galois connection-based approach is de�nitely the most
commonly used [56].

28 2. Abstract Interpretation Background

Formally, let C = A × B be the Cartesian product. The partial order is de-
�ned as the conjunction of the partial orders of the two domains ((a1, b1) ≤C
(a2, b2) ⇔ a1 ≤A a2 ∧ b1 ≤B b2). Similarly, the least upper bound and the
greatest lower bound operators are de�ned as the component-wise application of
the operators of the two domains ((a1, b1) tC (a2, b2) = (a1 tA a2, b1 tB b2) and
(a1, b1) uC (a2, b2) = (a1 uA a2, b1 uB b2), respectively). This way, we obtain that
the Cartesian product 〈C,≤C,tC,uC〉 forms a lattice. The pairwise approach to
combine operators holds also in the case of widening. In fact, given the widen-
ing operators ∇A and ∇B on the domains A and B, respectively, the operator
∇A×B((a1, b1), (a2, b2)) = (a1∇Aa2, b1∇Bb2) is a widening operator on C [43].

In addition, the abstraction function αC consists in the component-wise applica-
tion of the abstraction functions of the two domains (αC(c) = (αA(c), αB(c))), while
the concretization function γC consists in the intersection of the results obtained by
the concretization functions of the two domains on the corresponding component
(γC(a, b) = γA(a)uC γB(b)). Then, the Cartesian product forms a Galois connection

with the concrete domain (formally, 〈C,≤C〉 −−−→←−−−
αC

γC 〈C,≤C〉).

Finally, also the semantic operator SC : C→ C is de�ned as the component-wise
application of the abstract semantics of the two domains (formally, SCJ(a, b)K =
(SAJaK,SBJbK)). This way, the semantics of the Cartesian product is a sound over-
approximation of the concrete semantics (∀(a, b) ∈ C : SCJγC(a, b)K ≤C γC(SCJa, bK)).

As pointed out by Patrick Cousot [49], �the Cartesian product discovers in one
shot the information found separately by the component analyses�, but �we do not
learn more by performing all analyses simultaneously than by performing them one
after another and �nally taking their conjunctions�.

In addition, the Cartesian product may contain several abstract elements that
represent the same information. For instance, consider the Cartesian product of the
Interval and the Parity domains, and in particular the elements ([2..4],O), ([2..3],O),
([3..4],O), and ([3..3],O), where O represents the odd element of the Parity domain.
All these elements concretize to the singleton {3}, but some of them are not mini-
mal3.

Complexity

When applying lattice or semantic operators, the complexity of the operator de�ned
on C is exactly the sum of the complexity of the corresponding operators on A and B.
Instead, the height of the lattice of C (that is important to estimate the complexity
of computing a �xpoint using this domain) is the multiplication of the heights of A
and B.

3An abstract element a is minimal w.r.t. a property c ∈ C if and only if (i) γ(a) ≥C c and (ii)
6 ∃a′ : γ(a′) ≥C c ∧ a′ < a.

2.11. Product Operators 29

Implementation

Given the implementations of A and B, the implementation of C is completely
straightforward, and it could be used to combine any existing abstract domain in a
completely generic way. In fact, the implementation only requires the existence of
the operators, and there is no need to develop anything speci�c on such domains.

2.11.2 Reduced Product

Even if the Cartesian product is a quite e�ective way to cheaply combine two do-
mains in terms of both formalization and implementation, it is clear that one may
want to let the information �ow among the two domains to mutually re�ne them.
Already in one of the foundative papers of Abstract Interpretation [55], Patrick and
Radhia Cousot introduced the reduced product exactly with the purpose of re�n-
ing the information tracked by A and B. In particular, when we have an abstract
state that is non-minimal, we can take the smallest element which represents the
same information by reducing it. A reduction improves the precision of the abstract
representation with respect to the order in the Cartesian product without a�ecting
its concrete meaning. Intuitively, a reduction exploits the information tracked by
one of the two domains involved in the product to re�ne the information tracked
by the other one (and vice versa). Let (a, b) be an element of a reduced product
(where a and b belong respectively to the two domains combined in the product:
a ∈ A, b ∈ B). Let c1 be the set of concrete values associated to a and c2 be the
set of concrete values associated to b. Then, the element (a, b) represents the set of
concrete elements c1 ∩ c2. The reduction tries to �nd the smallest element (a′, b′)
such that the concretizations of a′ and b′ are subsets of those of a, b (respectively),
but their intersection remains the same as the original one (c1 ∩ c2).

The lattice and semantic structures of the reduced product are exactly the same
as those of the Cartesian product. In addition, a reduction operator aimed at re�ning
the information tracked by the two domains is introduced, and it is used after each
lattice or semantic operator application. Formally, the reduction operator ρ : C→ C

is de�ned by ρ(c) =
d
C{c′ ∈ C : γC(c) ≤C γC(c′)}. Nevertheless, such de�nition

is not computable in general, and often one wants to have a relaxed version of this
operator that is not expensive to compute. In general, a reduction operator has to
satisfy the following two properties: (i) ρ(c) ≤C c (the result of its application is
a more precise abstract element); (ii) γ(ρ(c)) = γ(c) (an abstract element and its
reduction represent the same property).

Consider again the example of the product of the Interval and Parity domains.
A simple reduction operator may increase by one the lower bound (or decrease by
one the upper bound) of the interval if the bound does not respect the information
tracked by the Parity domain (e.g., it is odd while the parity tracks that the value
is even). This way, the reduction of ([2..4],O), ([2..3],O), and ([3..4],O) yields in
all cases the abstract value ([3..3],O). Note that the reduction operator does not

30 2. Abstract Interpretation Background

always obtain the minimal information. For instance, if we reduce ([1..1],E) (where
E represents the even element of the Parity domain), we would obtain (⊥I ,E) (where
⊥I is the bottom element of the Intervals domain), that could be further reduced
to (⊥I ,⊥P) (where ⊥P is the bottom element of the Parity domain). Therefore,
the reduction operator usually requires to compute a �xpoint [49]. As two other
examples, consider the reduced product of Intervals and Congruences 4 domains.
Firstly, the reduction of the abstract value ([2..2], 3) produces the abstract value
(⊥, 3) which is not a minimal element. We need to iterate the reduction to obtain
(⊥,⊥). Secondly, the reduction of ([4..5], 2) produces the abstract value ([4..4], 2)
which can be reduced again to ([4..4], 4).

Observe that the widening operator on the reduced product cannot be derived
�for free� as re�nement on the the widening operators of the components. As proved
in [43], this is true only under the (quite strict) condition that ∀a1, a2 ∈ A,∀b1, b2 ∈
B, (a1∇Aa2, b1∇Bb2) ∈ ρ(A × B), where ρ(A × B) represents the elements of the
reduced product. This property does not often hold in practice. A far simpler (and
naive) solution consists in applying the widening component-wise and refraining
from reducing the result before feeding it back as left argument of the next iteration' s
widening. This subsumes the above condition (as the reduction becomes idempotent
on the iterates), but it also allows converging when the condition does not hold.

Complexity

In addition to the complexity of the Cartesian product, the reduced product requires
to compute the reduction operator. Therefore, the complexity of an operator of the
reduced product is the sum of the complexity of the operators de�ned on A and B
and of the reduction operator. Since this operator may require computing a �xpoint,
the �nal cost of a generic operator could be rather expensive. Therefore, usually
it is more convenient to de�ne a reduction operator that re�nes only partially the
information tracked by the two domains [114].

Implementation

The implementation of the reduction operator has to be speci�c for the domains
we are re�ning. Therefore, while the Cartesian product was completely generic
and automatic, the reduced product requires one to de�ne and implement how two
domains let the information �ow among them. This means that each time we want
to combine two domains in a reduced product we have to implement such operator.
On the other hand, all the other lattice and semantic operators are de�ned exactly

4An abstract element of the Congruence domain is de�ned as two integer numbers (a, b) which
represent the set of concrete values {x : x ∈ aZ + b}. Here we consider a simpler version, where
an abstract element is made by only one integer a, which abstracts all multiples of such value:
{x : x ∈ aZ}.

2.11. Product Operators 31

as in the Cartesian product, except that they have to call the reduction operator at
the end, but this can be implemented generically w.r.t. the combined domains.

Granger Product

Granger [88] proposed an elegant solution to compute an approximation of the re-
duction operator. Granger based his new product on the de�nition of two operators
ρ1 : C → A and ρ2 : C → B. The idea is that each operator re�nes one of the
two domains involved in the product. The �nal reduction is obtained by iteratively
applying ρ1 and ρ2. In order to have a sound reduction operator, ρ1 and ρ2 have to
satisfy the following conditions:

• ρ1(a, b) ≤A a ∧ γC(ρ1(a, b), b) = γC(a, b)

• ρ2(a, b) ≤B b ∧ γC(a, ρ2(a, b)) = γC(a, b)

The intuition behind Granger's product is that dealing with only one �ow of infor-
mation at a time is simpler. Each of the two operators ρ1, ρ2 tries to descend in one
of the lattices: given the abstract element made by the pair (a, b), the ρ1 operator
uses the information from b to go down the lattice of A, while the ρ2 operator uses
the information from a to go down the lattice of B. After each application of ρ1 or
ρ2 we get a smaller element. The descent is iteratively repeated until the operators
cannot recover any more precision: the reduction operator ρ(a, b) is then de�ned
as the �xpoint of the decreasing iteration sequence obtained by applying ρ1 and ρ2.
This is de�ned by the sequence (an, b

n
)n∈N as follows:

(a0, b
0
) = (a, b)

(an+1, b
n+1

) = (ρ1(a
n, b

n
), ρ2(a

n, b
n
))

The Granger product has exactly the same complexity we discussed for the re-
duced product. The main practical advantage of the Granger product is that one
only needs to de�ne and implement ρ1 and ρ2, that is, how the information �ows
from one domain to the other in one step. Then the reduction operator relying on
the �xpoint computation comes for free.

Open Product

Cortesi et al. [41] proposed a further re�nement of the Cartesian product. Its
purpose is to let the domains interact with each other during and after operations
by making explicit the domains' interaction through (abstract) queries. The open
product is orthogonal to Granger's product and the two proposals can be combined,
by incorporating Granger's idea of re�nement inside the open product. The open
product is orthogonal also to other methods such as down-set completion, and tensor
product.

32 2. Abstract Interpretation Background

2.11.3 Reduced Cardinal Power

The reduced cardinal power was introduced by Cousot and Cousot in [55], but the
literature concerning it has been relatively poor on both the theoretical and the
practical level. The main feature of the cardinal power is that it allows one to track
disjunctive information over the abstract values of the analysis. For instance, given
the Interval and the Parity domain, one could track information like �when x is
odd, y is in [0..10]�. Some examples of the application of the cardinal power are
the example 10.2.0.2 of [55], and examples 3 and 4 of [61]. In addition, a detailed
explanation with various examples has been proposed by Giacobazzi and Ranzato
[81]. Let us look at the example in [61], where the following slice of code is analyzed
(typical of data transfer protocols where even and odd numbered packets contain
data of di�erent types):

1 n := 10; i := 0; A := new int[n];

2 while (i < n) do {

3 A[i] := 0;

4 i := i + 1;

5 A[i] := -16;

6 i := i + 1;

7 }

To analyze it, the authors combine Parity (where the lattice is made by the
abstract elements ⊥, o, e,>) and Intervals. The reduced cardinal power of Intervals
by Parity tracks abstract properties of the form (o→ io, e→ ie), which means that
the interval associated to some variable is io (resp., ie) when the parity associated to
another variable (which could be the same) is o (resp., e). First of all, the authors
show a non-relational analysis of the listing above, where they use:

• the reduced product of Parity and Intervals for simple variables;

• the reduced cardinal power of Parity by Interval for array elements (hence
ignoring their relationship to indexes)

For example (o → ⊥, e → [−16, 0]) means that the indexed array elements must
be even with value included between −16 and 0. The result of this analysis is:
i : (e, [10, 10]) (variable i is even and has value 10), n : (e, [10, 10]) (variable n is
even and has value 10), and A : (o→ ⊥, e→ [−16, 0]), which represents that array
elements are abstracted by (o→ ⊥, e→ [−16, 0]) (i.e., they are even and with values
in [−16, 0]). The precision of this analysis can be greatly improved by using again
the reduced cardinal power of Intervals by Parity, but this time relating the parity of
an index of the array to the interval of the elements of the array at that index. The
new result is A : (o→ [−16,−16], e→ [0, 0]), which means that the array elements
at odd indexes are equal to −16 while those at even indexes are 0.

2.11. Product Operators 33

The reduced cardinal power has been formalized as follows in [55]. Given two

abstract domains A and B, the cardinal power P = B
A
with base B and exponent A

is the set of all isotone maps P : A→ B. Roughly, the combination of two abstract

domains in B
A
means that a state in A implies the abstract state of B it is in relation

with. The partial ordering ≤P is de�ned by f ≤P g ⇔ ∀x ∈ A : f(x) ≤B g(x).
Similarly, the least upper bound and greatest lower bound operators are de�ned as
the pointwise application of the operators of B. This way, 〈P,≤P,tP,uP〉 forms a
lattice.

Let f1, f2 be two abstract elements in P. Then, the widening operator ∇P on
(f1, f2) can be de�ned as:

∀x ∈ A : ∇P(f1, f2)(x) = ∇B(f1(x), f2(x))

Observe that the operator above can be e�ectively applied only if A is �nite.
By de�ning αP(c) = λx.αB(c uC γA(x)) and γP(p) consequently, we have that

〈C,≤C〉 −−−−→←−−−−
αP

γP
〈P,≤P〉. We refer the interested reader to [81] (and in particular to

Theorem 3.6 and Proposition 3.7, where � corresponds to uC) for more details and
formal proofs.

A correctness result was presented in [55] as well (Theorem 10.2.0.1). In this
work, the authors focused on a collecting semantics de�ned by a lattice of assertions
which is a Boolean algebra. Afterwards, Cousot and Cousot did not broaden their
theoretical de�nition to a more general setting.

Let us recall the example used in [55] to show the expressiveness of this domain.

1 x := 100; b := true;

2 while b do {

3 x := x - 1;

4 b := (x > 0);

5 }

The exponent of the cardinal power we use to analyze this example is the Boolean
domain for variable b, while the base is the Sign domain for variable x tracking
values +,−, 0 as well as 0+ (meaning that the values are ≥ 0), 0− (meaning that
the values are ≤ 0), 6= 0 (meaning that the values are di�erent from 0). This
way, we track that when variable b has a particular Boolean value, then the sign
of variable x has a particular sign. Immediately before entering the while loop, we
know that b = true ⇒ x = +, while b = false ⇒ x = ⊥. After the application
of the semantics of statement 3, we will have that b = true ⇒ x = 0+, and
b = false ⇒ x = ⊥, because the value of b is unchanged (it is certainly true)
while the value of x has been decreased by one (so it could become equal to zero
or remain greater than zero). After line 4, we obtain that b = true ⇒ x = +,
and b = false ⇒ x = 0, since the new condition x > 0 is assigned to b. In fact,

34 2. Abstract Interpretation Background

b equals to true implies that x must be greater than zero. In addition, we knew
that the value of x was ≥ 0. Then, if b is now false, we are sure that x will be
equal to zero (but not less than zero). The �xpoint computation over the while
loop stabilizes immediately (because, if we enter the loop again, we know that b is
true and, as a consequence, x is positive, thus returning to the same conditions of
the �rst iteration), and so we obtain that at the end of the program we have that
b = true⇒ x = ⊥, and b = false⇒ x = 0, since we have to assume the negation
of b to terminate the execution of the while loop.

The cardinal power e�ectiveness is compromised when A is in�nite (i.e., intervals
in Z), and can become costly when A is �nite but non-trivial (i.e., intervals of
machine integers). For this reason, some restricted forms of cardinal power can be
used, where only a �nite subset of A is represented.

Summarizing, the main di�culties in constructing a reduced cardinal power do-
main are: (i) the choice of elements in A to use; and (ii) the e�cient design of
abstract operators.

Complexity

Each time a lattice or semantic operator has to be applied to the abstract state,
the cardinal power requires to apply it to all the elements of the base. Consider the

cardinal power B
A
. In a state of our domain, we will track a state of B for each

possible state of A. Let n be the number of states of A, a the cost of an operator on

A and b the cost on B. Then the overall cost over B
A
is n ∗ (a + b), since, for any

element in A we have to apply the operator both on A and B.
Let ha and hb be the height of the lattice of A and B, respectively. Then the

height of B
A
is hhab .

It is then clear that the cardinal power causes a signi�cant increase in the com-
plexity of the analysis w.r.t. the complexity of the two original analyses. If there is
already practical evidence that the reduction operator in the reduced product may
induce an analysis that is too complex [114], it is even more important to carefully
choose the two domains combined in a cardinal power. Nevertheless, particular in-
stances of the cardinal power are already used to analyze industrial software, and in
particular in ASTRÉE [18]. ASTRÉE exploits the Boolean relation domain, which
applies the cardinal power using the values of some particular Boolean program vari-
ables as exponent. In this way, the analysis tracks precise disjunctive information
w.r.t. these variables. In addition, ASTRÉE contains trace partitioning [118]. This
can be seen as a cardinal power in which the exponent is a set of manually provided
tokens on which the analysis tracks disjunctive information. There are various types
of tokens the user can provide: particular abstract values of a variable, the begin of
an if statement, etc. It is proved that, in practice, if an expert user provides the
right tokens, the resulting analysis can be quite precise preserving its performances
at the same time.

2.11. Product Operators 35

Implementation

The implementation can be rather simple when using a programming language pro-
viding functional constructs. In fact, the most part of the cardinal power (namely,
elements of the domain, and lattice and semantic operators) can be de�ned as the
functional point-wise application of the operators on the base and the exponent.
Instead, the implementation of the cardinal power may be more verbose using an
imperative programming language, but we do not expect it represents a signi�cant
challenge.

Reduced Relative Power

Giacobazzi and Ranzato generalized the reduced cardinal power [81]. For this pur-
pose, the authors introduce the operation of reduced relative power on abstract
domains. As it happened with the cardinal power, the reduced relative power is
based on two domains A and B (respectively, the exponent and the base) and is de-
�ned in a general and standard Abstract Interpretation setting. Its formal de�nition
is A

�−→ B, where � is a generic operator used to combine concrete denotations. It
is called �reduced relative power� because it is parametric with respect to �. The
operator � should be thought of as a kind of combinator of concrete denotations:
the glb is a typical example, but another less restrictive combinator could be needed
for some non-trivial applications. An example comes from the �eld of logic pro-
gram semantics. The reduced relative power can be used to systematically derive
new declarative semantics for logic programs by composing the domains of inter-
pretation of some well-known semantics. In this case a concrete domain of sets of
program execution traces is endowed with an operator of trace-unfolding that does
not behave like a meet-operation (in particular, it is not even commutative). For
more details, see Section 7 of [81]. The de�nition of the reduced relative power is as

follows. A
�−→ B consists of all the monotone functions from A to B having the shape

λx.αB(d� γA(x)), where: (i) d ranges over concrete values, (ii) γA is the concretiza-
tion function of A and (iii) αB is the abstraction function of B. These monotone
functions establish a dependency between the values of A and B, and for this reason
are called dependencies. Intuitively, a dependency encodes how the abstract domain
B is able to represent the �reaction� of the concrete value d whenever it is combined
via � with an object described by A.

2.11.4 Examples

In this section, we discuss the application of the Cartesian product, the reduced
product, and the cardinal power to some examples dealing with arrays. This way,
we show the main features and limits of each combination of domains. The two
abstract domains we will combine are Intervals [53] and a relational domain that
tracks constraints of the form x < y + c.

36 2. Abstract Interpretation Background

Cartesian Product

As a �rst example, we consider a quite standard program that initializes to 0 all the
elements of a given array.

1 for(i = 0; i < arr.length; i++)

2 arr[i] = 0;

We want to prove that the array accesses are safe, that is, i ≥ 0 and i <
arr.length, in particular when we perform arr[i] = 0.

If we run the analysis using only Intervals, we obtain that i = [0..+∞]. In fact,
this domain cannot infer any information from the loop guard i < arr.length since
it does not have any upper bound for arr.length. This result su�ces to prove the
�rst part of our property (i ≥ 0) but not the second part (i < arr.length). If we
run the analysis using only a relational domain, we obtain that i < arr.length+ 0
when we analyze the statement arr[i] = 0 thanks to the loop guard. In this way,
we can prove the second part of the property, but not the �rst part.

Therefore, the two domains alone cannot prove the property of interest, while the
Cartesian product can. In fact, it runs the two analyses in parallel, and at the end
it takes from both domains the most precise result they get regarding the property
to verify. Combining the two results, the entire property is proved to hold.

Reduced Product

Let us introduce a more complex example. It receives as input an integer variable
k, and it creates an array with one element if k ≤ 0, and of k elements otherwise.
Then it initializes the �rst k elements to zero.

1 if(k <= 0)

2 arr = new Int[1];

3 else

4 arr = new Int[k];

5 for(i = 0; i < k; i++)

6 arr[i] = 0;

As before, we want to prove that when we perform arr[i] = 0 we have that i ≥ 0
and i < arr.length. In particular, the critical property is the second one, since the
�rst one is already proved by Intervals as explained before.

If we analyze this example with the Cartesian product de�ned before, we ob-
tain that (i) ({arr.length 7→ [1..1], k 7→ [−∞..0]}, ∅) in the then branch, and (ii)
({arr.length 7→ [1..+∞], k 7→ [1..+∞]}, {arr.length < k+1, k < arr.length+1})
in the else branch. Then, when we compute the upper bound of these two states,
we obtain only ({arr.length 7→ [1..+∞], k 7→ [−∞..+∞]}, ∅). This leads to infer
that ({arr.length 7→ [1.. +∞], k 7→ [−∞.. +∞], i 7→ [0.. +∞], }, {i < k + 0})
inside the loop, but this cannot prove that i < arr.length.

2.11. Product Operators 37

We now de�ne a speci�c reduction operator that re�nes the information tracked
by the relational domain with Intervals. In particular, if Intervals track that x 7→
[a..b], y 7→ [c..d] and we have that b 6= +∞ ∧ c 6= −∞, then in the relational
domain we introduce the constraint x < y + j where j = b − c + 1. Thanks
to this reduction operator, we infer that, in the then branch, ({arr.length 7→
[1..1], k 7→ [−∞..0]}, k < arr.length + 0). Thank to this reduction, when we join
the two abstract states after the if statement we obtain that ({arr.length 7→
[1.. +∞], k 7→ [−∞.. +∞]}, {k < arr.length + 1}). This leads to infer (when
we analyze arr[i] = 0) that ({arr.length 7→ [1.. + ∞], k 7→ [−∞.. + ∞], i 7→
[0.. +∞], }, {k < arr.length + 1, i < k + 0}), and the information tracked by the
relational domain proves that i < arr.length.

Reduced Cardinal Power

We slightly modify the previous example. In particular, we create an array of one
element if k ≤ 2, and we initialize all the elements in the array from the third to the
(k− 1)-th element.

1 if(k <= 2)

2 arr = new Int[1];

3 else

4 arr = new Int[k];

5 for(i = 3; i < k; i++)

6 arr[i] = 0;

As in the previous example, the main challenge is to prove the second part of
the property (that is, i < arr.length) when executing arr[i] = 0.

First of all, we show that the reduced product of Intervals and our relational
domain is not in position to prove this property. In the then branch, the Interval
domain tracks that k ∈ [−∞..2] and arr.length ∈ [1..1]. This information yields the
strict lower bound relationship k < arr.length + 2 through the reduction operator
we previously introduced. The abstract state associated to the then branch is
({k → [−∞..2], arr.length → [1..1]}, {k < arr.length + 2}), while in the else

branch we obtain ({k→ [3..+∞], arr.length→ [3..+∞]}, {arr.length < k+1, k <
arr.length + 1}). When we compute the join between these two states, we obtain
({k → [−∞.. + ∞], arr.length → [1.. + ∞]}, {k < arr.length + 2}). In fact,
the join of the constraints k < arr.length + 2 and k < arr.length + 1 results in
k < arr.length+2. Finally, inside the for loop we know (from the Interval domain
and its widening operator) that i→ [3..+∞]. Moreover, the loop guard implies that,
when we perform arr[i] = 0, i < k holds. From i < k and k < arr.length + 2,
we obtain that i < arr.length + 1, that is weaker than the property of interest
i < arr.length.

Now consider the reduced cardinal power of Intervals on k as exponent and
our relational domain as base. The then branch is associated to the abstract

38 2. Abstract Interpretation Background

state [−∞..2] ⇒ {k < arr.length + 2}, and the else branch to [3.. + ∞] ⇒
{arr.length < k+1, k < arr.length+1}. The join between these two states simply
creates a new abstract state which contains both informations, that is, [−∞..2] ⇒
{k < arr.length + 2} and [3..+∞]⇒ {arr.length < k + 1, k < arr.length + 1}.
When we enter the while loop, we have to consider the two cases separately:

• in the �rst case, k = [−∞..2]. Then, the loop guard i < k is surely evaluated to
false: the loop is not executed, so we do not need to verify the property about
array accesses. Therefore, when i < k holds, we have that [−∞..2]⇒ ⊥. This
way, when we analyze arr[i] = 0, we can discard this case;

• in the second case, we have that k = [3.. +∞] and i < k. Then, from the
abstract state obtained after the if statements and assuming the loop guard,
we know that [3..+∞]⇒ {arr.length < k+1, k < arr.length+1, i < k}. By
combining k < arr.length + 1 and i < k, we obtain i < k ≤ arr.length ⇒
i < arr.length, which is exactly the property we wanted to prove.

3

A Generic Framework for String

Analysis

In this chapter we focus on the �rst of the three goals of our thesis, i.e. creating a
unifying approach for string analysis.

Strings are widely used in modern programming languages in various scenarios.
For instance, strings are used to build up SQL queries that are then executed. Mal-
formed strings may lead to subtle bugs, as well as non-sanitized strings may rise
security issues in an application. For these reasons, the application of static anal-
ysis to compute safety properties over string values at compile time is particularly
appealing. Here we propose a generic approach for the static analysis of string val-
ues based on Abstract Interpretation. In particular, we design a suite of abstract
semantics for strings, where each abstract domain tracks a di�erent kind of infor-
mation. We discuss the trade-o� between e�ciency and accuracy when using such
domains to catch the properties of interest. In this way, the analysis can be tuned
at di�erent levels of precision and e�ciency, and it can address speci�c properties.

This chapter closely follows the generic structure discussed in Section 1.6. In
Section 3.1 we brie�y explain the issues faced by string analysis and our contribu-
tion in solving them. Section 3.2 introduces two case studies which will be used
throughout all the chapter to show the application of our techniques. Section 3.3
de�nes some string-speci�c notation. Section 3.4 de�nes the syntax of the string
operators we will consider in the rest of the chapter. Section 3.5 introduces their
concrete semantics, while in Section 3.6 the �ve abstract domains of our framework
are formalized and used to analyze the case studies. In Section 3.7 more experimen-
tal results are presented. Finally, Section 3.8 discusses in depth the related work
and Section 3.9 concludes.

Contents

3.1 Introduction . 40

3.2 Case Studies . 44

3.3 Notation . 46

3.4 Language Syntax . 46

3.5 Concrete Domain and Semantics 47

0This chapter is partially derived from [44, 45, 47].

40 3. A Generic Framework for String Analysis

3.6 Abstract Domains and Semantics 49

3.6.1 Character Inclusion . 51

3.6.2 Pre�x and Su�x . 56

3.6.3 Bricks . 62

3.6.4 String Graphs . 81

3.6.5 Discussion: Relations Between the Five Domains 94

3.7 Experimental Results . 98

3.8 Related Work . 102

3.9 Discussion . 105

3.1 Introduction

Context

String analysis is a static analysis technique that determines the values that a string
variable can hold at speci�c points in a program. This information is often useful
to help program understanding, to detect and �x programming errors and secu-
rity vulnerabilities, and to solve certain program veri�cation problems. The great
importance of string analysis is due to the current widespread use of strings in
computer programs. Their applications vary from providing an output to a user
to the construction of programs executed through re�ection. For instance, in Java
they are widely used to build up SQL queries, or to access information about the
classes through re�ection. Errors in such applications can cause a lot of damage:
for example, when dealing with SQL queries, what happens if we execute the query
“DELETE FROM Table WHERE ID = ” + id when id is equal to “10 OR TRUE”? The
content of Table would be permanently erased. It is clear that a wrong manipula-
tion of strings could lead not only to subtle run-time errors, but to dramatic and
permanent e�ects too [93].

Let us make a detailed overview of some contexts in which strings play a starring
role.

• Dynamic creation of SQL queries. SQL (Structured Query Language) is
a special-purpose programming language designed for managing data held in a
relational database management system (RDBMS). Originally based upon re-
lational algebra and tuple relational calculus, SQL consists of a data de�nition
language and a data manipulation language. The scope of SQL includes data
insert, query, update and delete, schema creation and modi�cation, and data
access control. The most common operation in SQL is the declarative SELECT
statement. SELECT retrieves data from one or more tables, or expressions.
A simple example of a query is: ”SELECT ∗ FROM books WHERE price > 100.0

3.1. Introduction 41

ORDER BY title”, which retrieves all the books which cost more than 100, in
ascending order by their title. SQL can be used both in a static or dynamic
way. By static SQL we mean SQL code written once in the development
phase when database and query structures are known. Static SQL is usually
targeted at a speci�c database and in many cases gets stored in stored pro-
cedures. Many applications (especially Enterprise Applications) reach a stage
where some dynamic data manipulation is required and static SQL techniques
no longer su�ce (for example, custom reports and �lters designed by an ap-
plication user, or when the databases structure itself is dynamic). A dynamic
SQL statement is constructed at execution time, for which di�erent conditions
generate di�erent SQL statements. Then, the query is sent to the database for
execution (through the sp_executesql system stored procedure or through
the EXECUTE() operator). Note that these SQL strings are not parsed for er-
rors, because they are generated at execution time, and they may introduce
security vulnerabilities into the database. Also, SQL strings can be hard to
debug. However, sometimes they are perfect for certain scenarios. For all
these reasons, a strong need for static analysis of programs generating dy-
namic SQL queries arises. Since SQL queries are built using string variables,
this automatically translates into a need for string analysis.

• Server-side scripting. Server-side programming is one of the key technolo-
gies that support today's WWW environment. It makes possible to gener-
ate Web pages dynamically according to a user's request and to customize
pages for each user. PHP is one of the most popular server-side scripting
languages used to generate Web pages dynamically, even though many others
exist (ASP.Net, Lua, Perl, Javascript, and so on). Unfortunately, the �exibil-
ity obtained by server-side programming makes it much harder to guarantee
validity and security of dynamically generated pages. For example, it is well
known that inappropriate treatment of input data causes vulnerabilities called
cross-site scripting, which may cause leakage of critical information such as
HTTP cookies. It is critical for a server-side program to prevent this kind of
vulnerability and to guarantee security. By applying static program analysis
to Web pages generated dynamically by a server-side program we can perform
a static checking of properties of such pages. The approximation obtained
by the analysis has many applications in checking the validity and security of
a server-side program. Two well-known examples of applications are HTML
validation (against the HTML speci�cation) and the detection of cross-site
scripting vulnerabilities in a server-side program. A string analyzer that ap-
proximates the string output of a program would then be useful to verify the
soundness of such programs.

• Dynamic generation of XML documents Many interesting program-
ming formalisms deal explicitly with XML documents. Examples range from

42 3. A Generic Framework for String Analysis

domain-speci�c languages, such as XSLT and XQuery, to general-purpose lan-
guages, such as Java in which XML documents may be handled by special
frameworks or simply as plain text. Also, XML documents are often generated
dynamically by programs. A common example is XHTML documents being
generated by interactive Web services in response to requests from clients.
Typically, there are no static guarantees that the generated documents are
valid according to the DTD (Document Type De�nition) for XHTML. In fact,
a quick study of the outputs from many large commercial Web services shows
that most generated documents are in fact invalid [36]. This is not a huge
problem, since the browsers interpreting this output are able to render in-
valid documents. Increasingly, however, Web services will generate output in
other XML languages for less tolerant clients, many of whom will themselves
be Web services. Thus, it is certainly an interesting question to statically
guarantee validity of dynamically generated XML: it is necessary to obtain a
formal model of sets of XML documents or fragments, typically to represent
conservative approximations of the possible results at speci�c program points.
Several such models have been proposed, mainly based on the observation that
formal tree languages capture many desired properties since XML documents
are essentially trees [130, 100].

• Re�ection mechanism. Re�ection is the ability of a computer program
to examine and modify the structure and behaviour (speci�cally the values,
meta-data, properties and functions) of an object at runtime. Re�ection is
most commonly used in high-level virtual machine programming languages
like Smalltalk and scripting languages and also in manifestly typed or stati-
cally typed programming languages such as Java, ML, Haskell, C# and Scala.
In object oriented programming languages such as Java, re�ection allows in-
spection of classes, interfaces, �elds and methods at runtime without knowing
the names of the interfaces, �elds, methods at compile time. It also allows
instantiation of new objects and invocation of methods. Re�ection can also
be used to adapt a given program to di�erent situations dynamically. A lan-
guage supporting re�ection provides a number of features available at runtime
that would otherwise be very di�cult to accomplish in a lower-level language.
Among these features, there are the abilities to: (i) convert a string matching
the symbolic name of a class or function into a reference to or invocation of
that class or function; and (ii) evaluate a string as if it were a source code
statement at runtime. Since strings play a fundamental role in re�ection (to
get information from classes and invoking operation on them knowing only
their name in the form of a string), a precise static analysis which determines
the possible values of strings can have a positive impact on the veri�cation of
programs using re�ection.

Consider also that, according to the Open Web Application Security Project

3.1. Introduction 43

(OWASP)'s list that identi�es the top ten most serious web application vulnerabil-
ities [1], two of the top three vulnerabilities are:

1. Injection �aws, such as SQL, OS, and LDAP injection, which occur when
untrusted data is sent to an interpreter as part of a command or query. The
attacker's hostile data can trick the interpreter into executing unintended com-
mands or accessing unauthorized data.

2. Cross Site Scripting (XSS �aws), which occur whenever an application takes
untrusted data and sends it to a web browser without proper validation or
escaping. XSS allows attackers to execute scripts in the victim' s browser which
can hijack user sessions, deface web sites, or redirect the user to malicious sites.

Also, in the list of other important security risks to consider, we �nd the Malicious
File Execution (MFE), which in 2007 even appeared in the top three of the list.
MFE vulnerabilities occur if developers directly use or concatenate potentially hos-
tile input with �le or stream functions, or improperly trust input �les. On many
platforms, frameworks allow the use of external object references, such as URLs
or �le system references. When the data is insu�ciently checked, this can lead to
arbitrary remote and hostile content being included, executed or invoked by the web
server.

All these vulnerabilities involve string manipulation operations and they occur
due to inadequate sanitization or inappropriate use of input strings provided by
users.

State of the art

The interest on approaches that automatically analyze and discover bugs on strings
is constantly arising. The state-of-the-art in this �eld is however still limited: tech-
niques that rely on automata and use regular expressions are precise but slow, and
they do not scale up [98, 99, 142, 150], while many other approaches are focused on
particular properties or classes of programs [27, 85, 89, 122, 124, 127]. In Section
3.8 we will explore in more detail the existing literature.

As genericity and scalability are the main advantages of the Abstract Interpre-
tation approach (since it allows to de�ne analyses at di�erent levels of precision and
e�ciency), in this chapter we investigate Abstract Interpretation as an alternative
solution to the problem of string analysis.

Contribution and methodology

The main contribution of this chapter is the formalization of a unifying generic
Abstract Interpretation-based framework for string analysis, and its instantiations
with �ve di�erent domains that track distinct types of information. In this way, we
can tune the analysis at diversi�ed levels of accuracy, yielding to faster and rougher,
or slower but more precise string analyses.

44 3. A Generic Framework for String Analysis

1 var query = "SELECT $ ||

2 (RETAIL/100) FROM INVENTORY WHERE ";

3 if (l != null)

4 query = query + "WHOLESALE > " + l + " AND ";

5

6 var per = "SELECT TYPECODE, TYPEDESC FROM

7 TYPES WHERE NAME = 'fish' OR NAME = 'meat'";

8 query = query + "TYPE IN (" + per + ");";

9 return query;

(a) The �rst case study, prog1

1 var x = "a";

2 while(cond)

3 x = "0" + x + "1";

4 return x;

(b) The second case study, prog2

Figure 3.1: The case studies

The methodology is inspired by the approach adopted for numerical domains
for static analysis of software [62, 87, 123]. The interface of a numerical domain is
nowadays standard: each domain has to de�ne the semantics of arithmetic expres-
sions and Boolean conditions. Similarly, we consider a limited set of basic string
operators supported by all the mainstream programming languages. The concrete
semantics of these operators is approximated in di�erent ways by the �ve di�erent
abstract domains. In addition, after 30 years of practice with numerical domains,
it is clear that a monolithic domain precise on any program and property (e.g.,
Polyhedra [62]) gives up in terms of e�ciency, while to achieve scalability we need
speci�c approximations on a given property (e.g., Pentagons [114]) or class of pro-
grams (e.g., ASTRÉE [60]). With this scenario in mind, we develop several domains
inside the same framework to tune the analysis at di�erent levels of precision and
e�ciency w.r.t. the analyzed class of programs and property. Other abstractions
are possible and welcomed, and we expect our framework to be generic enough to
support them.

3.2 Case Studies

In this chapter, we chose to use the two case studies reported in Figures 3.1(a) and
3.1(b).

3.2. Case Studies 45

Table 3.1: Shortcuts of string constants in prog1

Name String constant
s1 “SELECT ′$′ || (RETAIL/100) FROM INVENTORY WHERE ”
s2 “WHOLESALE > ”
s3 “ AND ”
s4 “SELECT TYPECODE, TYPEDESC FROM TYPES

WHERE NAME = ′fish′ OR NAME = ′meat′”
s5 “TYPE IN (”
s6 “); ”

The �rst case study, prog1, is taken from [85]: a Java servlet program generates
and manipulates SQL queries as string data. In particular, consider a front-end Java
servlet for a grocery store, with an SQL-driven database back-end. The database
table INVENTORY contains a list of all items in the store. This table has three
columns: RETAIL, WHOLESALE, and TYPE, among others. The RETAIL and
WHOLESALE columns are both of type integer, indicating their respective costs in
cents. The TYPE column is an integer, representing the product type-codes of the
items in the table. In the grocery store database, there is another table TYPES used
to look up type-codes. This table contains the columns TYPECODE, TYPEDESC,
and NAME, of the types integer, varchar (a string), and varchar, respectively. The
program constructs the string query to hold an SQL SELECT statement to return
the prices of all the perishable items, and return the query for its execution. In the
code, || is the concatenation operator, and the clause TYPE IN (...) checks whether
the type-code TYPE matches any of the type-codes of the perishable items.

We are interested in checking if the SQL query resulting by the execution of such
code is always well formed. For the sake of readability, we will use some shortcuts
to identify the string constants of this program, as reported in Table 3.1.

The second program, prog2, modi�es a string inside a while loop. The string
x initially gets assigned with a string made by a single character (an a). At each
iteration of the loop, a concatenation takes place: the string “0” is concatenated to
the previous value of x and to the string “1”. This means that the initial a character
gets surrounded by a “0” and a “1” at each iteration. The number of 0s and 1s in
the �nal value of the string x depends on the number of iterations executed. For
example, after 4 iterations the value of x would be 0000a1111. Generalizing, this
program produces strings of the form “0na1n”, where n is the number of iterations
executed (which could also be zero, in which case x would simply have value “a”).
However, the condition of the loop cannot be statically evaluated, so it impossible to
know at compile time how many iterations will be executed. This example is quite
standard in string analysis and is very useful to compare the precision of various
approaches, because of the di�culty added by the unknown condition of the loop.

46 3. A Generic Framework for String Analysis

V ∈ V , s, s1, s2 ∈ S, b, e ∈ N, c ∈ C

E := V |new String(s)|concat(s1, s2)|substring(b, e, s)

B := contains(c, E)|B and B|not B|B or B

P := V = E|if(B) then P else P |while(B) P |P ;P

Figure 3.2: Syntax

3.3 Notation

In addition to the notation presented in Chapter 2, we introduce here some addi-
tional de�nitions speci�c for this chapter.

We will omit the quotation marks (��) when writing strings and the context is
not ambiguous (e.g., abc instead of “abc”). Similarly, we will omit the apices (′)
when writing characters (e.g., a instead of ′a′).

Let char(s) be a function that returns the set of characters contained in the
string s in input, while charAt i(s) is a function that returns the character at index
i in s.

Let trunc(s, n) be a function which, given a string s and a positive number n,
returns the truncation of s at index n, i.e. all characters from index n onwards
are removed from the string. Note that, after the application of trunc(s, n), the
resulting string is made by n characters.

3.4 Language Syntax

Let V be a �nite set of variables, and C,S the set of all characters and strings,
respectively. Figure 3.2 de�nes the language supported by our analysis.

We focus on programs dealing with operations over string-valued variables (even
though numerical variables could be easily added to the syntax, and included in the
analysis working in cooperation with an already existent abstract domain). There-
fore, we consider expressions built through some of the most common string opera-
tors. The problem is that di�erent languages de�ne di�erent operators on strings,
and usually each language supports a huge set of such operators: in Java 1.6 the
String class contains 65 methods and 15 constructors, System.Text in .Net con-
tains about 12 classes that work with Unicode strings, and PHP provides 111 string
functions. Considering all these operators would be quite overwhelming, and in ad-
dition the most part of them perform similar actions using slightly di�erent data.
We decided then to restrict our focus on a small but representative set of common
operators. We chose these operators analyzing some case studies, and they are sup-
ported by all the mainstream programming languages. In particular, we chose to

3.5. Concrete Domain and Semantics 47

support the creation of a string (new String(str)), the concatenation of two strings
(concat(s1, s2)), the creation of a substring from a string (substringeb(s)), and the
boolean check of character inclusion in a string (containsc(s)) 1. Another common
operation is the reading of some input from the user with the readLine() statement,
but we do not include this operator because its abstract semantics is the same in
any abstract domain we could de�ne, i.e. it simply returns the top element > of
the considered domain. Boolean conditions can be combined as usual with logical
operators (and, or, not). As for statements, we support the assignment of an string
to a variable, if− then− else, while loops, and concatenation. The resulting
syntax is simple and limited, but other operators can be easily added to our seman-
tics. For each operator, this would mean to de�ne its concrete semantics, and its
approximations on the di�erent domains we will introduce.

An informal description about the strings operations supported by our analysis
follows:

• new String(str) (where str is a sequence of characters) creates a new con-
stant string;

• concat(s1, s2) (where s1 and s2 are strings) concatenates two strings. Note
that the concatenation operation can also be written with the + operator:
concat(s1, s2) is the same as s1 + s2.

• substringeb(s) (where s is a string, and b and e are integer values representing
the �rst and last index to use for the substring creation) extracts a substring
from a given string;

• containsc(s) (where s is a string and c is a character) checks if a string
contains a speci�c character.

In Tables 3.2 we present the syntax of the corresponding string operations in
three commonly used programming languages, i.e. Java, C#, PHP.

3.5 Concrete Domain and Semantics

Given an alphabet K (that is, a �nite set of characters), we de�ne strings as sequences
of characters. Formally, following the notation of Chapter 2:

S = K∗

A string variable in our program could have di�erent values in di�erent execu-
tions, and the goal of the Abstract Interpretation approach is to approximate all

1Note that here we considered the operator containsc which checks if a certain character is
contained in a string, but in [44] we presented the semantics of the extended version of this operator,
i.e., containsseq which checks if a certain sequence of characters seq is contained in a string. In
[44] we also presented two additional operators, i.e. indexOfc and lastIndexOfc.

48 3. A Generic Framework for String Analysis

Table 3.2: String operators in Java , C# and PHP

Operator Java C# PHP
new String(str) new String(str) or

�str"
new String(str) or
�str"

�str"

concat(s1, s2) s1.concat(s2) or s1
+ s2

string.concat(s1,s2)
or s1+s2

s1 . s2

substringeb(s) s.substring(b, e) s.substring(b, e) substr(s, b, e-b)
containsc(s) s.contains(c) s.contains(c) preg _ match(c, s)

Table 3.3: Concrete semantics

SJnew String(str)K() = {str}
SJconcatK(S1, S2) = {s1s2 : s1 ∈ S1 ∧ s2 ∈ S2}
SJsubstringebK(S1) = {cb..ce : c1..cn ∈ S1 ∧ n ≥ e ∧ b ≤ e}

BJcontainscK(S1) =


true if ∀s ∈ S1 : c ∈ char(s)
false if ∀s ∈ S1 : c /∈ char(s)
>B otherwise

these values (potentially in�nite) in a �nite, computable, and e�cient manner. For
this reason, the concrete domain is simply made of sets of strings: the concrete lat-
tice is then the power-set of the strings set S. As explained in Section 2.4, when the
lattice is the power-set of a set, the other operators immediately follow: the partial
order is the set inclusion ⊆, the least upper bound corresponds to set union ∪, the
greatest lower bound corresponds to set intersection ∩, the top element > is the set
itself, while the bottom element ⊥ is ∅. The complete de�nition of the lattice S is
then:

S = 〈℘(S),⊆,∪,∩, S, ∅〉

We can now de�ne the concrete semantics of the language introduced in Section
3.4. For the statements operations and the logic combination of boolean conditions
we refer to the usual semantics of the classical Abstract Interpretation framework.
Then, we have to specify only the semantics (both concrete and abstract) of opera-
tors dealing with strings. We formalize the concrete semantics in Table 3.3.

For the �rst three statements (creation, concatenation, substring), we de�ne the
semantics S that, given the statement and eventually some sets of concrete string
values in S (containing the values of the arguments of the statement), returns a set
of concrete strings resulting from that operation. In particular:

• new String(str) returns a singleton containing str;

3.6. Abstract Domains and Semantics 49

• concat returns all the possible concatenations of a string taken from the �rst
set and a string taken from the second set (we denote by s1s2 the concatenation
of strings s1 and s2);

• substringeb returns all the substrings from the b-th to e-th character of the
given strings. Note that if one of the strings is too short, there is no substring
for it in the resulting set, since this would cause a runtime error.

For containsc we de�ne a particular semantics B : ℘(S) → {true, false,>B}.
Given a set of strings, the semantics of this operator returns true if all the strings
contain the character c, false if none contains this character, and >B otherwise. This
special boolean value represents a situation in which the boolean condition may be
evaluated to true some times, and to false other times, depending on the string in S1

we are considering. Therefore, we de�ne a partial order ≥B over these values such
that (i) ∀b ∈ {true, false,>B} : >B ≥B b, (ii) true ≥B true, and (iii) false ≥B false.

3.6 Abstract Domains and Semantics

Abstract Interpretation is based on the consideration that it is impossible to track
both sound and complete information about all possible executions of a program
at compile time: it is thus necessary to introduce some kind of approximation.
The approximation level (and, consequently, the precision and performance of the
analysis) depends on the abstract domain used to analyze the program. In fact,
given a speci�c concrete object, there are many possible approximations of it, which
depend on the features you focus on: this means that you can build more than one
abstract domain for the same object. Each abstract domain will preserve a di�erent
kind of information and it could be useful to verify a speci�c property, or to satisfy
some performance constraints.

In our case, we want to create a framework of abstractions for strings. For this
purpose, we have to understand �rst what is the relevant information contained in
a string. A string can be de�ned as �an ordered sequence of characters�. Then,
the main features of a string are essentially two: the characters which compose it,
and the order with which they are positioned. Each domain of our framework will
consider a di�erent subset of this concrete information. The �rst level of approxi-
mation we will introduce is an abstract representation in which we maintain all the
information we have about characters inclusion but nothing about order (Section
3.6.1). This approximation would behave well in programs which use string opera-
tors like contains. The second kind of abstract representation we will de�ne keeps
some information about the order (in a limited part of the string, i.e. beginning
or end) but not about inclusion in itself. This representation (Section 3.6.2) could
be particularly useful for programs which use the substring operator. Finally, we
will present two abstractions that track information on both character inclusion and

50 3. A Generic Framework for String Analysis

order: the abstract domain presented in Section 3.6.3 is inspired by regular expres-
sions, while the abstract representation of Section 3.6.4 is based on a data structure
resembling trees with backward arcs.

The domains introduced in Sections 3.6.3 and 3.6.4 are strictly more precise than
the ones presented in Sections 3.6.1 and 3.6.2, but they are less e�cient as well.
Nevertheless, in some contexts the less precise domains would be precise enough
to prove some properties of interest, while in other cases we would need the more
complex domains. Therefore, one can tune the analysis at di�erent levels of precision
and e�ciency by choosing di�erent domains.

In the following sections we will present the �ve domains of our framework. For
each domain, we will follow the same presentation order (already sketched in Section
1.6) and de�ne:

• lattice elements

• partial order with top and bottom elements

• lub and glb operators

• abstraction and concretization functions 2

• widening operator (if required)

For each domain we will include the following lemmas and theorems (together with
their proofs):

• form of the domain (complete lattice, sup-semi lattice, cpo, etc.)

• correctness of lub and glb operators

• Galois connection between abstraction and concretization function

Then, for each domain we will de�ne the abstract semantics of the string operators
introduced in Section 3.4 approximating their concrete semantics presented in Sec-
tion 3.5. Each abstract operation is formally proved to be sound with respect to
the Galois connection of the domain. Lastly, each domain is applied to the two case
studies of Section 3.2.

2Note that we will explicitly de�ne only the concretization function, while the abstraction func-
tion will be implicitly characterized by the Galois connection, in order to guarantee the soundness
of the Galois connection itself through Theorem 2.8.3. However, an informal (and more intuitive)
characterization of the abstraction function is contained in the de�nition of the abstract semantics
of the new String operator.

3.6. Abstract Domains and Semantics 51

3.6.1 Character Inclusion

The �rst abstract domain approximates strings with the characters we know the
strings surely contain, and ones that they could contain. This information could
be particularly useful if the indices extrapolated from a string with operators like
indexOf(c) could be used to cut the string (because it is interesting to know if the
index is invalid, i.e., −1).

In this domain, denoted by CI, a string will be represented by a pair of sets, the
set of certainly contained characters C and the set of maybe contained characters
MC:

CI = {(C,MC) : C,MC ∈ ℘(K) ∧ C ⊆ MC} ∪ ⊥CI

Partial Order

The partial order ≤CI on CI is de�ned by

(C1,MC1) ≤CI (C2,MC2)⇔ (C1,MC1) = ⊥CI ∨ (C1 ⊇ C2 ∧MC1 ⊆ MC2)

This is because the more information we have on the string (that is, the more
characters are certainly contained and the fewer characters are maybe contained),
the fewer strings we are representing. Consequently, the top element of the lattice
is:

>CI = (∅,K)

while the bottom element of the lattice is de�ned as:

⊥CI = {(C,MC) : C * MC}

in order to represent a computational error. In fact, any character that is certainly
contained in the string must belong also to the set of maybe contained characters.
Thus, with this de�nition of ⊥CI , we ensure that its concretization will be the empty
set. The partial order≤CI is speci�cally built to guarantee that⊥CI ≤CI A ∀A ∈ CI,
in order to respect the de�nition of bottom element.

Least Upper Bound and Greatest Lower Bound

The de�nition of these two operators is induced by the de�nition of the partial order.
Formally, the least upper bound is de�ned by:

tCI((C1,MC1), (C2,MC2)) = (C1 ∩ C2,MC1 ∪MC2)

Similarly, the greatest lower bound, instead, is de�ned by:

uCI((C1,MC1), (C2,MC2)) =

{
(C1 ∪ C2,MC1 ∩MC2) if C1 ⊆ MC2 ∧ C2 ⊆ MC1

⊥CI otherwise

52 3. A Generic Framework for String Analysis

Lemma 3.6.1. tCI is the least upper bound operator and uCI is the greatest lower
bound operator.

Proof. The fact that tCI and uCI are, respectively, the least upper bound and
the greatest lower bound operator follows from basic properties of set union and
intersection.

Lemma 3.6.2. The abstract domain CI is a complete lattice.

Proof. The proof follows straightforwardly from the fact that, for any set C, 〈℘(C),⊆
〉 and 〈℘(C),⊇〉 are both complete lattices.

Abstraction and Concretization Functions

The concretization function maps an abstract element to a set of strings. Given an
abstract element (C,MC), the resulting strings will have to (i) contain at least all
the characters in C, and (ii) contain at most the characters in MC. This is de�ned
as follows:

γCI(C,MC) = {s : c1 ∈ C⇒ c1 ∈ s ∧ c2 ∈ s⇒ c2 ∈ MC}

Theorem 3.6.3. Let the abstraction function αCI be de�ned by αCI = λY. uCI
{(C,MC) : Y ⊆ γCI((C,MC))}.

Then 〈℘(S),⊆〉 −−−−→←−−−−
αCI

γCI 〈CI,≤CI〉.

Proof. By Theorem 2.8.3 we only need to prove that γCI is a complete meet mor-
phism. Formally, we have to prove that γCI(

d
CI

(C,MC)∈X
(C,MC)) =

⋂
(C,MC)∈X γCI(C,MC).

γCI(
d
CI

(C,MC)∈X
(C,MC))

by De�nition of uCI
= γCI(

⋃
(C,MC)∈X C,

⋂
(C,MC)∈X MC)

by De�nition of γCI
= {s : c1 ∈

⋃
(C,MC)∈X C⇒ c1 ∈ s ∧ c2 ∈ s⇒ c2 ∈

⋂
(C,MC)∈X MC}

by logic rules of set theory
= {s : ∀(C,MC) ∈ X : c1 ∈ C⇒ c1 ∈ s ∧ c2 ∈ s⇒ c2 ∈ MC}
by De�nition of ∩

=
⋂

(C,MC)∈X{s : c1 ∈ C⇒ c1 ∈ s ∧ c2 ∈ s⇒ c2 ∈ MC}
by De�nition of γCI

=
⋂

(C,MC)∈X γCI(C,MC)

3.6. Abstract Domains and Semantics 53

Table 3.4: The abstract semantics of CI

SCIJnew String(str)K() = (char(str), char(str))
SCIJconcatK((C1,MC1), (C2,MC2)) = (C1 ∪ C2,MC1 ∪MC2)

SCIJsubstringebK((C1,MC1)) = (∅,MC1)

BCIJcontainscK((C1,MC1)) =


true if c ∈ C1

false if c /∈ MC1

>B otherwise

Widening Operator

The widening operator ∇CI : (CI × CI)→ CI is de�ned by:

(C1,MC1)∇CI(C2,MC2) = (C1,MC1) tCI (C2,MC2)

because in domains with �nite height the least upper bound operator is also a
widening operator since it converges in �nite time. Our domain has �nite height,
since the height of the power-set lattice of a set S based on ⊆ or ⊇ is |S| + 1, and
we always consider only �nite alphabets.

Semantics

Table 3.4 de�nes the abstract semantics (in the abstract domain CI) of the operators
introduced in Section 3.4. We denote by SCI and BCI the abstract counterparts of
S and B, respectively.

The abstract operations are de�ned as follows:

• When we evaluate a string constant (new String(str)), we know that the
characters that are surely or maybe included are exactly the ones that appear
in the string str.

• The concat operator takes in input two strings and concatenates them. If a
character appears (or could appear) in one of the two input strings, then it
will appear (or it could appear) in the resulting string too. For this reason,
we employ set union.

• The substring operator returns a new string that is a substring of the string s
in input. The MC1 set remains the same, while the only sound approximation
of the certainly contained characters is ∅, because we do not know the position
of the certainly contained characters inside s.

• The contains operator returns true if and only if the string in input (let it
be s) contains the speci�ed character (c). Its semantics is quite precise, as it
checks if a character is surely contained or not contained respectively through
C1 and MC1.

54 3. A Generic Framework for String Analysis

We now prove the soundness of the abstract operations de�ned above.

Theorem 3.6.4 (Soundness of the abstract semantics). SCI and BCI are sound over-
approximations of S and B, respectively. Formally, γCI(SCIJsK(IC)) ⊇ {SJsK(c) : c ∈
γCI(IC)} and BCIJsK(IC) ≥B {BJsK(c) : c ∈ γCI(IC)}.

Proof. We prove the soundness separately for each operator.

• γCI(SCIJnew String(str)K()) ⊇ {SJnew String(str)K()} follows immediately
from the de�nition of SCIJnew String(str)K() and of γCI .

• Consider the binary operator concat. Let a1 = (C1,MC1), a2 = (C2,MC2)
be two abstract states. We have to prove that γCI(SCIJconcatK(a1, a2)) ⊇
{SJconcatK(c1, c2) : c1 ∈ γCI(a1) ∧ c2 ∈ γCI(a2)}. A generic element c1 ∈
γCI(a1) is a string which contains at least one occurrence of each character
of C1 and which characters all belong to MC1; the same goes for c2 ∈ γ(a2).
The concatenation of c1 and c2 then, by de�nition of S, produces a string
which contains at least one occurrence of each character of C1 and of C2, and
which characters all belong to MC1 or MC2. Then, this string belongs to
γCI(SCIJconcatK(a1, a2)), because SCIJconcatK(a1, a2) = (C1∪C2,MC1∪MC2)
by de�nition of SCI . Then γCI(C1 ∪ C2,MC1 ∪ MC2) contains, by de�nition
of γCI , all strings which contain at least one occurrence of each character of
C1 ∪ C2, and which characters all belong to MC1 ∪MC2.

• Consider the unary operator substringeb. Our theorem trivially holds since
the abstract semantics returns the top element of CI, that concretizes to all
the possible strings. This trivially overapproximates any possible result of the
concrete semantics.

• Consider the unary operator containsc and let a = (C,MC) be an abstract
state. Considering the character c, we have three cases:

� If c ∈ C, all the strings belonging to γCI(a) contain at least one occurrence
of c by de�nition of γCI . Then, the concrete semantics returns always
true on this set. On the other hand, the abstract semantics on a returns
the true value of the boolean domain, so it soundly approximates the
concrete semantics.

� If c ∈ MC and c /∈ C, then the abstract semantics returns>B that trivially
approximates any possible result of the concrete semantics.

� If c /∈ C ∧ c /∈ MC, no string belonging to γ(a) will contain the charac-
ter. The concrete semantics will therefore return always false, and the
abstract semantics on a returns the false value of the boolean domain as
well.

3.6. Abstract Domains and Semantics 55

#I Var CI
1 query αCI(s1)
3 l (∅,K)
4 query (π1(αCI(s1)) ∪ π1(αCI(s2))∪

π1(αCI(s3)),K)
5 query (π1(αCI(s1)),K)
6 per αCI(s4)
8 query (π1(αCI(s1)) ∪ π1(αCI(s4))∪

π1(αCI(s5)) ∪ π1(αCI(s6)),K)
(a) Analysis of prog1

#I Var CI
1 x ({a}, {a})
3 x ({0, a, 1}, {0, a, 1})
4 x ({a}, {0, a, 1})

(b) Analysis of prog2

Figure 3.3: The results of CI

Case studies

Consider now the two case studies introduced in Section 3.2.
The results of the analysis of prog1 using CI are depicted in Figure 3.3(a). At

the beginning, the variable query is related to a state that contains the abstraction
of s1 3. The value of l is unknown, so we must compute the least upper bound
between the abstract values of query after instructions 1 and 4. The set C of query
after instruction 4 contains all the character of s1, s2 and s3, because they are all
concatenated; the MC set instead is K because of the concatenation with l. Then,
after the if statement (line 5) the abstract value of query contains the abstraction
of s1 in C, and K in MC (because of l). The variable per is related (line 6) to a
state that contains the abstraction of s4. At line 8, query is concatenated to s4, s5
and s6. Then, at the end of the given code, query surely contains the characters of
s1, s4, s5, and s6, and it may contain any character, since we possibly concatenated
in query an input string (the l variable).

As for prog2, in Figure 3.3(b) we see that after instruction 1 x surely contains
the character `a'. After the �rst iteration of the loop (line 3), x surely contains
`a', `0' and `1'. At line 4 we report the least upper bound between the value of x
before entering the loop (line 1) and the value after the loop (line 4): variable x

surely contains the character `a', and it also may contain the characters `0' and `1'.
This is the �nal result of the program. In fact, we do not know the value of cond,
so we cannot know beforehand how many iterations will be done by the loop. In
such cases, we have to use the widening to reach the convergence. Here the analysis
converges immediately after the second iteration, since the abstract value obtained
after two iterations (that is, ({0, a, 1}, {0, a, 1})) is the same as the one obtained
after one iteration.

3The abstraction function αCI(s) corresponds to the abstract semantics of the new String(s)
operator: given a concrete string s, it returns the pair of sets (char(s), char(s)).

56 3. A Generic Framework for String Analysis

3.6.2 Pre�x and Su�x

In this section, we start by de�ning a domain that abstracts strings through their
pre�x ; after that, we will also de�ne its mirror image, i.e. a domain which abstracts
strings through their su�x.

We represent a pre�x by a sequence of characters followed by an asterisk ∗.
The asterisk represents any string (the empty string ε included). For example,
abc∗ represents all the strings which begin with abc, including abc itself. Since the
asterisk ∗ at the end of the representation is always present, we do not include it
in the domain and consider abstract elements made only of sequence of characters.
Formally:

PR = K∗ ∪ ⊥PR

Partial Order

The partial order is de�ned by:

p1 ≤PR p2 ⇔ p1 = ⊥PR ∨ (len(p2) ≤ len(p1) ∧ (∀i ∈ [0, len(p2)− 1] : p2[i] = p1[i]))

An abstract string S is ≤PR than another abstract string T if T is a pre�x of S
or if S is the bottom ⊥PR of the domain. The top element is ∗, since ∗ is the empty
pre�x, which is pre�x of any other pre�x. Instead the bottom value is the special
element ⊥PR.

The de�nition of bottom as a special element descends from the fact that the
domain has an in�nite height. In fact, given any pre�x, we can always add a char-
acter at the end of it, thus obtaining a new pre�x, longer (and smaller according to
the order ≤PR) than the �rst one. For this reason, we cannot �nd a valid element
of the domain which is smaller than any other element.

However, the domain respects the ascending chain condition (ACC), and we do
not need to de�ne a widening operator to ensure the convergence of the analysis. In
fact, given a certain pre�x p, where len(p) = n, the ascending chain starting at p is

p→ p1 → p2 → · · · → pn

where p1 = trunc(p, n − 1) (that is, p1 corresponds to p without its last char-
acter), p2 = trunc(p1, n − 2), p3 = trunc(p2, n − 3), and so on, until we reach
pn = trunc(pn−1, n−n) = trunc(pn−1, 0) = ε. pn corresponds to an empty pre�x: it
is ∗, which represents any string, the top of our domain. Thus, given any pre�x p of
length n (which is �nite), the ascending chain starting at p has �nite length n+ 1.

Least Upper Bound and Greatest Lower Bound

Given two pre�xes, their least upper bound tPR is their longest common pre�x. If
the two pre�xes do not have anything in common, the least upper bound is ∗ (the

3.6. Abstract Domains and Semantics 57

pre�x is empty). Instead, the greatest lower bound operator is de�ned by:

uPR(p1, p2) =


p1 if p1 ≤PR p2
p2 if p2 ≤PR p1
⊥PR otherwise

Lemma 3.6.5. tPR is the least upper bound operator.

Proof. Let p = p1 tPR p2 be the least upper bound of p1 and p2. Then we have to
prove the two following conditions:

1. p1 ≤PR p ∧ p2 ≤PR p straightforwardly holds, since p is the longest common
pre�x between p1 and p2 by de�nition of tPR, so it is a pre�x of both. This
implies p1 ≤PR p ∧ p2 ≤PR p by de�nition of ≤PR.

2. p ≤PR p′ ∀ upper bound p′ of p1 and p2. By de�nition of the lattice structure
of PR, p′ has to be a pre�x of both p1 and p2. Since p is the longest common
pre�x between p1 and p2 by de�nition of tPR, we know for sure that p′ cannot
be longer than p: p′ is then a pre�x of p, and so we proved p ≤PR p′ by
de�nition of ≤PR.

Lemma 3.6.6. uPR is a greatest lower bound operator.

Proof. Let p = p1 uPR p2 be the greatest lower bound of p1 and p2. Then we have
to prove the two following conditions:

1. p ≤PR p1 ∧ p ≤PR p2 comes straightforwardly from the de�nition of uPR.

2. p′ ≤PR p ∀ lower bound p′ of p1 and p2. If p′ = ⊥PR, by de�nition of ≤PR
it surely holds that p′ ≤CI p. Otherwise, it must hold that both p1 and p2
are pre�xes of p′ by de�nition of the lattice structure of PR. Then, it holds
that p1 and p2 are one the pre�x of the other one (since they are both pre�xes
of the same string p′). Suppose that p1 is the pre�x of p2 (the other case is
symmetrical): then, p2 ≤PR p1 by de�nition of ≤PR. If this is the case, by
de�nition of uPR, we also know that p = p2. Since p′ ≤PR p2 by hypothesis
and p = p2, we get that p

′ ≤PR p by de�nition of ≤PR.

Lemma 3.6.7. The abstract domain PR is a lattice.

Proof. The order based on pre�xes is a partial order. Informally: (i) a string is
always a pre�x of itself (re�exivity); (ii) if a string is pre�x of another one and
viceversa, then the two strings have to be the same string (antisymmetry); (iii) if a
string s1 is pre�x of another string s2 and s2 is pre�x of another string s3, then s1
is also a pre�x of s3 (transitivity).

58 3. A Generic Framework for String Analysis

The fact that tPR and uPR are the least upper bound and the greatest lower
bound operators is proved by the two previous Lemmas.

Note that PR is a simple lattice, and not a complete lattice. In fact, in a complete
lattice both the lub and glb of any set (�nite and in�nite) must exist. However,
we cannot de�ne the greatest lower bound for an in�nite set of elements, because
this domain may have in�nite chains of �nite pre�xes, whose limit can only be an
in�nite trace and not the bottom element. The in�nite trace is not in the domain,
so the domain (as it is de�ned) cannot be complete since it does not contain the
limit of in�nite descending chains. However, this does not cause problems, because
what really matters (for the convergence of the analysis) are the ascending chains,
which, in this domain, are �nite. In other words, we want to be sure that there
is a limit when we deal with chains of increasing elements and this is guaranteed
because, as we proved before, given any pre�x p of length n (which is �nite), the
ascending chain starting at p has �nite length n+ 1.

Abstraction and Concretization Functions

The concretization function γPR(p) is de�ned as follows:{
∅ if p = ⊥PR
{s : s ∈ K∗ ∧ len(s) ≥ len(p) ∧ ∀i ∈ [0, len(p)− 1] : s[i] = p[i]} otherwise

The abstract value p maps to the set of the strings which begin with the sequence
of characters represented by p.

Theorem 3.6.8. Let the abstraction function αPR be de�ned by αPR = λY.uPR{p :
Y ⊆ γPR(p)}.

Then 〈℘(S),⊆〉 −−−−→←−−−−
αPR

γPR 〈PR,≤PR〉.

Proof. By Theorem 2.8.3 we only need to prove that γPR is a complete meet mor-
phism. Formally, we have to prove that γPR(

d
PR

(p)∈X
p) =

⋂
p∈X γPR(p).

By de�nition of
d
PR, we can have only the two following cases:

1. ∃p′ ∈ X : ∀p ∈ X : p′ ≤PR p. Then we have the following inference chain:

γPR(
d
PR

(p)∈X
p)

by De�nition of uPR
= γPR(p′)
by De�nition of γPR

= {s : s ∈ K∗ ∧ len(s) ≥ len(p′) ∧ ∀i ∈ [0, len(p′)− 1] : s[i] = p′[i]}
by De�nition of ≤PR since ∀p ∈ X : p′ ≤PR p

=
⋂

p∈X{s : s ∈ K∗ ∧ len(s) ≥ len(p) ∧ ∀i ∈ [0, len(p)− 1] : s[i] = p[i]}
by De�nition of γPR

=
⋂

p∈X γPR(p)

3.6. Abstract Domains and Semantics 59

Table 3.5: The abstract semantics of PR

SPRJnew String(str)K() = str
SPRJconcatK(p1, p2) = p1

SPRJsubstringebK(p) =


p[b · · · e− 1] if e ≤ len(p)
p[b · · · len(p)− 1] if e > len(p) ∧ b < len(p)
ε otherwise

BPRJcontainscK(p) =

{
true if c ∈ char(p)
>B otherwise

2. otherwise, γPR(
d
PR

(p)∈X
p) = γPR(⊥PR) = ∅. Then

⋂
p∈X γPR(a) = ∅, since

there is no concretized strings in common among abstract states that represent
di�erent pre�xes.

In a similar way to PR, we can also track information about the su�x of a
string. We introduce another abstract domain, SU , where a string is approximated
by the end of a certain sequence of characters, while we do not track anything about
the string before such su�x. The notation and all the operators of this domain are
dual to those of PR domain.

The domain de�nition is: SU = K∗ ∪ ⊥SU . As for the partial order, s1 ≤SU s2 if
s2 is a su�x of s1 or if s1 is the bottom value of the domain, ⊥SU . The top element
>SU is ∗, while the bottom value is the special element ⊥SU (for the same reasons
explained for ⊥PR). The least upper bound operator tSU , dually to tPR, is de�ned
as the longest common su�x between the two su�xes in input. As for the greatest
lower bound, if the two su�xes are not comparable with respect to the order ≤SU
(e.g., ∗a and ∗b), then the string sets they represent have nothing in common and
their glb is thus ⊥SU . If they are comparable, the smaller element between the two
is the greatest lower bound. SU is a domain with in�nite height, just like PR. In
fact, given any su�x, we can always add a character at its beginning, thus obtaining
a new su�x, longer (therefore smaller, according to the order ≤SU) than the initial
one. As it happened with PR, though, this domain respects the ACC condition,
and it does not need a widening operator. The concretization function maps an
abstract value s to the set of the strings which end with the sequence of characters
represented by s.

All the proofs for this domain are symmetrical to those presented for PR .

60 3. A Generic Framework for String Analysis

Table 3.6: The abstract semantics of SU

SSUJnew String(str)K() = str
SSUJconcatK(s1, s2) = s2
SSUJsubstringebK(s) = ε

BSUJcontainscK(s) =

{
true if c ∈ char(s)
>B otherwise

Semantics

Tables 3.5 and 3.6 de�ne the abstract semantics on PR and SU , respectively. Let
us explain in detail the semantics of each operator:

• When we evaluate a constant string value (new String(str)), the most precise
su�x and pre�x are the string itself.

• When we concatenate two strings, we create a new string which starts with
the �rst one and ends with the second one. Then, we consider as pre�x and
su�x of the resulting string the abstract value of the left and right operand,
respectively.

• The semantics of substringeb is >SU in SU , since we do not know how many
characters there are before the su�x (b and e are relative to the beginning
of the string). With PR, instead, we do know how the string begins, so we
can be more precise if b (and eventually e) are smaller than the length of the
pre�x we have. We have to distinguish three di�erent cases: (i) if e ≤ len(p),
the substring is completely included in the known pre�x; (ii) if e > len(p)
but b < len(p), only the �rst part of the substring is in the pre�x; (iii) if
b ≥ len(p), the substring is completely further the pre�x and we return >PR.

• The semantics of containsc returns true i� c is contained in the pre�x or in
the su�x, and >B otherwise, since we have no information at all about which
characters are after the pre�x or before the su�x.

We now prove the soundness of the abstract operations de�ned above.

Theorem 3.6.9 (Soundness of the abstract semantics). SPR and BPR are a sound
overapproximation of S and B, respectively. Formally, γPR(SPRJsK(p)) ⊇ {SJsK(c) :
c ∈ γPR(p)} and γPR(BPRJsK(p)) ≥B {BJsK(c) : c ∈ γPR(p)}.

Proof. We prove the soundness separately for each operator. We only prove the
soundness for the PR domain: the proof for SU are simply their mirror image.

• γPR(SPRJnew String(str)K()) ⊇ {SJnew String(str)K()} follows immediately
from the de�nition of SPRJnew String(str)K() and of γPR.

3.6. Abstract Domains and Semantics 61

• Consider the binary operator concat. Let p1 and p2 be two pre�xes. We
have to prove that γPR(SPRJconcatK(p1, p2)) ⊇ {SJconcatK(c1, c2) : c1 ∈
γPR(p1) ∧ c2 ∈ γPR(p2)}. A generic element c1 ∈ γPR(p1) is a string which
starts with the pre�x p1; the same goes for c2 ∈ γPR(p2). The concatenation
of c1 and c2 produces a string which starts with p1 and afterwards contains
p2 (in an unknown position) by de�nition of S. Then, this string belongs
to γPR(SPRJconcatK(p1, p2)), since SPRJconcatK(p1, p2) = p1 by de�nition of
SPR, and γPR(p1) returns all the strings which start with p1.

• Consider the unary operator substringeb and let p be an abstract state. A
generic string c ∈ γPR(p) is a string which starts with p by de�nition of γPR.
We may have only the following three cases:

� if e ≤ len(p), the substring of c from the b-th character to the e-th char-
acter is completely known (since the pre�x p is longer than e characters)
and the result of the concrete semantics applied to c is the substring from
the bth to the e− 1th character. SPRJsubstringebK(p) returns the pre�x
composed by the substring from p[b] to p[e − 1] by de�nition of SPR.
The concretization of this result returns all the strings starting with the
substring from p[b] to p[e− 1] by de�nition of γPR, thus it contains also
such substring that is the result of the concrete semantics.

� if e > len(p) ∧ b < len(p), since c starts with p by de�nition of γPR, we
surely know that the substring of c from the b-th character to the e-th
character starts with the characters from p[b] to p[len(p)−1] by de�nition
of S. SPRJsubstringebK(p) returns the pre�x made by the characters
from p[b] to p[len(p)− 1], thus representing all strings starting with such
characters by de�nition of γPR. Therefore, it surely contains also the
resulting substring of c.

� otherwise, SPRJsubstringebK(p) returns ε, that is, the top element of
PR, that trivially overapproximates any possible result of the concrete
semantics.

• Consider the unary operator containsc and let p be an abstract pre�x. Re-
garding the character c, we have two possible cases:

� If c ∈ char(p), all the strings belonging to γPR(p) contain at least one
occurrence of c, because they start with the pre�x p by de�nition of γPR,
and such pre�x contains the character c. Then, the concrete semantics
returns always true, and the abstract semantics returns the same result.

� Otherwise, c /∈ char(p), and the abstract semantics returns >B, that
trivially overapproximates any possible result of the concrete semantics.

62 3. A Generic Framework for String Analysis

#I Var PR SU
1 query s1 s1
3 l ε ε
4 query s1 s3
5 query s1 � �
6 per s4 s4
8 query s1 s6

(a) Analysis of prog1

#I Var PR SU
1 x a a
3 x 0 1
4 x > >
(b) Analysis of prog2

Figure 3.4: The results of PR and SU

Case studies

The results of the analysis using the pre�x and su�x domains on the two case studies
are reported by Figure 3.4.

For prog1, at line 1, query contains the whole string s1 as both pre�x and su�x.
l is an input, so its pre�x and su�x are both empty. After the concatenation at
line 4, the pre�x will be equal to s1, the su�x to s3 because we keep the pre�x of
the �rst string being concatenated and the su�x of the last one. Since the value of
l is unknown, we must compute the least upper bound between the abstract values
of query after lines 1 and 4. Then, at line 5, the pre�x is s1 and the su�x is a
space character (the longest common su�x between s1 and s3). The variable per

is associated at line 6 to s4 for both the pre�x and the su�x. At the end of the
analysis, from the concatenation of line 8 we get that the pre�x of query is string s1
and its su�x is s6, although we lose information about what there is in the middle.

For prog2, before entering the loop we know that the pre�x and su�x of x are
both an `a' character. After the �rst iteration of the loop we get that the pre�x of x
is `0' and its su�x is `1'. The least upper bound of such state with the state before
the loop (pre�x and su�x are both an `a' character), unfortunately goes to > (the
longest common pre�xes and su�xes are empty). Then, we reached convergence
after just one iteration (since the least upper bound of any element with the >
value returns always the > value), but we lost all the information.

3.6.3 Bricks

The domains already introduced do not track precise information about the order
of characters. In fact, in CI (Section 3.6.1) each character of the abstract repre-
sentation was completely unrelated with regard to the others, while in the PR and
SU domains (Section 3.6.2) we also considered order, but limited at the beginning
(or at the end) of the string. Instead, the abstract domain we will de�ne in this
section will consider both inclusion and order among characters, but not limited to
the beginning or the end of the string. Therefore, the information tracked by this

3.6. Abstract Domains and Semantics 63

domain could be adopted to prove more sophisticated properties than the previ-
ous domains (e.g., the well-formedness of SQL queries). Obviously, this comes at a
price: this abstract domain (called BR) is more expressive than CI, PR, and SU .
BR is based on the idea of identifying a string through a regular expression, but
full regular expressions are too much complex for our purposes, and thus we will
approximate them.

In BR, a string is approximated by a sequence of bricks. A single brick is de�ned
by

B = [S1]
min,max : S1 ∈ ℘(S)

where min and max are two integer positive values or +∞ 4, S is the set of all
strings, and S1 is a generic element of its powerset. A brick represents all the strings
which can be built through concatenation of the given strings (a subset of S), taken
between min and max times altogether. For instance, [{“mo”, “de”}]1,2 corresponds
to {mo, de,momo, dede,mode, demo}

Elements in BR represent strings as ordered lists of bricks. For instance, [{“straw”}]0,1
[{“berry”}]1,1 = {berry, strawberry} since [{“straw”}]0,1 concretizes to {ε, “straw”}
and [{“berry”}]1,1 to {“berry”}. Formally, concatenation between bricks is de�ned
as:

B1B2 = {αβ : α ∈ strings(B1) ∧ β ∈ strings(B2)}

where strings(B) represents all the strings which can be built from the single brick
B.

Since a particular set of strings could be represented by more than one combina-
tion of bricks (for example, abc is represented by [{abc}]1,1 but also by [{a}]1,1[{b}]1,1
[{c}]1,1, etc...), we adopted a normalized form. The normalization algorithm is based
on �ve normalizing rules. After presenting the concretization function, we will prove
the soundness of these normalization rules. The normal representation can be seen
as the �xpoint of the application of the �ve rules to a given representation. We call
normBricks(L) the function which, given a list of bricks L, returns its normalized
version. The �ve normalization rules are as follows:

Rule 1 remove unnecessary bricks, i.e., bricks of the form: [∅]0,0, since they repre-
sent only the empty string, which is the neutral element of the concatenation
operation.

Rule 2 merge successive bricks with the same indices, min = 1 and max = 1, in a
new single brick where the indices remain the same (min = max = 1), and the
strings set is the concatenation the two original strings sets (i.e., each string
is made by the concatenation of one string from the �rst set and one from the
second set, in this order). For example, the two bricks B0 = [{a, cd}](1,1) and
B1 = [{b, ef}](1,1) become, after the application of the second rule, the new
single brick B′ = [{ab, aef, cdb, cdef}](1,1).

4The order relationship on integers is enriched to consider also the value of +∞.

64 3. A Generic Framework for String Analysis

Rule 3 transform a brick in which the number of applications is constant (min = max)
into one in which the indices are 1 (min = max = 1). Formally, a brick of the
form B0 = [S0]

(m,m) becomes the brick B
′

= [S0
m](1,1), where S0

m represents
the concatenation of S0 with itself for m times. For example, B = [{a, b}](2,2)
becomes B′ = [{aa, ab, ba, bb}](1,1).

Rule 4 merge two successive bricks in which the set of strings is the same (Si = Si+1)
into a single one modifying the indices. Formally, the bricks Bi = [Si]

(m1,M1)

and Bi+1 = [Si]
(m2,M2) become the new single bricks B = [Si]

(m1+m2,M1+M2).

Rule 5 break a single brick with min ≥ 1 ∧max 6= min into two simpler bricks. More
precisely, a brick of the form Bi = [Si]

(min,max), where min ≥ 1 ∧ max 6= min,
becomes the concatenation of Bi1 = [Si

min](1,1) and Bi2 = [Si]
(0,max−min). A

simple example is the following one: the brick B = [{a}](2,5) becomes the
concatenation of the two bricks B1 = [{aa}](1,1) and B2 = [{a}](0,3).

Let us present an example of the normalization process. Consider the bricks
list [{a}](1,1)[{a, b}](2,3)[{a, b}](0,1). First, we can apply the fourth rule to the sec-
ond and third brick, merging them because their strings set is the same. We
obtain the new bricks list [{a}](1,1)[{a, b}](2,4). Now we can apply the �fth rule
to the second brick ([{a, b}](2,4)), which gets split into the concatenation of two
bricks: [{aa, ab, ba, bb}](1,1) and [{a, b}](0,2). The resulting bricks list is then: [{a}](1,1)
[{aa, ab, ba, bb}](1,1) [{a, b}](0,2). Finally, we can apply the second rule to the �rst two
bricks, merging them because of their indices range (1, 1). The �nal list of bricks is
then: [{aaa, aab, aba, abb}](1,1)[{a, b}](0,2). We cannot apply any more rules to such
representation, therefore we have reached a normal state.

Note that, in a normalized element of BR:

• there cannot be two successive bricks with both min = max = 1. In fact, they
would be merged into one single brick by the second rule;

• there cannot be a brick with min ≥ 1∧max ≥ min, since it would be simpli�ed
by the third (if min = max) or �fth (if max > min) rule;

• there cannot be bricks with indices min = max = 0, since they would be
removed by the �rst rule.

Thus, every brick of the normalized list will be in the form [T]1,1 or [T]0,max>0 (where
T is a set of strings).

The abstract domain of bricks is de�ned by

BR = normBricks(B∗)

that is, the set of all �nite normalized sequences of bricks.

3.6. Abstract Domains and Semantics 65

Comparison between Lists of Bricks

In the de�nition of lattice and semantics operators, we will often have to deal with
various lists of bricks of di�erent length. However, it is usually convenient to deal
with lists of the same size to de�ne e�ective operators. When dealing with two
abstract elements, this means to augment the shorter list with some empty bricks
(E = [∅](0,0)). In fact, empty bricks represent the empty string, and adding empty
bricks in any position of a bricks list will not change the set of strings represented
by such bricks list.

A crucial question is where to insert the empty bricks in the shorter list. Let L1
and L2 be two lists of bricks, and let L1 be the shortest one. Let n1 be the number of
bricks of L1, n2 the number of bricks of L2, and n be their di�erence (n = n2 − n1).
Then, we have to add n empty bricks to L1. The simplest solution would be to insert
all n bricks at the beginning (or end) of L1. However, this method often induces loss
of precision, because it does not consider possible �similarities� between bricks from
the two lists. Hence, we choose to adopt a di�erent and more precise approach. The
idea is that, for each brick of the shorter list, we check if the same brick appears in
the other list. If so, we modify the shorter list by adding empty bricks such that the
two equal bricks will appear in the same position in the two lists. If no pair of equal
bricks is found, the algorithm works in a way that all n empty bricks are added at
the beginning of the shorter list.

More formally, Algorithm 1 de�nes the procedure used to pad the shorter list
with empty bricks. The purpose of such algorithm is to build a new list Lnew which
has the same length of L2 (assuming it is the longest one) and contains all bricks of
L1 plus some empty bricks E, trying to maximize the positional correspondences of
equal bricks in Lnew and L2. To do this, we process each brick b of L2 (for loop at
line 7) and, in the same position of Lnew we put:

• an empty brick E if L1 is empty (i.e., we have already inserted all its bricks in
Lnew) or if b and the �rst brick of L1 are di�erent (lines 11-13);

• b itself, if the �rst brick of L1 is equal to b. In this case, we also remove the
�rst brick from L1, to avoid inserting it multiple times in the new list. (lines
14-16)

When the empty bricks have all been added (i.e., emptyBricksAdded ≥ n), we
proceed to insert in Lnew all remaining bricks in L1, one at a time (lines 8-10).

This padding is particularly useful in order to maximize the number of bricks
in the two lists that are equals and at the same position. For instance, consider
the case L1 = [b0; b1; b2] and L2 = [b3; b0; b1; b4; b5]. The result of the padding is
Lnew = [E; b0; b1;E; b2]. We managed to put b0 and b1 in the same position as they
appear in L2. Thanks to this feature, the lattice and semantic operator will be in
position to obtain precise results traversing the list of bricks only once.

66 3. A Generic Framework for String Analysis

Algorithm 1 Algorithm for making two lists of bricks of the same size, by padding
the shorter one with empty bricks, where removeHead(L) is a helper function which
removes the �rst value of the list L in input and L.add(v) is a function which adds
the value v at the end of the list L, and E represents the empty brick

1: function padList(L1, L2)
2: n1 ← length(L1)
3: n2 ← length(L2)
4: n← n2 − n1

5: Lnew ← List.empty
6: emptyBricksAdded← 0
7: for i = 0→ n2 − 1 do
8: if emptyBricksAdded ≥ n then
9: Lnew ← Lnew.add(L1[0])
10: removeHead(L1)
11: else if empty(L1) ∨ L1[0]! = L2[i] then
12: Lnew ← Lnew.add(E)
13: emptyBricksAdded← emptyBricksAdded+ 1
14: else
15: Lnew ← Lnew.add(L1[0])
16: removeHead(L1)
17: end if
18: end for
19: return Lnew
20: end function

3.6. Abstract Domains and Semantics 67

Partial Order

To de�ne an order on lists of bricks, we have �rst to de�ne a partial order on single
bricks. ≤B is de�ned as follows:

[C1]
m1,M1 ≤B [C2]

m2,M2

m
(C1 ⊆ C2 ∧m1 ≥ m2 ∧M1 ≤ M2) ∨ ([C2]

m2,M2 = >B) ∨ ([C1]
m1,M1 = ⊥B)

where >B and ⊥B are two special bricks, greater and smaller than any other brick,
respectively. More precisely, given an alphabet of characters K, we de�ne the top
element of single bricks as the brick:

>B = [K](0,+∞)

which represents any possible string. Instead, the bottom element is de�ned by:

⊥B = [∅](m,M)6=(0,0) ∨ ([S](m,M) ∧M < m)

This de�nition of bottom tries to capture the concept of computational error: in
fact, the two possible de�nitions are both bricks which do not represent any concrete
string. They are invalid bricks and they correspond to ∅. Note that bricks of the form
[S](0,0) (including the empty brick E = [∅](0,0)) are all valid bricks which correspond
only to the empty string ε. By de�nition of ≤B we are sure that ⊥B is smaller than
any other brick of the domain. We may also want to prove that no element of the
domain B (di�erent from ⊥B) is smaller than bottom. To this purpose, let [S1]

(a,b)

be a generic brick di�erent from ⊥B (then, we know for sure that a ≤ b). We want
to prove that [S1]

(a,b) �B ⊥B. Since bottom has two possible values, we consider the
two cases separately:

• let ⊥B = [∅](m,M) 6=(0,0). Suppose by contradiction that [S1]
(a,b) ≤B [∅](m,M) 6=(0,0).

By de�nition of ≤B, S1 must be equal to ∅. Then, at least one of the two indices
a, b must be equal to zero (otherwise the brick would be equal to [∅](m,M) 6=(0,0),
that is bottom, from which we supposed it to be di�erent). If a = 0 we reach
a contradiction, because it holds a < m (since a = 0 and m 6= 0), while by
de�nition of ≤B it should hold the opposite (a ≥ m). Instead, if b = 0, then
also a must be equal to 0 (otherwise it would hold b < a and the brick would
be equal to bottom, from which we supposed it to be di�erent). However,
we just saw how a = 0 brings to a contradiction. Thus, we proved that
[S1]

(a,b) �B [∅](m,M) 6=(0,0).

• let ⊥B = ([S](c,d) ∧ d < c). Remember that a ≤ b by hypothesis. Suppose by
contradiction that [S1]

(a,b) ≤B ([S](c,d). By de�nition of ≤B, then, it must hold
that a ≥ c ∧ b ≤ d. Consider b ≤ d. Since d < c, it holds also that b < c
(by transitive property). Then, since a ≤ b and b < c, we obtain (again, by
transitive property) that a < c. But this is in contradiction with a ≥ c which
should be true if [S1]

(a,b) ≤B ([S](c,d). Thus, [S1]
(a,b) �B ([S](c,d).

68 3. A Generic Framework for String Analysis

We proved that no element of the domain B (di�erent from bottom) is smaller than
bottom.

Now we can de�ne the order relationship on elements of BR: given two lists L1
and L2, we augment the shorter list using Algorithm 1 in order to have lists of the
same size. Then, we proceed by extracting one brick from each list and comparing
the two bricks, until we reach the end of the two lists.

Formally, given two lists L1 and L2, we make them have the same size n by
applying Algorithm 1, thus obtaining L

′
1 and L

′
2. Then:

L1 ≤BR L2 ⇔ (L2 = >BR) ∨ (L1 = ⊥BR) ∨ (∀i ∈ [0, n− 1] : L
′
1[i] ≤B L

′
2[i])

Note that, depending on the algorithm chosen to pad the shorter list, sometimes
the relationship between two lists of bricks can be missed. As a simple example,
consider L1 = [[{a}](1,1); [{b}](0,1)] and L2 = [[{a}](1,1)]. The �rst list represents the
set of concrete strings {a, ab}, while the second list represents the singleton {a}.
With Algorithm 1, the second list is transformed into L

′
2 = [[{a}](1,1);E]. Then, it

holds that L
′
2 ≤BR L1, which is what we expect, since {a} ⊆ {a, ab}. However, if

we used a di�erent algorithm which put all empty bricks at the beginning of the
list, we would obtain L

′′
2 = [E; [{a}](1,1)] and in this case L

′′
2 �BR L1: we would not

be able to prove that L2 represents a smaller set of concrete elements (i.e., is more
precise) than L1. This means that the choice of the algorithm to pad the shorter
list is very important, since it has direct repercussions on the precision of the order.
The experimental results obtained using Algorithm 1 are satisfactory, but it is still
unclear if a better algorithm exists. However, the choice of the speci�c algorithm
must not have the e�ect of inverting the order: given two lists L1, L2, it must not
happen that L1 ≤BR L2 when using a certain algorithm, but L2 ≤BR L1 when using
another one.

Lemma 3.6.10 (≤BR is not inverted by the choice of the padding algorithm). Let

L1, L2 be two lists of bricks and let A,B be two padding algorithms. Let L
A

1 , L
B

1 be
the lists obtained by applying such algorithms to L1 (to make its length equal to that
of L2). Then, it never happens that

L
A

1 ≤BR L2 ∧ L2 ≤BR L
B

1

Proof. Let n1, n2 be the length of L1, L2 (respectively), where n1 < n2. Then, algo-

rithms A,B will insert n2 − n1 empty bricks E in L1: both L
A

1 , L
B

1 have length n2.
Assume also that L1 does not contain empty bricks (since they would be removed
by the normalization). Let i < n2 be an index such that

L
A

1 [i] 6= E ∧ L
B

1 [i] = E

Such index must exist, otherwise all the empty bricks in L
B

1 would correspond to

empty bricks in L
A

1 and thus L
A

1 , L
B

1 would be exactly the same list of bricks (i.e.,
the two algorithms would not have produced di�erent results).

3.6. Abstract Domains and Semantics 69

Suppose, by contradiction, that L
A

1 ≤BR L2∧L2 ≤BR L
B

1 holds. From the hypoth-

esis L
A

1 ≤BR L2 we get that L
A

1 [i] ≤B L2[i]. From the hypothesis L2 ≤BR L
B

1 we get

that L2[i] ≤B L
B

1 [i]. By transitive property and considering we assumed L
B

1 [i] = E,
we obtain:

L
A

1 [i] ≤B L2[i] ≤B L
B

1 [i] = E

Then, again by transitive property, we have that L
A

1 [i] ≤B E. Let L
A

1 [i] = [S](m,M).
Since E = [∅](0,0), the order relationship ≤B implies that S ⊆ ∅ ∧m ≥ 0 ∧M ≤ 0:

• the only set included in the empty set is the empty set itself;

• the index M must be equal to 0, because all bricks indices must be greater or
equal than 0 but it must also hold that M ≤ 0;

• sinceM = 0 and m ≥ 0, also m must be equal to 0 (otherwise we would obtain
m > M and this would correspond to an invalid brick).

Combining these observations, we obtain that L
A

1 [i] = [∅](0,0) = E, which is not

possible because we chose a speci�c index i such that L
A

1 [i] 6= E: we reached a
contradiction.

Lemma 3.6.11 (≤BR is a partial order). The order ≤BR is a partial order.

Proof. We refer to [44] for the proofs that ≤BR is re�exive and transitive, and here
we prove that it is antisymmetric. Formally, we must prove that, given two lists of
bricks L1 and L2 of the same length n (otherwise we add empty bricks inside the
shorter one through Algorithm 1, without changing the represented set of strings),
it holds:

L1 ≤BR L2 ∧ L2 ≤BR L1 ⇒ L1 = L2

This trivially holds if one of the two abstract states is >BR or ⊥BR by de�nition
of ≤BR. Otherwise, since L1 ≤BR L2, we know that ∀i ∈ [0, n − 1] : L1[i] ≤B L2[i]
by de�nition of ≤BR. But we also know that L2 ≤BR L1, and this means that
∀i ∈ [0, n − 1] : L2[i] ≤B L1[i]. Consider then a generic pair of bricks L1[i] and L2[i].
Neither of these two bricks can be equal to ⊥B, since otherwise the abstract state to
which it belongs would be equal to ⊥BR and we already excluded this case. If one
brick is equal to >B, then also the other one must be too, otherwise our hypothesis
would not hold. In this case, then, the two bricks are equal. Otherwise (neither brick
is top nor bottom), let L1[i] = [C1]

m1,M1 and L2[i] = [C2]
m2,M2 . Since L1[i] ≤B L2[i], it

holds that (C1 ⊆ C2 ∧m1 ≥ m2 ∧M1 ≤ M2). Also, since L2[i] ≤B L1[i], it holds that
(C2 ⊆ C1 ∧ m2 ≥ m1 ∧M2 ≤ M1). Then: (i) from C1 ⊆ C2 and C2 ⊆ C1 it follows
C1 = C2; (ii) from m1 ≥ m2 and m2 ≥ m1 it follows m1 = m2; (iii) from M1 ≤ M2

and M2 ≤ M1 it follows M1 = M2. This means that L1[i] = L2[i], and this is valid for
all i ∈ [0, n− 1]. This implies that L1 = L2.

70 3. A Generic Framework for String Analysis

Figure 3.5: The abstract domain BR with K = {a, b}

The top element of BR is then a list containing only one brick:

>BR = [>B]

Since >B represents all the strings, >BR does too. The bottom element instead is
de�ned as:

⊥BR = [] ∨ ([b1, . . . , bn] : ∃i : bi = ⊥B)

i.e., ⊥BR is an empty list (it does not represent any string at all, not even the empty
string) or any list which contains at least one invalid element (⊥B). In fact, if the list
contains the equivalent of a computational error, then the entire list is considered
invalid.

The lattice of BR is depicted in Figure 3.5. For visual clarity we only pictured
lists of size one and we considered the alphabet K = {a, b}.

Least Upper Bound and Greatest Lower Bound

As we did for the partial order, we de�ne the least upper bound operator on single
bricks at �rst: ⊔

B

([S1]
(m1,M1), [S2]

(m2,M2)) = [S1 ∪ S2]
(m,M)

where m = min(m1,m2) and M = max(M1,M2). For example, the least upper
bound between [{a, b}](1,3) and [{a, c}](0,2) is the brick [{a, b, c}](0,3).

3.6. Abstract Domains and Semantics 71

To compute the least upper bound between elements of BR (lists of bricks), we
proceed exactly as we did to de�ne the partial order ≤BR. Given two lists L1 and
L2, we make them have the same size n by using Algorithm 1, thus obtaining L

′
1 and

L
′
2. Then, tBR is de�ned as follows:⊔

BR

(L1, L2) =
⊔
BR

(L
′
1, L
′
2) = LR[0]LR[1] . . . LR[n− 1]

where ∀i ∈ [0, n− 1] : LR[i] =
⊔
B(L

′
1[i], L

′
2[i]).

The greatest lower bound operator works very similarly to the least upper bound
one. The glb operator on single bricks is de�ned as follows:

l

B

([S1]
(m1,M1), [S2]

(m2,M2)) = [S1 ∩ S2]
(m,M)

where m = max(m1,m2) and M = min(M1,M2). For example, the greatest lower
bound between [{a, b}](1,3) and [{a, c}](0,2) is the brick [{a}](1,2). Note that sometimes
the result of the glb is an invalid brick (for example because themax index is smaller
than themin one). To conclude the description of the glb operator, we have to de�ne
how it works with lists of bricks (the elements of BR). Given two lists L1 and L2,
we make them have the same size n by using Algorithm 1, thus obtaining L

′
1 and L

′
2.

Then uBR is de�ned as follows:

l

BR

(L1, L2) =
l

BR

(L
′
1, L
′
2) = LR[0]LR[1] . . . LR[n− 1]

where ∀i ∈ [0, n− 1] : LR[i] =
d
B(L

′
1[i], L

′
2[i]). If any element of the sequence LR

corresponds to ⊥B, then the entire resulting list should be set to ⊥BR.

Lemma 3.6.12. tBR is the least upper bound operator.

Proof. Let L be L = L1 tBR L2. Then we have to prove the following two conditions:

1. L1 ≤BR L ∧ L2 ≤BR L. Let us suppose that L1, L2, L are lists of the same size
(one of them could be padded with empty bricks inside it, but empty bricks
do not interfere with order comparisons). Then, for L1 to be smaller than L,
it must be that each brick of L1 is smaller (in the single brick order) than
the corresponding brick of L. Let [S1]

(m1,M1) be the brick of L1 in a generic
position i, and [S2]

(m2,M2) be the brick of L2 in the same position. The brick of
L in such position will be, by de�nition of tBR, [S1 ∪ S2]

(min(m1,m2),max(M1,M2)).
The brick of L1 is smaller than the brick of L, because S1 ⊆ (S1 ∪ S2) ∧m1 ≥
min(m1,m2) ∧M1 ≤ max(M1,M2). The same goes for the brick of L2. Thus,
L1 ≤BR L ∧ L2 ≤BR L.

72 3. A Generic Framework for String Analysis

2. L ≤BR L
′ ∀ upper bound L

′
of L1 and L2. As before, suppose that L, L1,

L2, and L
′
have all the same size (otherwise we pad them with empty bricks

using Algorithm 1). Since L
′
is an upper bound of L1 and L2, this means that

each brick of L
′
is greater than the corresponding brick of both L1 and L2.

Let [S1]
(m1,M1) be the brick of L1 in a generic position i, and [S2]

(m2,M2) be the
brick of L2 in the same position. Then, the corresponding brick of L

′
(let it

be [S
′
](m
′,M′)) must satisfy (to be an upper bound) the following requirements:

(i) S
′ ⊇ (S1 ∪ S2), (ii) m′ ≤ min(m1,m2), (iii) M′ ≥ max(M1,M2). The brick

of L in the same position is de�ned as [S1 ∪ S2]
(min(m1,m2),max(M1,M2)) and it is

certainly smaller (or equal) than the brick of L
′
, for de�nition of ≤B. Since

this happens for every brick of L
′
and L, it holds that L ≤BR L

′
.

Lemma 3.6.13. uBR is the greatest lower bound operator.

Proof. The reasoning is symmetrical to that of the least upper bound (set intersec-
tion instead of union, min instead of max, and so on). In the special case where the
glb corresponds to ⊥BR, it is immediate to prove the two conditions (since ⊥BR is
smaller than any other element of the domain, and if the glb is ⊥BR it cannot exist
any other valid lower bound).

Lemma 3.6.14. BR is a lattice.

Proof. A lattice is a partially ordered set in which every two elements have a join
(also called a least upper bound) and a meet (also called a greatest lower bound). We
already proved that the order ≤BR is a partial order (Theorem 3.6.11). Theorems
3.6.12 and 3.6.13 proved that tBR and uBR are the least upper bound and the
greatest lower bound operators, respectively.

Since the domain is not a complete lattice and it does not respect ACC, we will
later ensure the convergence of the analysis through the de�nition of a widening
operator, in order to de�ne a limit to ascending chains of elements.

Abstraction and Concretization Functions

The concretization function maps an abstract element (i.e., a list of bricks) to a
concrete element (i.e., a set of strings). Each brick represents a certain set of strings.
The list of bricks thus represents all the strings built through the concatenation of
strings which can be made from the bricks of the list (taken in the correct order).
More formally, we de�ne the strings represented by a single brick as:

γB(B) = γB([S](m,M)) =
M⋃
j=m

(SS . . . S︸ ︷︷ ︸
j times

)

3.6. Abstract Domains and Semantics 73

where SS . . . S︸ ︷︷ ︸
j times

= S
j
stands for the concatenation between sets of strings (in particu-

lar, we concatenate S to itself j times). To account for the case in which j = 0, we

impose S
0

= {ε}.
Let us see an example to clarify this de�nition. Consider the brick [{a, b}](1,3)

and let S = {a, b}. Then, the concretization of such brick is the following one:

γB([{a, b}](1,3)) = S ∪ SS ∪ SSS =

= {a, b} ∪ {aa, ab, ba, bb} ∪ {aaa, aab, aba, abb, baa, bab, bba, bbb} =

= {a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb}

Note that, if min had been 0 instead of 1, the result would have been:

γB([{a, b}](0,3)) = S
0 ∪ S

1 ∪ S
2 ∪ S

3
= ε ∪ S ∪ SS ∪ SSS

The concretization function for lists of bricks is then the following one:

γBR(B0B1 . . .BN−1) = {s : s ∈ K∗∧s = b0+b1+· · ·+bN−1∧∀i ∈ [0, N−1] : bi ∈ γB(Bi)}

where �+� represents the operator of string concatenation.

Theorem 3.6.15. Let the abstraction function αBR be de�ned by αBR = λY.uBR{B :
Y ⊆ γBR(B)}.

Then 〈℘(S),⊆〉 −−−−→←−−−−
αBR

γBR 〈BR,≤BR〉.

Proof. By Theorem 2.8.3 we only need to prove that γBR is a complete meet mor-
phism. Formally, we have to prove that γBR(

d
BR

(B)∈X
B) =

⋂
B∈X γBR(B). For the sake

of simplicity, we suppose that all list of bricks in X contain n bricks.

γBR(
d
BR

(B)∈X
B) =

By de�nition of uBR
= γBR(B

′
) : ∀i ∈ [0..n− 1] : B

′
[i] = [

⋂
B∈X,B[i]=[S](m,M) S]

(max
B∈X,B[i]=[S](m,M) m,min

B∈X,B[i]=[S](m,M) M)

By de�nition of γBR
= {b0 + ..+ bn−1 : ∀i ∈ [0..n− 1] : i1 = maxB∈X,B[i]=[S](m,M) m, i2 = minB∈X,B[i]=[S](m,M) M,

bi ∈
⋃i2
j=i1

(
⋂

B∈X,B[i]=[S](m,M) S)j}
By de�nition of ∩,min,max

= {b0 + ..+ bn−1 : ∀i ∈ [0..n− 1] : ∀B ∈ X : B[i] = [S](m,M), bi ∈
⋃M
j=m S

j}
By de�nition of ∩

=
⋂

B∈X{b0 + ..+ bn−1 : ∀i ∈ [0..n− 1] : B[i] = [S](m,M), bi ∈
⋃M
j=m S

j}
By de�nition of γBR

=
⋂

B∈X γBR(B)

74 3. A Generic Framework for String Analysis

Now that we presented the concretization function, we can prove that the nor-
malization of a list of bricks does not change its concretization, i.e. the set of strings
it represents.

Lemma 3.6.16 (Soundness of the normalization rules). Given a normalization rule

ri (i ∈ [1, 5]) and a list of bricks L, suppose that L
′
is the list of bricks resulting from

the application of ri to L. Then, γBR(L) = γBR(L
′
).

Proof. We will prove the theorem for one rule at a time.

• r1: trivial, since it just removes empty bricks which represent the empty string,
i.e., the neutral element of concatenation.

• r2: let B1 = [S1]
(1,1) and B2 = [S2]

(1,1) be the two bricks which Rule 2 merges.
The �rst brick represents the strings in S1 (since its indices are both 1), while
the second represents, for the same reasons, the strings in S2. The concatena-
tion of these two bricks, then, represents the strings set S1 S2 (remember that
S T represents the concatenation between the two strings sets S and T , i.e.
the set containing all strings which can be obtained by concatenating a string
from S and a string from T , in this order). Rule 2 transforms these two bricks
in B

′
= [S1 S2]

(1,1), which represents exactly the same set of strings as the two
original bricks, i.e. S1 S2.

• r3: let B = [S](m,m) be the brick which Rule 3 modi�es. Its concretization
is
⋃m
j=m(SS . . . S︸ ︷︷ ︸

j times

) = (SS . . . S︸ ︷︷ ︸
m times

) = Sm. Rule 3 transforms such brick in B
′

=

[Sm](1,1), which concretization is Sm, exactly the same as the original one.

• r4: let B1 = [S](m1,M1) and B2 = [S](m2,M2) be the two bricks which Rule 4
merges. Their concretization is, respectively,

⋃M1

j=m1
(SS . . . S︸ ︷︷ ︸

j times

) and
⋃M2

j=m2
(SS . . . S︸ ︷︷ ︸

j times

).

The concatenation of these two bricks represents the concatenation of their
concretizations: C1 = {(SS . . . S︸ ︷︷ ︸

m1 times

), . . . , (SS . . . S︸ ︷︷ ︸
M1 times

)} concatenated to C2 = {(SS . . . S︸ ︷︷ ︸
m2 times

),

. . . , (SS . . . S︸ ︷︷ ︸
M2 times

)}. The result is the set {S1S2 : S1 ∈ C1∧S2 ∈ C2} = {SS . . . S︸ ︷︷ ︸
j1 times

SS . . . S︸ ︷︷ ︸
j2 times

:

j1 ∈ [m1,M1] ∧ j2 ∈ [m2,M2]} = {SS . . . S︸ ︷︷ ︸
j times

: j ∈ [m1 + m2,M1 + M2]}. Rule

4 merges these two bricks into the single brick B = [S](m1+m2,M1+M2), which
concretization is

⋃M1+M2

j=(m1+m2)
(SS . . . S︸ ︷︷ ︸

j times

), exactly the same of the original one.

• r5: let B = [S](m,M) be the brick which is split by Rule 5, where m ≥ 1∧M 6=
m. Its concretization is

⋃M
j=m(SS . . . S︸ ︷︷ ︸

j times

). Rule 5 transforms such brick in the

3.6. Abstract Domains and Semantics 75

concatenation of the two bricks B1 = [Sm](1,1) and B2 = [S](0,M−m). Their
concretizations are, respectively, C1 = Sm and C2 =

⋃M−m
j=0 (SS . . . S︸ ︷︷ ︸

j times

). The

concatenation of these two bricks produces the set of strings {S1S2 : S1 =
Sm ∧ S2 ∈ C2} = {Sm SS . . . S︸ ︷︷ ︸

j times

: j ∈ [0,M −m]} = {SS . . . S︸ ︷︷ ︸
j times

: j ∈ [0 + m,M −

m+m]} =
⋃M
j=m(SS . . . S︸ ︷︷ ︸

j times

).

Widening Operator

Let kL, kI and kS be three constant integer values which will bound, respectively,
the length of a bricks list, the indices range of a brick and the number of strings in
the set of a brick. The widening operator is de�ned as follows:

∇BR(L1, L2) =


>BR if (L1 �BR L2 ∧ L2 �BR L1)∨

(∃i ∈ [1, 2] : len(Li) > kL)

w(L1, L2) otherwise

We return the >BR element of our domain in two cases: (i) if the two abstract values
are not comparable with respect to our order (L1 �BR L2 ∧ L2 �BR L1), or (ii) if the
length of one of the two lists is greater than the constant kL (∃i ∈ [1, 2] : len(Li) >
kL). Otherwise, we return w(L1, L2). Now we have to de�ne what the function w
does. Let us assume that L1 ≤BR L2 and that len(L1) = len(L2) = n. If the two lists
were not of the same length, we could always add a proper number of empty bricks
inside the shorter list using Algorithm 1. The de�nition of w is thus the following
one:

w(L1, L2) = [Bnew

0 (L1[0], L2[0]);Bnew

1 (L1[1], L2[1]); . . . ;Bnew

n−1(L1[n− 1], L2[n− 1])]

where Bnew

i (L1[i], L2[i]) is de�ned by:

Bnew

i ([S1i]
m1i,M1i , [S2i]

m2i,M2i) =


>B if |S1i ∪ S2i| > kS

∨ L1[i] = >B ∨ L2[i] = >B
[S1i ∪ S2i]

(0,∞)
if (M−m) > kI

[S1i ∪ S2i]
(m,M)

otherwise

where m = min(m1i,m2i) and M = max(M1i,M2i).
Let us brie�y explain why this widening operator is correct. First of all, the result

of a widening between two values must be greater or equal than both values. In our
domain, the result of the widening between L1 and L2 can be >BR or w(L1, L2). If it is
>BR, L1 ≤BR >BR and L2 ≤BR >BR follows from the fact that>BR is the top element

76 3. A Generic Framework for String Analysis

of BR. In the other case, we know that L1 ≤BR L2 or viceversa (for argument's sake,
we assume that L1 is the smaller value). Thus, the result of the widening is a new
list in which each element Bnew

i is the combination of L1[i] and L2[i]. By de�nition
of ≤BR, to prove that L1 ≤BR ∇BR(L1, L2) and L2 ≤BR ∇BR(L1, L2) we just need to
prove that L1[i] ≤B B

new

i and L2[i] ≤B B
new

i ∀i ∈ [0, n − 1], that is, that each brick
of the result is greater or equal to the two corresponding bricks in L1 and L2. By
de�nition of Bnew

i we have only three cases: (i) Bnew

i = >B, and so we have that

L1[i] ≤B >B and L2[i] ≤B >B by de�nition of >B; (ii) B
new

i = [S1i ∪ S2i]
(0,∞)

; in this

case L1[i] = [S1i]
m1i,M1i ≤B [S1i ∪ S2i]

(0,∞)
since S1i ⊆ (S1i∪S2i)∧0 ≤ m1i∧M1i ≤ +∞.

The same happens for L2[i]; (iii) B
new

i = [S1i ∪ S2i]
(m,M)

where m = min(m1i,m2i) and

M = max(M1i,M2i). In this case we have L1[i] = [S1i]
m1i,M1i ≤B [S1i ∪ S2i]

m,M
because

S1i ⊆ (S1i ∪ S2i) ∧m = min(m1i,m2i) ≤ m1i ∧M1i ≤ M = max(M1i,M2i). The same
happens for L2[i].

Then, we need the widening operator to be convergent. In other words, given an
ascending chain sn, the sequence (tn+1 = ∇BR(tn, sn)) has to be ultimately stationary.
In our case, a value of an ascending chain can increase along three axes: (i) the
length of the brick list, (ii) the indices range of a certain brick, and (iii) the strings
contained in a certain brick. The growth of an abstract value is bounded along each
axis with the help of the three constants kL,kS, and kI . After the list has reached
kL elements, the entire abstract value is approximated to >BR, stopping its possible
growth altogether. If the range of a certain brick becomes larger than kI , the range
is approximated to (0,+∞), stopping the indices possible growth. Finally, if the
strings set of a certain brick reaches kS elements, the brick is approximated to >B,
stopping its possible growth altogether.

Gaining More Precision

Normalized values are important in de�nition of operators like least upper bound and
widening. However, normalizing values after each operation is costly and, worse than
that, it could entail a big loss of precision (which we documented while analyzing
our case studies). For example, the result of the BR domain on the second case
study (prog2), when normalizing values after each operation, is >BR, that is, we
are not able to track any kind of information on the program. For these two reasons
(performance and, most importantly, precision), we choose to normalize abstract
values only after executing the least upper bound operator or the widening operator.
Any other operation (regarding both the abstract semantics and the lattice) will not
be followed by a normalization step.

Semantics

Table 3.7 de�nes the abstract semantics of string operators in BR.
Let us explain in detail the semantics of each operator:

3.6. Abstract Domains and Semantics 77

Table 3.7: The abstract semantics of BR

SBRJnew String(str)K() = [{str}]1,1
SBRJconcatK(b1, b2) = concatList(b1, b2)

SBRJsubstringebK(b) =

{
[T
′
]1,1 if b

′
[0] = [T]1,1 ∧ ∀t ∈ T : len(t) ≥ e

>BR otherwise
where T

′
= {t.substring(b, e) ∀t ∈ T} ∧ b

′
= normBricks(b)

BBRJcontainscK(b) =
true if ∃B ∈ b : B = [T]m,M ∧ 1 ≤ m ≤M ∧ (∀t ∈ T : c ∈ char(t))
false if ∀[T]m,M ∈ b, ∀t ∈ T : c /∈ char(t)
>B otherwise

• When a constant string value is evaluated (new String(str)), the semantics
returns a single brick containing exactly that string with [1, 1] as indices.

• For the concatenation of two strings, we rely on the concatList function that
concatenates two lists of bricks.

• To de�ne the semantics of substringeb, we �rst normalize the abstract value
in input (we can do that since we know, by Lemma 3.6.16, that the normal-
ization does not change the set of represented strings). Remember that, in a
normalized list of bricks, each brick is in the form [T](0,max>0) or [T](1,1). If the
�rst brick of the normalized abstract value b

′
has the form [T](0,max>0), then

we have too much uncertainty on how the string begins: we cannot compute
a substring based on start and end indices. Instead, if the �rst brick has the
form [T](1,1) then we are sure that the string will begin with any of the strings
in T. If all the strings in T are long enough (len(t) ≥ e ∀t ∈ T) we can pack
all the possible substrings in a new abstract value, which we will return.

• The semantics of containsc returns true i� the character c appears in all the
strings of a certain brick with minimal index min ≥ 1. It returns false i� we
are sure that c does not appear in any string of any brick of the abstract value.
Otherwise, we have to return >B .

We now prove the soundness of the abstract operations de�ned above.

Theorem 3.6.17 (Soundness of the abstract semantics). SBR and BBR are a sound
overapproximation of S and B, respectively. Formally, γBR(SBRJsK(L)) ⊇ {SJsK(c) :
c ∈ γBR(L)} and γPR(BBRJsK(L)) ≥B {BJsK(c) : c ∈ γBR(L)}.

Proof. We prove the soundness separately for each operator.

78 3. A Generic Framework for String Analysis

• γBR(SBRJnew String(str)K()) ⊇ {SJnew String(str)K()} follows immediately
from the de�nition of SBRJnew String(str)K() and of γBR.

• Consider the binary operator concat. Let L1 and L2 be two lists of bricks.
We have to prove that γBR(SBRJconcatK(L1, L2)) ⊇ {SJconcatK(c1, c2) : c1 ∈
γBR(L1) ∧ c2 ∈ γBR(L2)}. Let s be an element in {SJconcatK(c1, c2) : c1 ∈
γBR(L1) ∧ c2 ∈ γBR(L2)}. By de�nition of S, this means that there exist two
strings c1, c2 such that s = c1 + c2 and that c1 ∈ γ(L1) ∧ c2 ∈ γ(L2). On
the other hand, SBRJconcatK(L1, L2) produces a new list of bricks L which
concatenates the two lists in input by de�nition of SBR By the de�nition of
γBR and the associative property of the concatenation between strings, we can
say that the strings belonging γBR(L) are all the strings obtained through the
concatenation of one string belonging to γBR(L1) and another belonging to
γBR(L2). Then, surely s belongs to γBR(L).

• Consider the unary operator substringeb and let L be a (normalized) list of
bricks. Consider the following cases:

� if L[0] = [T]1,1 ∧ ∀t ∈ T : len(t) ≥ e, then we have that γB(L[0]) = T.
Thus, all the strings in γBR(L) have as pre�x one of the strings of T,
by de�nition of γBR. Moreover, by hypothesis all strings of T are longer
than e characters. Then, a string belonging to {SJsubstringebK(c) : c ∈
γBR(L)} is certainly a substring of one string of T, from the b-th char-
acter to the e-th character, by de�nition of S. This corresponds exactly
to γBR(SBRJsubstringebK(L)), since the abstract semantics applied to L
produces a single brick containing the substrings of all strings in T, from
the b-th character to the e-th character.

� otherwise, the abstract semantics returns >BR, that soundly approxi-
mates any possible result of the concrete semantics.

• Consider the unary operator containsc and let L be a list of bricks. Regarding
the character c, we have three possible cases:

� if ∃b ∈ L : b = [T]m,M ∧ 1 ≤ m ≤M ∧ (∀t ∈ T : c ∈ char(t)), this means
that there exists at least one brick whose strings all contain the character
c. Let b be this brick. Then, all the strings belonging to γB(b) contain the
character c, since its minimum index is ≥ 1. γBR(L) concatenates all the
concretizations of its bricks, so each string belonging to this concretization
surely contains the character c. The result of the concrete semantics
is, then, always true. Since BBRJcontainscK(L) = true, the abstract
semantics is a sound approximation of the concrete semantics.

� if ∀[T]m,M ∈ L,∀t ∈ T : c /∈ char(t), this means that no brick in the
list L has a string containing the character c. Then, no concrete string in
γBR(L) contains such character, and for this reason the concrete semantics

3.6. Abstract Domains and Semantics 79

#I Var BR
1 query [{s1}]1,1
3 l >B
4 query [{s1}]1,1[{s2}]1,1>B[{s3}]1,1
5 query [{s1}]1,1[{s2}]0,1>B[{s3}]0,1
6 per [{s4}]1,1
8 query [{s1}]1,1[{s2}]0,1>B[{s3}]0,1

[{s5}]1,1[{s4}]1,1[{s6}]1,1
(a) Analysis of prog1

#I Var BR
1 x [{“a”}]1,1
3 x [{“0”}]0,1[{“a”}]1,1[{“1”}]0,1
4 x [{“0”}]0,+∞[{“a”}]1,1[{“1”}]0,+∞

(b) Analysis of prog2

Figure 3.6: The results of BR

always returns false. Since BBRJcontainscK(L) = false, this precisely
approximates the results of the concrete semantics.

� otherwise, the abstract semantics on L returns >B, and the property is
immediately proven, since >B is a superset of any set of boolean values.

Case studies

The results of the analysis of the two case studies using BR are depicted in Figures
3.6(a) and 3.6(b).

For prog1, at line 1 we represent query with a single brick with a singleton
set (containing s1, the string associated to query) and indices min = max = 1.
The variable l has an unknown value, so it is associated to >BR. At line 4 we
concatenate the value of query to s2, l and s3 and we obtain a list of four bricks:
the �rst two are made up by a singleton set (containing, respectively, s1 and s2)
and indices min = max = 1, the third one is >BR (because of l), and the fourth
one is made up by a singleton set (containing s3) and indices min = max = 1. This
means that we know that, just after line 4, the string associated to query starts
with s1 + s2, then it has an unknown part, and then it ends with s3. Then, we have
to compute the lub between the values of query after lines 1 and 4. To do this,
�rstly we use Algorithm 1 to make the two lists have the same size: the algorithm
adds three empty bricks at the end of the bricks list of the abstract value at line 1,
thus maintaining the correspondence between [{s1}]1,1 in the two lists. The result

80 3. A Generic Framework for String Analysis

of the lub is, again, a list of four bricks: the �rst one is made up by a singleton set
(containing s1) and indices min = max = 1, the second one is made up by another
singleton set (containing s2) and indices min = 0,max = 1, the third one is >BR
(because of l) and the last one is made up by a singleton set (containing s3) and
indices min = 0,max = 1. This means that we know that, just after line 5, the
string associated to query surely starts with s1, then it could continue with s2, then
it has an unknown part and then it could end with s3. At line 7, the abstract value
of the variable per is composed by a single brick with a singleton set (containing s4,
the string associated to per) and indices min = max = 1. Finally, at line 8 there is
another concatenation. The bricks of the abstract value associated to query after
line 8 are seven: (i) the �rst brick represents the string s1, (ii) the second brick could
be the empty string ε or s2, (iii) the third brick corresponds to the (unknown) input
l, (iv) the fourth brick could be the empty string ε or s3, and (v) the last three
bricks represent the concatenation of s5, s4, and s6. We can see that the precision is
higher than in the previous domains, but still not the best we aim to get: amongst
the concrete results we have, for example, s1 + s3 + s5 + s4 + s6, which cannot be
computed in any execution of the analyzed code.

For prog2, after line 1 the abstract value associated to x is a single brick with
a singleton set (containing “a”) and indices min = max = 1. After the �rst itera-
tion of the loop, the result of the concatenation is made up by three bricks, all of
them with a singleton set (containing, respectively, “0”, “a” and “1”) and indices
min = max = 1. To compute the least upper bound between this value and the value
of x before the loop ([{“a”}]1,1) we �rst execute Algorithm 1, obtaining the new list
E[{“a”}]1,1E instead of just [{“a”}]1,1. The result of the lub is then the abstract
value [{“0”}]0,1[{“a”}]1,1[{“1”}]0,1. The normalization step does not change this ab-
stract value. Starting from this value, we execute the second iteration, and we obtain
[{“0”}]1,1[{“0”}]0,1[{“a”}]1,1[{“1”}]0,1[{“1”}]1,1. To compute the least upper bound
between the values after the �rst and second iterations (we do not know how many
iterations the loop will do), we apply Algorithm 1 on the shorter list, obtaining the
new list E[{“0”}]0,1[{“a”}]1,1[{“1”}]0,1E. The result of the lub is then the abstract
value [{“0”}]0,1[{“0”}]0,1[{“a”}]1,1[{“1”}]0,1[{“1”}]0,1, which, after the normalization
step, becomes [{“0”}]0,2[{“a”}]1,1[{“1”}]0,2. Following the same reasoning, after the
third iteration we obtain [{“0”}]1,1[{“0”}]0,2[{“a”}]1,1[{“1”}]0,2[{“1”}]1,1 which be-
comes [{“0”}]0,3[{“a”}]1,1[{“1”}]0,3 after the lub with the value of the previous it-
eration and after the normalization step. We can see that, after each iteration, we
obtain an abstract value which �rst and last bricks have an augmented range with
respect to the value in the previous iteration: min is always zero, but max increases
by one at each iteration. The convergence of the analysis is obtained through to
the use of the widening operator, which, when a brick's indices range reaches the
threshold kI , forces the range of the brick to min = 0,max = +∞. Since kI is a
constant value, we will certainly reach it after a �nite number of iterations. There-
fore, after the loop, we associate x to [{“0”}]0,+∞[{“a”}]1,1[{“1”}]0,+∞. The result
is almost optimal: the imprecision is due to the fact the number of occurrences of

3.6. Abstract Domains and Semantics 81

0s and 1s are not restricted to be the same. For example, 0a11 is a concrete value
represented by our resulting abstraction, but we know that this string can never be
produced by the program prog2.

3.6.4 String Graphs

In the �rst domain we presented (CI) the only focus of the approximation was
character inclusion. In the next two domains (PR and SU) we also considered
order, but limited at the beginning (pre�x) or at the end (su�x) of the string.
In the BR domain we considered (like in PR and SU) both inclusion and order
among characters, but this time it was not limited to the beginning or the end
of the string. BR approximates a string with a list of bricks, where each brick
represents a set of strings. The precision of this domain is de�nitely better than
that of the previous ones, as it was made clear by the analysis of prog1 and prog2.
We obtained very good results analyzing such programs, even though there is still
room for improvements. The new abstract domain we are going to present in this
section tracks a kind of information similar to the one tracked by BR (inclusion
and order), but equipped with more precise lattice and semantics operators. This
domain exploits type graphs [104], a data structure which represents tree automata,
and adapts them to represent set of strings. Type graphs were introduced in 1992 by
Janssens & Bruynooghe, when they developed a method for obtaining descriptions of
possible values of program variables (extended modes or a kind of type information).
Their method was based upon a framework for Abstract Interpretation. Many of
the concepts we are going to present about string graphs come from the original
de�nition of type graphs, and we refer the interested reader to [104] for more details
about them.

Domain De�nition

A string graph T is a triple (N,AF ,AB) where Tr = (N,AF) is a rooted tree whose
arcs in AF are called forward arcs, and AB is a restricted class of arcs, backward arcs,
superimposed on Tr. Ancestors and descendants are de�ned in the usual way. The
backward arcs (n,m) in AB, have the property that m belongs to the ancestors of n.
A forward path is a path composed of forward arcs. The depth of a node n, denoted
by depth(n), is the length of the shortest path from the root of the type graph to n.
We use the convention that n/i denotes the i-th son of node n, and the set of sons of
a node n is then denoted as {n/1, . . . , n/k} with k = outdegree(n) where outdegree
is a function that, given a node, returns the number of its sons. We also de�ne the
indegree function, which, given a node, returns the number of its predecessors. The
root of the tree (i.e., the only node with no incoming forward arcs) is called n0.

Each node n ∈ N of a string graph has a label, denoted by lb(n), indicating the
kind of term it describes. The nodes are divided into three classes:

82 3. A Generic Framework for String Analysis

Figure 3.7: An example of string graph

• Simple nodes have a label from the set {max,⊥SG, ε} ∪ K. This means that
the leaves of string graphs trees can represent (i) all possible strings, K∗ (if
the node has label max), (ii) no strings, ∅ (if the node has label ⊥SG), (iii)
the empty string (if the node has label ε), and (iv) a string made by a single
character taken from the alphabet K, respectively.

• Concat nodes are labelled with the functor concat/k (with the obvious meaning
of string concatenation) and have outdegree k with k > 0;

• OR nodes have the label OR and an outdegree k.

The graphical representation of string graphs is straightforward. The nodes of a
string graph are represented by their labels and every node is encircled. The direction
of the arc is indicated by its arrow: forward arcs are drawn downwards, backward
arcs upwards. The root of the string graph is the topmost node. An example is
depicted in Figure 3.7. The root of the string graph is an OR-node with two sons:
(i) a simple node (b) , and (ii) a concat-node with two sons of its own (a simple node
(a), and the root (with the use of a backward arc)). This string graph represents an
in�nite set of strings, that is the set of strings which start with an inde�nite number
of a (even zero) and surely end with a b, that is, {b, ab, aab, aaab, . . . } = a∗b.

The structure of the string graph together with the labels of its nodes determines
the set of represented strings. The set of �nite strings represented by a node n in
the string graph T is said to be the denotation of the node n, D(n).

De�nition 3.6.1. The denotation D(n) of a node n in a string graph is de�ned as
follows:

function D(n)
if lb(n) = max then

return K∗

else if lb(n) = ⊥ then

return ∅
else if lb(n) ∈ K ∨ lb(n) = ε then

return {lb(n)}
else if lb(n) = concat/k and n/1, . . . , n/k are its sons then

3.6. Abstract Domains and Semantics 83

return {concat(t1, . . . , tk) : ti is �nite ∧ ti ∈ D(n/i) ∀i ∈ [1, k]}
else

return
⋃k
i=1D(n/i), as lb(n) = OR and n/1, . . . , n/k are its sons

end if

end function

The order of the sons of a concat node is important because string concatenation
is not commutative, whereas the order of the sons of an OR-node is irrelevant. D(n)
can be ∅ or a (�nite or in�nite) set of �nite strings. With n0 the root of string graph
T, we use D(T) as a synonym for D(n0).

Note that several distinct string graphs can have the same denotation. The
existence of super�uous nodes and arcs makes some operators, such as ≤, quite
complex and ine�cient. To reduce this variety of string graphs, we impose some
additional restrictions, which correspond to the de�nition of compact type graphs in
[104] (where you can also �nd a compaction algorithm). For example, one of these
restrictions is that an OR-node must have strictly more than one son and each son
must not be a max-node. The denotation of the string graph is preserved when
carrying out a compaction, i.e. the set of represented strings does not change.

Notice also that compact string graphs are not the most economical represen-
tation. Nodes in di�erent branches can have the same denotation. In particular,
di�erent sons of an OR node may have overlapping, even identical denotations. This
makes testing whether a particular string is in the denotation of a compact string
graph and the comparison of the denotations of two string graphs ine�cient, so
we impose a further restriction which will result in the de�nition of normal string
graphs. Such restriction limits the expressive power of the string graphs but is
necessary to achieve e�cient operations. First, we introduce two functions, prnd
and prlb. The function prnd(n) denotes the set of principal nodes of a node n, and
prlb(n) its set of principal labels.

prnd(n) =

{⋃k
i=1 prnd(n/i) if lb(n) = OR ∧ k = outdegree(n)

n else

prlb(n) = {lb(nj) : nj ∈ prnd(n)}

Two sets of principal labels are overlapping if their intersection is not empty.

De�nition 3.6.2 (Principal label restriction). The principal label restriction states
that each pair of sons of an OR-node must have non-overlapping sets of principal
labels.

Normal string graphs are compact string graphs satisfying the principal la-
bel restriction. In [103] you can �nd the de�nition of a normalization algorithm,
normalize(T), which takes in input a compact type graph and returns in output
the corresponding normal type graph. Adapting it to string graphs is straight-
forward. The principal label restriction limits the expressiveness of string graphs:

84 3. A Generic Framework for String Analysis

(a) Compact string graph before normalization (b) Normal string graph

Figure 3.8: An example of string graphs normalization

string graphs violating this restriction sometimes have to be replaced by a string
graph denoting a larger set of strings. An example of compact string graph before
and after normalization is depicted in Figure 3.8. The string graph in Fig. 3.8(a)
does not satisfy the principal label restriction, since the two sons of the root node
have the same label concat/2; its denotation is {ab, cd}. The string graph in Fig.
3.8(b) is normal; its denotation is {ab, ad, cb, cd}, a larger set than {ab, cd}. In
fact, the normalization process makes us lose the information that, when the �rst
character of the string is a, then the second is always b (and the same for c and d).

Normal string graphs must also satisfy, besides the principal label restriction,
other four restrictions (not present in the original de�nition of normal type graphs),
which we are now going to introduce.

Rule 1 Given a node n with label concat/1 and n/1 as successor, replace n with
n′ = n/1. Any backward arc (m, n) should be replaced with the arc (m, n′).
This rule simpli�es some naïve occurrences of the functor concat/k. In fact,
when concat has only one son (k = 1), the result of its application is the
argument itself. We thus discard every concat/1 node, replacing it with its
argument.

Rule 2 Given a node n with label concat/k such that n/i = max ∀i ∈ [1, k], replace
n with n′ = max. This rule simpli�es a node with label concat/k and which
successors n/i all have the label max. In fact, the concatenation of all possible
strings with all possible strings gives us all possible strings, again.

Rule 3 Given a node n with label concat/k such that ∃i : n/i = concat/k1∧n/(i+1) =
concat/k2, indegree(n/i) = 1 and indegree(n/(i + 1)) = 1, replace n/i and
n/(i+ 1) with a single new node n′ = concat/(k1 + k2) whose sons are

n′/j =

{
(n/i)/j if j ≤ k1

(n/(i+ 1))/(j − k1) otherwise

where j ∈ [1, k1 + k2]. This rule merges two successive sons of a concat-node,
which labels are both concat. In fact, if we concat some characters obtaining

3.6. Abstract Domains and Semantics 85

the string s1, then we concat some other characters obtaining the string s2,
and �nally we concat s1 and s2, we obtain the same result as concatenating
all the characters in the �rst place.

Rule 4 Given a node n with label concat/k such that ∃i : n/i = concat/k1∧indegree(n/i) =
1, replace n/i with k1 nodes such that n/(i+ j − 1) = (n/i)/j ∀j ∈ [1, k1]. All
the sons of n with index > i change index, which gets augmented of k1 − 1
(i.e., the generic index k becomes k+ k1− 1). This rule imposes that the sons
of a concat-node must be simple nodes (leaves), OR-nodes or concat-nodes
with in-degree > 1. In fact, if a concat-node (T1) has a concat son (T2) with
indegree = 1, we replace T2 with all its sons, thus increasing the arity of T1.

We can prove that such normalization rules do not a�ect the expressiveness of
the string graphs. In fact, the denotation of a string graph does not change after
the application of one of the four normalization rules.

Lemma 3.6.18 (Soundness of the normalization rules). Given a normalization rule

ri (i ∈ [1, 4]) and a string graph T, suppose that T
′
is the string graph resulting from

the application of ri to T. Then, D(T
′
) = D(T).

Proof. We refer to [44] for the complete proof of this theorem.

In Figure 3.9 we can see an example of the normalization process. First of all we
apply rule r3 to T2 and its sons T5 and T6: since T5 and T6 are two consecutive sons of
a concat-node and they are both concat-node themselves, we merge them in a single
concat-node with, as sons, all the sons of T5 followed by all the sons of T6. Now we
can apply rule r1 to T2: since it is a concat-node with only one son (T7), we replace
it with such son. Finally, we must apply the principal label restriction because two
sons (T3 and T4) of the root OR-node have the same label (concat/3). We merge
such sons in only one, moving the choice (represented by the OR) �downward� the
tree (i.e., instead of choosing between the two concat-nodes, we choose at the level of
their sons, one by one). The string graph in Figure 3.9(d) is the �xpoint of the appli-
cation of the normalization rules; in fact we cannot apply any more rules to it. Note
that the denotation has increased, being {ghil, abc, abf, aec, aef, dbc, dbf, dec, def}
instead of the original {ghil, abc, def}; this is caused by the application of the prin-
cipal label restriction.

The abstract domain SG is then de�ned as

SG = NSG

where NSG is the set of all normal string graphs, i.e., compact string graphs which
satisfy the principal label restriction and the additional rules 1-4 stated above.

86 3. A Generic Framework for String Analysis

(a) String graph before the application of normalization rules

(b) Application of rule r3 to T2 and its sons, T5 and T6

(c) Application of rule r1 to T2 and its only son T7

(d) Application of principal label restriction to T3 and T4

Figure 3.9: A complete example of string graphs normalization

3.6. Abstract Domains and Semantics 87

Partial Order

To de�ne the partial order of the domain we can exploit the algorithm de�ned
in [104] for computing ≤ (n,m, ∅). The algorithm compares D(n) with D(m) and
returns true if D(n) ⊆ D(m), which is exactly what we need. In particular, the
algorithm compares the two nodes in input (n,m). In some cases the procedure is
recursively called, for example if n and m are both concat or OR nodes. Note that
the recursive call adds a new edge ({n,m}) to the third input parameter (a set of
edges). If, at the next execution of the procedure (≤ (n′,m′,E)), the edge {n′,m′}
is contained in E, then the procedure immediately returns true.

The formal de�nition of the algorithm is the following:

Algorithm 2 Algorithm for node comparison
function ≤(n,m, SC)

if (n,m) ∈ SC then
return true

else if lb(m) = max then
return true

else if lb(n) = lb(m) = concat/k ∧ k > 0 then
return ∀i ∈ [1, k] : ≤ (n/i,m/i, SC ∪ {(n,m)})

else if lb(n) = lb(m) = OR where k = outdegree(n) then
return ∀i ∈ [1, k] : ≤ (n/i,m, SC ∪ {(n,m)})

else if lb(m) = OR ∧ ∃md ∈ prnd(m) : lb(md) = lb(n) then
return ≤ (n,md, S

C ∪ {(n,m)})
else

return lb(n) = lb(m)
end if

end function

Given two string graphs T1 and T2, to check if T1 ≤SG T2 we will compute
≤ (n0,m0, ∅) where n0 is the root of T1 and m0 is the root of T2. The order is then:

T1 ≤SG T2 ⇔ T1 = ⊥SG ∨ (≤ (n0,m0, ∅) : n0 = root(T1) ∧m0 = root(T2))

where root(T) is the root element of the tree de�ned in T.
The bottom element ⊥SG is a string graph made by one node, a ⊥-node that

represents ∅. The top element >SG is a string graph made by only one node, a
max-node that represents K∗.

Least Upper Bound and Greatest Lower Bound

The least upper bound between two string graphs T1 and T2 can be computed by
creating a new string graph T whose root is an OR-node whose sons are T1 and T2.

88 3. A Generic Framework for String Analysis

(a) The two string graphs T1 and T2 (b) OR(T1,T2)

(c) Result of the least upper bound: normStringGraph(OR(T1,T2))

Figure 3.10: Computation of the lub

Then we apply the compaction plus normalization algorithm that will transform T
in a normal string graph:⊔

SG

(T1,T2) = normStringGraph(OR(T1,T2))

An example is depicted in Figure 3.10.
The greatest lower bound operator behaves like the glb between type graphs,

which is described in the appendix of [104]. The authors present an algorithm,
intersection(n1, n2), which computes the type graph T

′
, whose denotation is the

intersection of the denotations of the type graphs with roots n1 and n2. Their
strategy to deal with this kind of problem is to leave the old type graphs unchanged
and to construct the new type graph step by step. The initialization creates the
root l0 of T

′
whose required denotation is de�ned in terms of the nodes n1 and n2.

At this point the root l0 is called an unexpanded leaf. They de�ne the function is
which associates at every step in the construction of T

′
with each node in T

′
a set

of nodes from the given type graphs such that the second function on the nodes of
T
′
, D-is, speci�es for each node l of T

′
its intended denotation.

D− is(l) =
⋂

n∈is(l)

D(n)

Each step extends T
′
without decreasing the denotation of its nodes. This is done

by transforming one of the unexpanded leaves l of T
′
into a usual node (after the

3.6. Abstract Domains and Semantics 89

transformation, l is called a safe node), and new unexpanded leaves may be added
as sons of l. The nodes of T

′
, in each step of its construction, belong either to Sul,

the set of unexpanded leaves, or to Ssn, the set of safe nodes.

Lemma 3.6.19. The abstract domain SG is a lattice, tSG is the least upper bound
operator and uSG is the greatest lower bound operator.

Proof. Since string graphs are just a particular case of type graphs, we refer to
[103, 104] for the complete proof of this lemma.

Note that the domain is not a complete lattice because the domain is in�nite and
does not satisfy the ascending chain condition. In fact, it is not even a cpo (directed-
complete partial order). To overcome this di�culty, [103] use a �nite subdomain
by restricting the number of occurrences of a functional symbol on the paths of the
graphs. We decided to follow a di�erent approach, based on the widening operator
proposed in [147], which we are going to explain after the next paragraph.

Abstraction and Concretization Functions

The concretization function is simply de�ned by:

γSG(T) = D(T)

Let the abstraction function αSG be de�ned by:

αSG = λY. uSG {T : Y ⊆ γSG(T)}

Lemma 3.6.20 (Galois connection). The two functions αSG and γSG form a Galois

connection, i.e. 〈℘(S),⊆〉 −−−−→←−−−−
αSG

γSG 〈SG,≤SG〉.

Proof. See [103, 104] for the proof of this assertion.

Widening Operator

For the widening operator, we can exploit the one de�ned in [147]. The widening
operator is always applied to an old graph gold and a new graph gnew to produce
a new graph gres. The main idea behind the widening operator of [147] for type
graphs is to consider two graphs:

g0 = gold and gn = (gold t gnew)

and exploit the topology of the graphs to guess where gn is growing compared to g0.
The key notion is the concept of topological clash which occurs in situations where:
(i) an OR-node v0 in g0 corresponds to an OR-node vn in gn where prlb(v0) 6=

90 3. A Generic Framework for String Analysis

Table 3.8: The abstract semantics of SG

SSGJnew String(str)K() = concat/k{str[i] : i ∈ [0, k− 1]}
SSGJconcatK(t1, t2) = normStringGraph(concat/2{t1, t2})

SSGJsubstringebK(t) =

{
res if root(t) = concat/k ∧ ∀i ∈ [0, e− 1] : lb(root(t)/i) ∈ K
>SG otherwise

where res = concat/(e− b){(root(t)/i) : i ∈ [b, e− 1]}

BSGJcontainscK(t) =


true if ∃m ∈ t : m = concat/k ∧OR /∈ path(root,m)∧

∃i ∈ [0, k− 1] : lb(m/i) = c

false if @n ∈ t : lb(n) = max ∨ lb(n) = c

>B otherwise

prlb(vn), or (ii) an OR-node v0 in g0 corresponds to an OR-node vn in gn where
depth(v0) < depth(vn). In these cases the widening operator tries to prevent the
graph from growing by introducing a cycle in gn. Given a clash (v0, vn), the widening
searches for an ancestor va to vn such that prlb(vn) ⊆ prlb(va). If such an ancestor
is found and if va ≥ vn, a cycle can be introduced.

When no ancestor with a suitable prlb-set can be found, the widening operator
simply allows the graph to grow. Termination will be guaranteed because this
growth necessarily adds along the branch of a prlb-set which is not a subset of
any existing prlb-set in the branch. This case happens frequently in early iterations
of the �xpoint. Letting the graph grow in this case is of great importance to recover
the structure of the type in its entirety.

The last case to consider appears when there is an ancestor va with a suitable
prlb-set, but va ≥ vn is false. In this case, introducing a cycle would produce a
graph gres whose denotation may not include the denotation of gn, and hence the
widening cannot perform cycle introduction. Instead, the operation replaces va by
a new OR-node which is an upper bound to va and vn but decreases the overall size
of the graph. The widening is then applied again on the resulting graph.

In conclusion, such widening operator can be viewed as a sequence of transfor-
mations on gn which are of two types: cycle introduction and node replacement,
until no more topological clashes can be resolved.

Semantics

Table 3.8 de�nes the abstract semantics on SG.
Let us discuss in detail the semantics of each operator:

• The evaluation of a string (made by k characters) returns a concat-node with
all the characters that compose the string as sons.

3.6. Abstract Domains and Semantics 91

• When we concatenate two strings, we create a new string graph, whose root
is a concat-node with two sons. The two sons are the roots of the two input
abstract values. Then we need to normalize the result, to be sure that it is a
normal string graph.

• The semantics of substringeb returns a precise value only if the root is a
concat-node whose �rst e sons are characters. In fact, if the root of the string
graph is a concat-node and its �rst endIndex sons are simple nodes (leaves),
then we can return the exact substring. Otherwise, we return >SG.

• The semantics of containsc returns false i� we are sure that the character c
does not appear in the string, that is, there is no simple node labelled with
such character and there is no max-node. We can return true i� we �nd in
the string graph a concat-node m containing a son with label c, and the path
from the root to m does not contain any OR-node. Otherwise, we will have to
return >SG.

We now prove the soundness of the abstract operations de�ned above.

Theorem 3.6.21 (Soundness of the abstract semantics). SSG and BSG are a sound

overapproximation of S and B, respectively. Formally, γSG(SSGJsK(T)) ⊇ {SJsK(c) :

c ∈ γSG(T)} and γSG(BSGJsK(T)) ≥B {BJsK(c) : c ∈ γSG(T)}.

Proof. We prove the soundness separately for each operator.

• γSG(SSGJnew String(str)K()) ⊇ {SJnew String(str)K()} follows immediately
from the de�nition of SSGJnew String(str)K() and of γSG.

• Consider the binary operator concat. Let T1 and T2 be two string graphs.
{SJconcatK(c1, c2) : c1 ∈ γSG(T1)∧c2 ∈ γSG(T2)} contains strings which are the
concatenation of one string from γSG(T1) and one from γSG(T2) by de�nition of
S. Let s be one of these strings. s belongs to γSG(SSGJconcatK(T1,T2)), since
SSGJconcatK(T1,T2) produces a new string graph which has a concat-node as
root and the two original string graphs as sons 5, and the concretization of
such string graph is {concat(t1, t2) : ti is �nite ∧ ti ∈ D(root/i) ∀i ∈ [1, 2]} by
de�nition of γSG.

• Consider the unary operator substringeb and let T be a string graph. Consider
the two following cases:

� if root(T) = concat/k ∧ ∀i ∈ [0, e − 1] : lb(root(T)/i) ∈ K, then the
root of T is a concat-node and its �rst e sons are all simple charac-
ters. In this case, all strings belonging to γSG(T) will start with the

5The string graph is also normalized, but the normalization can only increase the concretization
of an abstract state, thus we can ignore it: if a string belongs to the concretization of a not-normal
string graph, it will surely belong also to its normalized version.

92 3. A Generic Framework for String Analysis

concatenation of these characters, by de�nition of D(T). This pre�x
is also certainly longer than e characters. Then, a string belonging to
{SJsubstringebK(c) : c ∈ γSG(T)} is composed by the concatenation of
all the characters of the nodes from root(T)/b to root(T)/(e − 1) by
de�nition of S. This corresponds exactly to γSG(SSGJsubstringebK(T)),
since the abstract semantics applied to T produces a string graph whose
root is a concat-node and which sons are the nodes from root(T)/b to
root(T)/(e− 1).

� otherwise, the abstract semantics returns >SG, that approximates any
possible value of the concrete semantics.

• Consider the unary operator containsc and let T be a string graph. Regarding
the character c, we have three cases:

� if ∃m ∈ T : m = concat/k ∧ OR /∈ path(root,m) ∧ ∃i : lb(m/i) = c, this
means that there exists a concat-node in T that (i) has a son with the
character c as label, and (ii) the path from the root to such node does not
contain OR nodes. Then, by de�nition of D(T), the character c belongs
to all strings in γSG(T), and then the result of the concrete semantics
is always true. Since BSGJcontainscK(T) = true by the de�nition of
the abstract semantics, the abstract semantics soundly approximates the
concrete semantics.

� if @n ∈ T : lb(n) = max ∨ lb(n) = c, this means that no node of the
string graph has label c or max. Then, the character c cannot be con-
tained in any of the concrete strings corresponding to the abstract state
T and for this reason the concrete semantics always returns false. Since
BSGJcontainscK(T) = false by the de�nition of the abstract semantics,
the abstract semantics soundly approximates the concrete semantics.

� otherwise, the abstract semantics on T returns >B, and this soundly
approximates any possible result of the concrete semantics.

Case studies

The results of the analysis of the two case studies through string graphs are depicted
in Figures 3.11(a) and 3.11(b). For sake of simplicity, we adopt the notation concat[s]
to indicate a string graph with a concat node whose sons are all the characters of
the string s. The symbol + represents, as usual, string concatenation, while ; is used
to separate di�erent sons of a node.

For prog1, at line 1 we represent query with a string graph made by a concat-
node with all the characters of s1 as sons. The l variable (line 3) corresponds simply
to a max-node, since we do not know its value. At line 4 we concatenate the current

3.6. Abstract Domains and Semantics 93

#I Var SG
1 query concat[s1]
3 l max
4 query concat[s1 + s2;max; s3]
5 query SG1 = OR[concat[s1];

concat[s1 + s2;max; s3]]
6 per concat[s4]
8 query concat[SG1;

concat[s5 + s4 + s6]]
(a) Analysis of prog1

#I Var SG
1 x concat[“a”]
3 x OR[“a”; concat[“0”; “a”; “1”]]
4 x OR1[“a”; concat[“0”;OR1; “1”]]

(b) Analysis of prog2

Figure 3.11: The results of SG

value of query with s2, l and s3: the abstract value of query then is a concat node
with, as sons, all the characters of s1, followed by all the characters of s2, followed
by a max-node, followed by all the characters of s3. Since the value of l is unknown,
we must compute the least upper bound between the values of query after line 1
and 4. We obtain a string graph made by an OR-node with the two input string
graphs as sons. Then, at line 6 we associate the variable per to the abstraction of s4.
Finally, at line 8 we concatenate query to s5, per and s6: we obtain a string graph
which is made by a concat node as root, and, as sons, the string graph associated
to query at line 5 and then all the characters of s5, s4 and s6, one after the other.
The resulting string graph for query represents exactly the two possible outcomes
of the procedure.

For prog2, after line 1 we represent x with a concat node with just one son,
containing an a character. After the �rst iteration of the loop, line 3, the abstract
value associated to x is a concat node with three sons, 0, a and 1. The least
upper bound between the two abstract values (before entering the loop and after
the �rst iteration) is an OR-node with two sons: one is an a character, the other is
the value of x after the �rst iteration. Since we have not reached convergence, we
must compute the value of after the second iteration also. In this domain, though,
computing the least upper bound of the values of the �rst n iterations is not su�cient
to reach convergence, since we always add some new branch to the string graph. We
need to use the widening operator and the result (after reaching convergence) is as
follows: OR1[“a”; concat[“0”;OR1; “1”]]. The string graph root is an OR-node with
two sons: an a character and a concat node with three sons. The �rst and last sons

94 3. A Generic Framework for String Analysis

Table 3.9: Comparison of the abstract domains results

Abstract

domain

prog1 prog2

CI (π1(αCI(s1)) ∪ π1(αCI(s4))∪ ({a}, {0, a, 1})
π1(αCI(s5)) ∪ π1(αCI(s6)),K)

PR s1 >
SU s6 >
BR [{s1}]1,1[{s2}]0,1>B[{s3}]0,1[{s5}]1,1[{s4}]1,1[{s6}]1,1 [{“0”}]0,+∞[{“a”}]1,1[{“1”}]0,+∞
SG concat[SG1; concat[s5 + s4 + s6]] OR1[“a”; concat[“0”;OR1; “1”]]

where
SG1 = OR[concat[s1]; concat[s1 + s2;max; s3]]

are, respectively, a 0 character and a 1 character. The second son is, instead, the
root OR-node, thanks to the use of a backward arc. The resulting string graph for
x represents exactly all the concrete possible values of x. Note that the resulting
string graph contains a backward arc to allow the repetition of the pattern 0n . . . 1n.

This abstract domain is the most precise domain for the analysis of both case
studies: it tracks information similarly to BR domain, but its lub and widening
operators are slightly more accurate.

3.6.5 Discussion: Relations Between the Five Domains

The abstract domains we introduced track di�erent types of information. In Table
3.9 we recap the result obtained by each domain when applied to the two case studies
of Section 3.2. It is immediate to see that CI, PR and SU are less precise than BR
and SG, even though they are still able to track a limited amount of information.

We are now going to elaborate in more detail about the relations between the �ve
domains. At the beginning of Section 3.6, we pointed out that a string is essentially
characterized by two pieces of information: the characters contained in the string,
and their position inside the string. CI domain considers only character inclusion
and completely disregards the order. PR and SU domains consider also the order,
but limiting themselves to the initial/�nal segment of the string, and in the same
way they collect only partial information about character inclusion. BR and SG,
instead, track both inclusion and order along the string.

In [44] we studied these relationships in details: to understand the degree of
precision of each representation and how we can go from one representation to
another, we de�ned pairs of functions (abstraction and concretization) from domain
to domain, and showed that CI, PR and SU are more abstract (i.e., less precise)
than both BR and SG. We report here the de�nition of such functions for each
pair of domains (excluding SU , for which the de�nitions are symmetrical to those

3.6. Abstract Domains and Semantics 95

of PR); for further explanations or examples, see [44].

CI and SG

We argue that string graphs are more precise than the pair of sets of certainly
contained and maybe contained characters, that is, CI domain is more abstract
than SG domain: SG −−→←−−α

γ
CI. The input of the abstraction function is a string

graph (i.e., the abstraction of a set of strings) and its output is a rougher abstraction
of such set of strings, that is, an element of CI. The input of the concretization
function is an element of CI and its output is a set of string graphs.

Let T be a string graph, and let L(T) be the set of nodes (leaves) of T which label
is a character: L(T) = {l : l ∈ T ∧ lb(l) ∈ K}. Let Lc(T) be the set of characters
associated to the nodes of L(T): Lc(T) = {c : c ∈ K∧∃l ∈ L(T) : c = lb(l)}. Finally,
let Lsure(T) be the set of characters associated to the leaves which path from the
root to them does not contain any OR-node: Lsure(T) = {c : c ∈ K ∧ ∃l ∈ L(T) :
(c = lb(l) ∧OR /∈ path(root(T), l))}. Note that Lsure(T) ⊆ Lc(T).

Then, the abstraction function is de�ned as follows:

α(T) =

{
(Lsure(T),K) if ∃n ∈ T : lb(n) = max

(Lsure(T), Lc(T)) otherwise

while the concretization function is de�ned as follows:

γ((CC,MC)) =

{
{T : CC ⊆ Lsure(T) ∧ Lc(T) ⊆ MC ∧max /∈ T} if MC 6= K

{T : CC ⊆ Lsure(T)} otherwise

CI and BR

We argue that bricks are more precise than the pair of sets of certainly contained and
maybe contained characters, that is, CI domain is more abstract than BR domain:
BR −−→←−−α

γ
CI. The input of the abstraction function is a list of bricks and its output

is an element of CI. The input of the concretization function is a pair of sets of
characters and its output is a set of lists of bricks.

Let L be a list of bricks. We de�ne CS(L) = {s : ∃b ∈ L : (b = [{s}]1,1)} as the
set of the strings contained in bricks with indices min = max = 1 and with only one
string in the brick set: these strings will certainly be contained in each of the concrete
strings represented by L. We also de�ne US(L) = {s : ∃b ∈ L : (b = [S]m,M∧s ∈ S)}
as the set of all the strings contained in bricks of L: all these strings could be
contained in each of the concrete strings represented by L. Finally, we de�ne their
corresponding sets of characters: CC(L) = {c : ∃s ∈ CS(L) : s.contains(c)} and
UC(L) = {c : ∃s ∈ US(L) : s.contains(c)}. These two sets contain, respectively, all
the characters which appear in strings of CS(L) and all the characters which appear
in strings of US(L).

96 3. A Generic Framework for String Analysis

The abstraction function is then de�ned as follows:

α(L) =

{
(CC(L),K) if >B ∈ L

(CC(L), UC(L)) otherwise

The concretization function is de�ned as follows:

γ((CC,MC)) =

{
{L : CC ⊆ CC(L) ∧ UC(L) ⊆ MC ∧ >BR /∈ L} if MC 6= K

{L : CC ⊆ CC(L)} otherwise

PR and SG

We argue that string graphs are more precise than the pre�x domain, that is, PR
domain is more abstract than SG domain: SG −−→←−−α

γ
PR. The input of the abstrac-

tion function is a string graph and its output is an element of PR. The input of the
concretization function is a pre�x and its output is a set of string graphs.

Let T be a string graph, and r = root(T) be its root. The abstraction function
is de�ned as follows:

α(T) =

{
p if lb(r) = concat/k ∧ ∃k1 > 0 : (lb(r/i) ∈ K ∀i ∈ [1, k1] ∧ lb(r/(k1 + 1)) /∈ K)

∗ otherwise

where p is a sequence of k1 characters, such that ∀i ∈ [0, k1−1] : p[i] = lb(r/(i+1)).
The concretization function is de�ned as follows (supposing again that r =

root(T)):

γ(p) = {T : (lb(r) = concat/k ∧ (k ≥ kp) ∧ (∀i ∈ [1, kp] : lb(r/i) = p[i− 1]))}

where kp is the length of the abstract pre�x p.

PR and BR

We argue that bricks are more precise than the pre�x domain, that is, PR domain
is more abstract than BR domain: BR −−→←−−α

γ
PR. The input of the abstraction

function is a list of bricks and its output is an element of PR. The input of the
concretization function is a pre�x and its output is a set of lists of bricks.

The abstraction function is de�ned as follows:

α(L) =

{
p if L[0] = [S](1,1)

∗ otherwise

where p is the longest common pre�x between all the strings contained in S.
The concretization function is de�ned as follows:

γ(p) = {L : len(L) ≥ 1 ∧ L[0] = [S](1,1) ∧ ∀s ∈ S : isPrefix(p, s)}

where isPrefix is a helper function which, given two strings in input, returns true
if the �rst string is a pre�x of the second one.

3.6. Abstract Domains and Semantics 97

BR and SG

In the case of BR versus SG, the comparison is more complex, since they exploit very
di�erent data structures. For example, SG has OR-nodes, while BR can only trace
alternatives inside bricks but not outside (like: �these three bricks or these other
two�). From this perspective, SG is more precise than BR. Another important
di�erence is that SG has backward arcs which allow repetitions of patterns, but
they can be traversed how many times we want. With BR, instead, we can indicate
exactly how many times a certain pattern should be repeated (through the range of
bricks). This makes BR more expressive than SG in that respect. So, these domains
are not directly comparable.

Domains hierarchy

Another way to evaluate the di�erent precision of our domains is to consider the
de�nition of precision gave in Chapter 2, which compares the results of abstracting
a concrete element and then concretizing the abstract result. Concrete elements are
made by sets of strings: however, in order to show more immediate and intuitive
results, we will consider here only a single string:

• domain CI: the abstraction of a string s returns the pair of sets (char(s), char(s)).
The concretization of such abstract element, γCI(αCI(s)), is the set of all strings
composed by characters in char(s) (and with at least one occurrence of each
di�erent character).

• domain PR: the abstraction of a string s returns the same string as pre�x
(s). The concretization of such abstract element, γPR(αPR(s)), is the set of all
strings starting with s.

• domain SU : the abstraction of a string s returns the same string as su�x
(s). The concretization of such abstract element, γSU(αSU(s)), is the set of all
strings ending with s.

• domain BR: the abstraction of a string s returns a list made by only one
brick, [{s}]1,1. The concretization of such abstract element, γBR(αBR(s)), is
the singleton {s}.

• domain SG: the abstraction of a string s (of length k) returns the string graph
de�ned as concat/k{s[i] : i ∈ [0, k − 1]}. The concretization of such abstract
element, γSG(αSG(s)), is the singleton {s}.

It is immediate to see that:

• both BR and SG are more precise than CI: γBR(αBR(s)) ⊆ γCI(αCI(s)) and
γSG(αSG(s)) ⊆ γCI(αCI(s))

98 3. A Generic Framework for String Analysis

Figure 3.12: The hierarchy of abstract domains

• both BR and SG are more precise than PR: γBR(αBR(s)) ⊆ γPR(αPR(s)) and
γSG(αSG(s)) ⊆ γPR(αPR(s))

• both BR and SG are more precise than SU : γBR(αBR(s)) ⊆ γSU(αSU(s)) and
γSG(αSG(s)) ⊆ γSU(αSU(s))

Combining these informal results, we obtain the lattice depicted in Figure 3.12,
where the upper domains are more approximated. We denote by > the abstract
domain that does not track any information about string values, and by ℘(K∗) the
(naïve and uncomputable) domain that tracks all the possible values of strings we
can have.

In conclusion, the �rst three domains (CI, PR, SU) are not so precise but
the complexity is kept linear, whereas the other domains (BR and SG) are more
demanding (though in the practice complexity is still kept polynomial) but also more
precise.

3.7 Experimental Results

We developed a preliminary implementation of all the abstract domains formalized
in Section 3.6 in Sample. Remember from Chapter 1 that Sample is a generic analyzer
of object-oriented programs which is parametric on a value (e.g., numerical) domain,
a heap abstraction, and on the property of interest or an engine to infer annotation
(e.g., pre- and post- conditions). The string analyses are plugged as value analyses.
Notice that the results we have reported on the two case studies introduced in
Section 3.2 (prog1, prog2) are obtained through this implementation.

We discuss now the application of our analysis to two other case studies, prog3
and prog4. Figure 3.13 reports their code. In particular, prog3 is an interesting
example cited in [35] as motivation for their work. The code creates a SQL query
by �rst assigning a constant value (�SELECT * FROM address�) to the string q and
then concatenating it with another constant string (�WHERE studentId=�), but

3.7. Experimental Results 99

1 var q : String = "SELECT * FROM address";

2 if (i != 0)

3 q = q + "WHERE studentId="

(a) The �rst additional case study, prog3

1 var sql1 : String = "";

2 var sql2 : String = "";

3 sql1 = "SELECT";

4 sql1 = sql1 + " " + l;

5 sql1 = sql1 + " " + "FROM";

6 sql1 = sql1 + " " + l;

7 sql2 = "UPDATE";

8 sql2 = sql2 + " " + l;

9 sql2 = sql2 + " " + "SET";

10 sql2 = sql2 + " " + l + " = " + l;

(b) The second additional case study, prog4

Figure 3.13: Two additional case studies

only if some condition (unknown at compile time) holds. In Table 3.10 we report
the results of the analysis of this case study with all our �ve domains:

• with CI we get that: (i) all the characters of the string �SELECT * FROM
address� will certainly be contained in q at the end of the program, and (ii)
all the characters of the string �WHERE studentId=� (in addition to those
of �SELECT * FROM address�) could be contained in q at the end of the
program;

• PR tells us that q will certainly start with the string �SELECT * FROM
address�;

• SU is not able to give us any information, since its result is >SU ;

• BR and SG, instead, infer the same information (even though encoded in dif-
ferent ways), which also corresponds exactly to the outcome of the program:
q could have value �SELECT * FROM addressWHERE studentId=� or �SE-
LECT * FROM address�.

From the result given by BR and SG we can discover the bug hidden in the program:
there is a space missing between �address� and �WHERE�, which will make the SQL
query to sometimes fail at runtime (when i 6= 0). Note that the resulting bricks list
is made by just two bricks, while the resulting string graph is composed by 61 nodes

100 3. A Generic Framework for String Analysis

Table 3.10: Results of prog3
Abstract
domain

Value of q

CI ({E, e, s, ∗, T, F, a,M, , L, C, r, R,O, S, d}, {E, e, s, ∗, n, T,=
, t, u, F, a,M, I, , L, C,H,W, r, R,O, S, d})

PR �SELECT * FROM ADDRESS"
SU >SU
BR [{�SELECT * FROM address"}](1,1)[{�WHERE studentId="}](0,1)
SG OR [concat[�SELECT * FROM addressWHERE studentId="] ,

concat[�SELECT * FROM address"]]

(one OR, two concat, 37+21 simple nodes). The bricks list is, in this case, de�nitely
more compact than the string graph.

prog4 is inspired from an example in [33]. This program creates two strings sql1
and sql2 (which will be executed as SQL queries) by successive concatenations:
each statement concatenates the previous value of the string variable with some
other string (sometimes coming from another variable). The variable l is used in
these concatenations, but we do not know the value of such variable at compile time
since it is an input. In Tables 3.11 and 3.12 we report the results of the analysis on
this case study with all our �ve domains:

• CI discovers that (i) the string sql1 surely contains all the characters of �SE-
LECT�, � � and �FROM�, but it could contain any character of the alphabet K
(because of the concatenation with l), and (ii) the string sql2 surely contains
all the characters of �UPDATE�, � �, �SET� and � = �, but it could contain
any character of the alphabet K (because of the concatenation with l);

• PR tells us that sql1 starts with �SELECT� and sql2 starts with �UPDATE�;

• SU is not able to track any information about the resulting values of the two
strings;

• as it happened in prog3, BR and SG infer both the same information, which
also corresponds exactly to the outcome of the program. The variable sql1

starts with �SELECT �, then there is an unknown part (due to l), then it
continues with � FROM � and it �nally ends with another unknown part. The
other string variable, sql2, starts with �UPDATE �, then there is an unknown
part, then it continues with � SET � followed by another unknown part, then
� = � and �nally the last unknown part.

The information inferred by BR and SG about the variable sql1 is encoded, respec-
tively, through 7 bricks (in the resulting bricks list) and 16 nodes (in the resulting

3.7. Experimental Results 101

Table 3.11: Results of prog4 for variable sql1
Abstract domain Value of sql1

CI ({E, T, F,M,L, ′ ′, C,R,O, S},K)

PR �SELECT"
SU >SU
BR [{�SELECT"}](1,1)[{� "}](1,1)>B

[{� "}](1,1)[{�FROM"}](1,1)[{� "}](1,1)>B
SG concat[�SELECT " ; max ; � FROM " ; max]

Table 3.12: Results of prog4 for variable sql2
Abstract domain Value of sql2

CI ({E, T,=, ′ ′, U, A, P,D, S},K)

PR �UPDATE"
SU >SU
BR [{�UPDATE"}](1,1)[{� "}](1,1)>B[{� "}](1,1)[{�SET"}](1,1)

[{� "}](1,1)>B[{� = "}](1,1)>B
SG concat[�UPDATE " ; max ; � SET " ;

max ; � = " ; max]

string graph). Note that, if we normalized the result of BR, we would reduce the
number of bricks in the list to 4. The resulting information about sql2 is, instead,
encoded through 9 bricks (which could be reduced to 6 with a normalization step)
and 19 nodes. Note that, on simple programs, the BR and SG domains tend to
produce the same results. The (small) di�erence between the two domains lies in
the widening operator, which is used to deal with loops. In such cases, SG results
are slightly better than those of BR, as it can be seen in the case study prog2.
However, the bricks lists produced by BR tend to be more compact than the graphs
produced by SG, since each single character of the string corresponds to a node in
the graph, while bricks deal with strings themselves and not single characters.

Regarding the performances of our analysis, the preliminary experimental results
point out that CI and PR × SU are quite e�cient, BR is slightly slower but still
fast, while SG's is the slowest domain of the framework. In fact, the analyses using
CI and PR × SU lasted just a fraction of second, using BR a little more (always
remaining below the second, though), while with SG the analysis lasts some seconds,
especially when the code is not trivial (e.g., with string concatenations inside loops).

102 3. A Generic Framework for String Analysis

3.8 Related Work

As already discussed in Section 3.1, strings are nowadays used in many applications:
for example, to build SQL queries, to construct semi-structured Web documents, to
create XPath and JavaScript expressions, and so on. After being dynamically gen-
erated, often in combination with user inputs, strings are sent to their respective
processors. However, strings are usually not evaluated for their validity or security
despite the importance of these issues. The static determination of approximated
values of string expressions has then many practical applications (like checking the
validity and security of generated strings, as well as to collect useful string proper-
ties). For these reasons, string analysis has been widely studied in the last years: in
Section 3.1 we brie�y cited some of the main approaches to this veri�cation issue.
These approaches can be classi�ed with respect to the technique used for the analysis
(i.e., to cite the most common ones, type systems, data-�ow, Abstract Interpreta-
tion) and to the way the abstraction is built (i.e., through context-free grammars,
push-down automata, regular expressions, etc.). For example, [109] uses Abstract
Interpretation and automata, [67] employs data-�ow and grammars, [142] devises
a type system based on regular expressions, and so on. In this section we are now
going to explore these approaches one by one in more depth, comparing them to our
novel framework for string analysis.

Hosoya and Pierce [99] designed a statically typed processing language (called
XDuce and based on the theory of �nite tree automata) for building XML docu-
ments. Its sound type system ensures that dynamically generated documents con-
form to �templates� de�ned by the document types. This work di�ers a lot from
ours, since, �rst of all, they use type systems instead of Abstract Interpretation.
Moreover, they are focused on building XML documents, while our focus is on col-
lecting possible values of generic string variables. Lastly, they require to manually
annotate the code through types while our approach is completely automatic.

Tabuchi et al. [142] presented a type system based on regular expressions. It
is focused on a minimal λ-calculus supporting concatenation and pattern matching.
This calculus established a theoretical foundation of using regular expressions as
types of strings in text processing languages. Also in this case (as in XDuce),
the approach is very di�erent from ours, since it employs type system. The only
resemblance regards the use of regular expressions, which we use in the BR domain.

Thiemann [144] introduced another type system for string analysis (based on
context-free grammars) and presented a type inference algorithm based on Earley's
parsing algorithm. It was not discussed how to deal with string operations other
than concatenation (while in our framework we included the semantics of various
other string operations). His analysis is more precise than those based on regular
expressions, but his type inference algorithm is incomplete (though sound). Also,
the analysis is tuned at a �xed level of precision.

Context-free grammars are also the basis of the analysis of Christensen, Møller
and Schwartzbach [35]. This analysis (implemented in a tool called JSA, Java String

3.8. Related Work 103

Analyzer) is tuned at a �xed level of abstraction and it statically determines the
values of string expressions in Java programs. This work has considerable similar-
ities with the SG domain because type graphs are closely related to context free
grammars. However, they generally obtain a regular grammar which contains the
reference grammar (i.e., the grammar which encodes the possible outputs of the
program), but they are not the same grammar. In the second case study of this
chapter, prog2, SG domain reaches a better precision than theirs, being able to
model precisely the reference grammar (S → “a”|“0”S“1”) without the need of any
kind of approximation. Moreover, they precisely abstract only the concatenation op-
eration, while for other string operators they use less precise automata operations or
character set approximations; our work deals precisely also with other operators and
can be easily extended to as many as needed. Møller published many other papers
concerning abstractions for string analysis, but every one of them is strictly focused
on some particular case ([127] on a set of HTML pages, [36, 111, 126] on XML
documents, [124] on XSLT, [27] on XHTML, [105, 112, 110, 125] on type checking),
without producing a unifying framework, while we aim at a higher generality.

To statically check the properties of Web pages generated dynamically by a
server-side program, Minamide [122] developed a static program analysis that ap-
proximates the string output of a program with a context-free grammar. His analysis
is based on the Java string analyzer (JSA) of [35], but the novelty of his analysis is
the application of �nite-state-automata transducers to revise the �ow equations due
to string-update operations embedded in the program, reaching a simpler and more
precise analyzer than [35]. This work is speci�c for HTML pages. Even though
the obtained results are similar to ours, his work su�ers from some other limita-
tions: after extracting from the program the corresponding grammar with operation
productions, such grammar must be transformed into a context-free one. This re-
stricts the string operations supported by the framework (to those which transform
a context-free grammar into another context-free grammar) and it imposes that no
string operation must occur in a cycle of production. Finally, the validity check
between the reference grammar and the context-free grammar is very costly and can
be done only when the nesting depth of the elements in the generated document is
bounded.

A combination of grammars and Abstract Interpretation was studied by Cousot
and Cousot in [59], where they showed that set constraint solving of a particular
program P could be understood as an Abstract Interpretation over a �nite domain
of tree grammars, constructed from P. However, their work is at a very high level
and their concern is not the approximation of string variables, so no string operators
are considered in such article.

Abstract Interpretation speci�cally focused on string analysis can be found in
Choi et al. [33], where they used standard abstract-interpretation techniques with
heuristic widening to devise a string analyzer that handles heap variables and con-
text sensitivity. They selected a restricted subset of regular expressions as abstract
domain (which results in limited loss of expressibility). Our BR domain is similar to

104 3. A Generic Framework for String Analysis

this work, and, even though most of the lattice operators are di�erent, we obtain the
same result on the second case study (0∗a1∗). SG domain, instead, is more precise
than their domain. In fact, on the second case study (prog2) the string graphs are
able to produce exactly the reference grammar (0na1n), while their result does not
constrain the number of 0s and 1s to be the same.

Kim and Choe [109] introduced recently another approach to string analysis
based on Abstract Interpretation. They abstract strings with pushdown automata
(PDA). The result of their analysis is compared with a grammar to determine if
all the strings generated by the PDA belong to the grammar. This approach has
a �xed precision, and in the worst case (not often encountered in practice) it has
exponential complexity.

Automata were also exploited by Yu et al. in [150]. They presented an automata-
based approach for the veri�cation of string operations in PHP programs based on
symbolic string analysis. They encode the set of string values that string variables
can take as deterministic �nite automaton (DFA): the language accepted by the
DFA corresponds to the values that the corresponding string variable can assume
at that program point. Using this technique, it is possible to automatically verify
the sanitization of a string, showing that attacks are not possible. The information
tracked by this analysis is �xed, and it is speci�c for PHP programs. However, in
2011 they proposed a unifying framework [151] of their previous works, i.e. an ab-
straction lattice which can be tuned to provide various trade-o�s between precision
and performance. The framework is based on the regular abstraction [152], a rela-
tional analysis in which values of string variables are represented as multi-track DFA
(each track corresponds to a speci�c string variable). As the number of variables
increases, such relational analysis becomes intractable, so they add two other string
abstraction (relation abstraction and alphabet abstraction) to improve the scalabil-
ity of their approach. They also propose a heuristic to choose a particular point in
their abstraction lattice, depending on the program and property to be veri�ed. The
alphabet abstraction can be seen as a more complex version of CI, since it also keeps
track of the position of characters; such abstraction must be applied to automata,
thus obtaining more convoluted operations than in our domain CI.

Doh et al. [67] reported the �abstract parsing� technique, which statically an-
alyzes string values from programs. They combine LR(k)-parsing technology and
data-�ow analysis to analyze, in advance of execution, the documents dynamically
generated by a program. Based on the document languages context-free reference
grammar and the programs control structure, the analysis predicts how the docu-
ments will be generated and parses the predicted documents. Their technique is
quite precise, but the level of abstraction is �xed.

Given this context, our work is the �rst one (together with [151], published at
the same time as [45]) that (i) is a generic, �exible, and extensible approach to the
analysis of string values, and (ii) can be tuned at di�erent levels of precision and
e�ciency.

3.9. Discussion 105

3.9 Discussion

In this chapter we approached the issue of string analysis through Abstract Interpre-
tation. In particular, we focused on the construction of a �exible and generic frame-
work to approximate the values assumed by string variables. The results obtained
through our approximation can then be used to verify di�erent kind of properties,
depending on the speci�c program to analyze.

To this purpose, we designed �ve abstract domains (CI, PR, SU , BR, SG), each
of them tracking a di�erent type of information. Since a string can be seen as an
ordered sequence of characters, such domains all focus on the two aspects of character
inclusion and order between characters. For each domain, we de�ned its lattice
structure and the abstract semantics of a signi�cant subset of string-manipulating
operations. All domains are equipped with formal proofs to show their correctness.
We applied each domain to some case studies, especially chosen to illustrate the
operating principles of our domains. From such applications, we gathered that the
�rst three domains (CI, PR, SU) are quite simple and the information we can
trace with them is limited. However, they are not computationally expensive (the
pre�x and su�x in particular) and they do not need to de�ne a widening operator.
For these reasons, they could be useful when not much precision is needed and the
performance of the analysis is a critical point. The last two domains (BR, SG)
are certainly more complex, and they let us trace more interesting patterns. The
lattices of such domains are in�nite and do not satisfy ACC; thus, we had to de�ne
a widening operator. Even though these two domains are both quite precise, SG
seems to be the most precise domain of our framework (and, for the usual trade-o�
between performance and precision, the most costly).

106 3. A Generic Framework for String Analysis

4

The Trapezoid Step Functions

Abstract Domain

In this chapter we focus on the second of the three goals of our thesis, i.e. improving
the existing abstraction of continuous inputs of hybrid systems given by [24] (IVSF
domain).

Hybrid systems are made up of discrete (that is, the program) and continuous
(that is, the physical environment) components. The program receives inputs from
the physical environment through sensors that are usually modelled by volatile vari-
ables. Hybrid systems often deal with safety critical systems, like �ight controllers.
The reliability of these systems is crucial: even a single bug can spell disaster, and
this is a relevant challenge for formal veri�cation methods. It is thus necessary to
precisely approximate both the discrete and the continuous parts of the system. In
static analysis, a lot of precise abstractions already exist to approximate the discrete
part of the system, while there is still not much work done on the continuous part.
In this chapter we focus on this problem and we introduce the Trapezoid Step Func-
tions (TSF) domain. Our main insight is to approximate C2+ functions 1 by a �nite
sequence of trapezoids, one for each slot of time, adopting linear functions (instead
of constant intervals) to abstract the upper and the lower bounds of a continuous
variable in each slot of time. We formalize the lattice structure of TSF, and show
how to build and compute a sound abstraction of a given continuous function. Fi-
nally, we apply TSF to some case studies comparing our results with the domain of
Interval Valued Step Functions (IVSF), the current state-of-the-art in the context
of abstraction of continuous functions in static analysis. The experimental results
underline the e�ectiveness of the approach in terms of both precision and e�ciency.

This chapter is structured like described in 1.6, with some small di�erences (i.e.,
no speci�c notation is needed, and the abstraction function of the proposed domain
requires an entire section because of its complexity). In particular, Section 4.1
introduces the problem, Section 4.2 presents a case study, Section 4.3 establishes the
syntax of the language supported by our analysis, Section 4.4 de�nes the concrete
domain, while Sections 4.5, 4.6 and 4.7 formalize the abstract domain, its abstraction
function and the abstract semantics of operations on functions. In Section 4.8 we

0This chapter is partially derived from [46].
1We de�ne C2+ as the set of all continuous functions in R+ 7→ R that have continuous �rst two

derivatives.

108 4. The Trapezoid Step Functions Abstract Domain

present some experimental results when applying TSF to the abstraction of di�erent
functions, and how our results compare with IVSF. Finally, Section 4.9 discusses the
related work and Section 4.10 concludes.

Contents

4.1 Introduction . 109

4.2 Case Study . 112

4.3 Language Syntax . 113

4.4 Concrete Domain and Semantics 114

4.5 Abstract Domain . 117

4.5.1 Normal Form and Equivalence Relation 118

4.5.2 Validity Constraints . 119

4.5.3 Abstract Elements . 120

4.5.4 Partial Order . 121

4.5.5 Re�ne Operator . 123

4.5.6 Greatest Lower Bound . 125

4.5.7 Least Upper Bound . 133

4.5.8 Abstraction and Concretization Functions 138

4.5.9 Compact Operator . 139

4.5.10 Widening . 141

4.5.11 The Lattice D] . 146

4.6 Abstraction of a Continuous Function 146

4.6.1 IVSF Abstraction Function, Fixed Step Width 147

4.6.2 IVSF Abstraction Function, Arbitrary Step Width 147

4.6.3 TSF Basic Abstraction Function, Arbitrary Step Width . 148

4.6.4 TSF Basic Abstraction Function, Fixed Step Width 149

4.6.5 Dealing with Floating Point Precision Issues in TSF . . . 149

4.6.6 Dealing with Floating Point Precision Issues in IVSF . . . 151

4.7 Abstract Semantics . 152

4.8 Experimental Results . 159

4.8.1 Varying the Number of Steps 159

4.8.2 The Integrator Case Study 160

4.8.3 Combination of TSF with IVSF 161

4.9 Related Work . 163

4.10 Discussion . 164

4.1. Introduction 109

4.1 Introduction

Context

A hybrid system is a dynamical system whose evolution depends on a tight coupling
between variables that take values in a continuum and variables that take values
in a �nite or countable set [146]. More generally, hybrid systems are mixtures of
real-time (continuous) dynamics and discrete events. These continuous and discrete
dynamics not only coexist, but interact as well: changes occur both in response to
discrete, instantaneous, events and in response to dynamics as described by di�er-
ential or di�erence equations in time. Hybridness is characteristic of all embedded
control systems because it arises from several sources. One of these sources is that
every digital hardware/software implementation of a control design is ultimately a
discrete approximation that interacts through sensors and actuators with a contin-
uous physical environment. A simple example of hybrid system is a temperature
control system consisting of a heater and a thermostat, where the variables of such
system include the current temperature (a real value) and the operating mode of the
heater (a boolean value indicating on or o�). The hybridness comes from the inter-
action of such variables (i.e., if the thermostat switches o� when the temperature
reaches a certain threshold).

Hybrid systems are everywhere (cars, airplanes, computers, and so on) and their
use is becoming more and more pervasive during the last years. For example, the
introduction of advanced automation into manually operated systems has been ex-
tremely successful in increasing the performance and �exibility of such systems, as
well as signi�cantly reducing the workload of the human operator. However, accom-
panying this increase in automation is the necessity of ensuring that the automated
system always performs as expected. This is especially crucial for safety critical
systems: if an error occurs in the automated avionics on board a commercial jet,
the results can be disastrous. In the past, the validation of such systems relied on
two main factors: (i) operating the system well within its performance limits and
(ii) extensive testing. In fact, today most of the cost in control system development
is spent on validation techniques that rely almost exclusively on exhaustively testing
more or less complete versions of complex non-linear control systems. To address
this bottleneck, approaches to dynamic modelling have been developed, which focus
mainly on one part of the system (the discrete one or the continuous one) and deal in
an ad-hoc manner with the other part. Such approaches, however, are not enough.
A well-known and dramatic example is the Ariane 5 launch in 1996 (self-destruction
mode 37 seconds after lift-o�), already cited in Chapter 1. This failure was caused
by a software error. However, the bugged program was the same as the one that
had worked perfectly in the launch of Ariane 4. The problem was that the contin-
uous dynamical system around the software had changed: the physical structure of
the new launcher had been sized up considerably compared to its predecessor. The
catastrophe was then due to the execution of a trusted code within a new physi-

110 4. The Trapezoid Step Functions Abstract Domain

cal environment. For these reasons, more systematic ways of dealing with hybrid
systems are necessary: the newest research direction in control focuses on building
an analytical foundation based on hybrid systems. A leading objective is to extend
standard program analysis techniques to systems which incorporate some kind of
continuous dynamics.

The area of hybrid systems is then loosely de�ned as the study of systems which
involve the interaction of discrete event and continuous time dynamics, with the
purpose of proving properties such as reachability and stability. In the past, basic
formal models (hybrid automata) for hybrid systems have been built and various
approaches for hybrid control law design, simulation, and veri�cation have been de-
veloped. One class of approaches to modelling and analysis of hybrid systems has
been to extend techniques for �nite state automata to include systems with sim-
ple continuous dynamics. These approaches generally use: model checking (which
veri�es a system speci�cation symbolically on all system trajectories) and deductive
theorem proving (which proves a speci�cation by induction on all system trajecto-
ries). A second class of models and analysis techniques for hybrid systems comes
from research in continuous state space and continuous time dynamical systems
and control. In this last case, the emphasis has been on extending the standard
modelling, reachability and stability analyses, and controller design techniques to
capture the interaction between the continuous and discrete dynamic.

Let us now consider a more detailed example of a basic hybrid system, the
bouncing ball modelled in Figure 4.1 (the case study in Chapter 5 is a complication
of such example). The bouncing ball is cited in almost every text on hybrid systems,
for example [115, Chapter 3] and [146, Chapter 2]. We report it here in the form
presented in [115]. The bouncing ball is a physical system with impact. The ball
is dropped from an initial height and bounces o� the ground, dissipating its energy
with each bounce. The continuous dynamics of the system consists in the motion of
the ball from one bounce to the following one. The discrete dynamics is represented
by the impact of the ball into the ground, since its velocity undergoes a discrete
change modelled after an inelastic collision. A model for a bouncing ball can be
represented as the simple hybrid system in Figure 4.1, with a single discrete state

and a continuous state of dimension two x =

[
x1
x2

]
, where x1 denotes the vertical

position of the ball and x2 its vertical velocity. The continuous motion of the ball is
governed by Newton's laws of motion. This is indicated by the di�erential equation
that appears in the vertex, where g denotes the gravitational acceleration. This
di�erential equation is only valid when the ball is above the ground (i.e., as long
as x1 ≥ 0), as we can see from the logical expression x1 ≥ 0 that appears in the
vertex below the di�erential equation. The ball bounces when x1 = 0 and x2 ≤ 0,
and we can see that from the logical expression that appears near the beginning
of the edge (arrow). At each bounce, the ball loses a fraction of its energy, as we
can see from the equation x2 := −cx2 (with c ∈ [0, 1]) near the end of the edge.
This statement is an assignment, which means that after the bounce the speed of

4.1. Introduction 111

Figure 4.1: The hybrid system modelling a bouncing ball [115]

the ball will be c times the speed of the ball before the bounce, and going to the
opposite direction. The bouncing ball is an interesting hybrid system, as it exhibits
Zeno behaviour. Zeno behaviour can be informally described as the system making
an in�nite number of jumps in a �nite amount of time [96]. In this example, each
time the ball bounces it loses energy, making the subsequent jumps (impacts with
the ground) closer and closer together in time.

State of the art

On the one hand, there is a large literature on the static analysis of discrete pro-
grams. On the other hand, these approaches do not perform well when they are
applied to continuous environments. For instance, in the context of the Abstract
Interpretation framework, the Interval domain [53] abstracts continuous systems
with the minimal and the maximal values a sensor can return at any time. This
approach is de�nitely too rough for the static analysis of embedded programs. To
improve precision, Bouissou and Martel recently proposed the Interval Valued Step
Functions (IVSF) domain [24] for approximating the behaviour of a function in a
given interval of time (i.e, a step) with the minimal and the maximal values the
function could achieve during that period of time.

Contribution

In this chapter, we go one step further by introducing the Trapezoid Step Functions
(TSF) domain. TSF abstracts the values of a function in a given slot of time with two
linear functions, tracking in this way linear relationships between the time and the
output value. Our work is inspired by the evolution of numerical domains. Since the
Interval domain is not precise enough in many contexts, various relational domains
(e.g., Polyhedra [62] and Octagons [123]) have been introduced. In a similar way, our
domain, instead of tracking the minimal and the maximal values of a function in a
given slot of time, tracks two linear functions that approximate values of the function

112 4. The Trapezoid Step Functions Abstract Domain

1 #define SUP = 4

2 #define INF = -4

3 volatile float x;

4 static float intgrx = 0.0, h = 1.0/8;

5 void main() {

6 while(true) { //assume frequency = 8 KHz

7 float xi = x;

8 intgrx += xi*h;

9 if(intgrx > SUP)

10 intgrx = SUP;

11 if(intgrx < INF)

12 intgrx = INF;

13 }

14 }

Figure 4.2: Simple integrator

as a linear multivalued function [15, 28]. The two linear functions, together with
the two vertical lines that delimit the time slot, form a trapezoid. We approximate
the function with a �nite number of trapezoids, one for each step.

The main contributions of this chapter are (i) the formal de�nition of TSF and
its lattice operators, (ii) the introduction of a sound abstraction function that, given
a continuous and derivable function, builds up its abstraction in TSF, and (iii) the
discussion of some experimental results and the comparison with the ones obtained
by IVSF. The experimental results strongly emphasize how relevant is the accuracy
improvement when adopting TSF, possibly combined with the IVSF domain, and
the e�ectiveness of the abstract operations on TSF.

4.2 Case Study

In this chapter, we chose to use the case study reported in Figure 4.2: it regards
a special case of hybrid system, where we have a discrete system (an embedded
program) which takes a continuous environment as input.

This motivating example has been inspired by [83], and it is the same example
used in [24] in order to show the main features of IVSF. This program is an integra-
tor with thresholds, a quite common component of embedded software: it integrates
a function (whose values are provided through the volatile variable x) using the
rectangle method on a sampling step h. The integration is carried out up to some
threshold de�ned by the interval [INF, SUP]. We assume that the function we inte-
grate is sin(2πt), and that the input data are given by a sensor (hence the volatile
variable x) at a frequency of 8KHz (it is very frequent to �nd a comment such as
�this loop runs at 8KHz� in the code usually given to static analyzers). This scenario

4.3. Language Syntax 113

V ∈ V , f ∈ C2+, c ∈ R, x ∈ R+

E := V | newFun(f) | constFun(c) | |E| |E aop E where aop ∈ {+,−,×,÷, ◦,min,max}

R := constVal(c)|valueAt(E, x)

B := B and B|not B|B or B|R bop R where bop ∈ {≥, >,≤, <, 6=}

P := V = E|if(B) then P else P |while(B) P |P ;P

Figure 4.3: Syntax

is particularly interesting for the analysis of numerical precision, since its behaviour
is extremely depending of the input data (i.e. the physical environment), of the fre-
quency of the integration process (i.e. the sampling rate) and of the precision of the
sensor. The sensor will produce the sequence of values [0,

√
2
2
, 1,

√
2
2
, 0,−

√
2
2
,−1,−

√
2
2

]
on x. Therefore, in a perfect arithmetic computation the summation of these values
multiplied by h will be equal to zero after 8 × i iterations ∀i ∈ N and in general
will be bounded between [0, 2]. Nevertheless, in a real system this summation would
produce some approximate values because of �oating point approximation.

As explained in the previous section, a naive abstraction of the continuous en-
vironment would approximate x by the interval [−1, 1] (since it is a value com-
ing from the trigonometric function sin). Then, after unrolling the main loop n
times, the interval-based analyzer would bind the variable intgrx with the interval
[−n × h, n × h]. After 104 iterations, for example, the value of intgrx would be
included in [−4, 4], because of the thresholds (otherwise it would be even bigger,
[−13, 13]). Such result can de�nitely be improved by using a better abstraction of
the continuous environment.

This code is particularly interesting to test the precision of abstract domains
since it propagates the approximation error of our abstract domain at each iteration
of the while loop, and therefore it is a good candidate to test the precision of TSF.

4.3 Language Syntax

Let V be a �nite set of variables, c a real value and C2+ the set of all univariate
functions from R+ to R with two continuous derivatives, respectively. Figure 4.3
de�nes the language supported by our analysis.

We focus on programs dealing with operations over function-valued variables
(numerical variables can be easily added to the syntax and included in the analy-
sis, by working in cooperation with an already existent numerical abstract domain).
We consider expressions built through the most common mathematical operators
(sum, subtraction, multiplication and so on). A functional expression E can be

114 4. The Trapezoid Step Functions Abstract Domain

a constant function (constFun(c) where c ∈ R), a generic function (newFun(f)
where f ∈ C2+), a variable (V ∈ V), the modulus of a functional expression (|E|)
or the pointwise combination of two functional expressions (E aop E where aop ∈
{+,−,×,÷, ◦,min,max}). We also consider boolean conditions built through the
comparison of two numerical expressions, where a numerical expression can be a sim-
ple numeric constant (constVal(c) where c ∈ R) or the value of a functional expres-
sion in a speci�c point of its domain (valueAt(E, x) where x ∈ R+). Boolean con-
ditions can be combined as usual with logical operators (and, or, not). As for state-
ments, we support the assignment of an expression to a variable, if− then− else,
while loops, and concatenation.

4.4 Concrete Domain and Semantics

The concrete domain D is de�ned as the power-set of continuous functions in R+ →
R 2 which have two continuous derivatives (i.e., the set C2+).

As explained in Section 2.4, when the lattice is the power-set of a set, the other
operators immediately follow: the partial order is the set inclusion ⊆, the least
upper bound corresponds to set union ∪, the greatest lower bound corresponds to
set intersection ∩, the top element > is the set itself, while the bottom element ⊥
is ∅. The complete de�nition of the lattice D is then:

D = 〈℘(C2+),⊆,∪,∩, C2+, ∅〉

We can now de�ne the concrete semantics of the language introduced in Section
4.3. For the statements operations and the logic combination of boolean conditions
we refer to the usual semantics of the classical Abstract Interpretation framework.
Then, we will have to specify only the semantics (both concrete and abstract) of
operators dealing with functional expressions. We formalize the concrete semantics
in Table 4.1.

For the creation of functional expressions, we de�ne the semantics S that, given
the statement and eventually some sets of concrete functional expressions in C2+
(containing the values of the arguments of the statement), returns a set of concrete
functions resulting from that operation. In particular:

• newFun(f) returns a singleton containing f;

• constFun(c) returns a singleton containing the constant function which always
assumes value c;

• || returns, for every function of the set in input, another function obtained by
computing its modulus in every point of the domain;

2The functions' domain is R+ instead of R because, in the scenario of embedded programs, the
input variable represents the time.

4.4. Concrete Domain and Semantics 115

Table 4.1: Concrete semantics

SJnewFun(f)K() = {λx.f(x) ∀x ∈ R+}
SJconstFun(c)K() = {λx.c ∀x ∈ R+}
SJ| |K(F) = {λx.|f(x)| ∀f ∈ F,∀x ∈ R+}
SJaopK(F1,F2) = {λx.f1(x) aop f2(x) ∀(f1, f2) ∈ F1 × F2, ∀x ∈ R+}

where aop ∈ {+,−,×,÷}
SJ◦K(F1,F2) = {λx.f1(f2(x)) ∀(f1, f2) ∈ F1 × F2,∀x ∈ R+}
SJminK(F1,F2) = {λx.min (f1(x), f2(x)) ∀(f1, f2) ∈ F1 × F2,∀x ∈ R+}
SJmaxK(F1,F2) = {λx.max (f1(x), f2(x)) ∀(f1, f2) ∈ F1 × F2,∀x ∈ R+}
VJconstVal(c)K() = {c}
VJvalueAtxK(F) = {f(x) : f ∈ F}

BJbopK(R1,R2) =


true if ∀r1 ∈ R1, r2 ∈ R2 : r1 bop r2
false if ∀r1 ∈ R1, r2 ∈ R2 : r1 inv(bop) r2
>B otherwise

where bop ∈ {≥, >,≤, <, 6=} ∧

bop inv(bop)
≥ <
> ≤
≤ >
< ≥
6= =

116 4. The Trapezoid Step Functions Abstract Domain

• aop ∈ {+,−,×,÷} returns, for every pair of functions (one from the �rst set
in input, one from the second one), the function resulting from their pointwise
combination through aop. For example, when aop is +, we return the function
obtained by pointwise summing the two original functions.

• ◦ returns, for every pair of functions (one from the �rst set in input, one from
the second one), the function resulting from their pointwise composition.

• min and max respectively return, for every pair of functions f1, f2 (one from
the �rst set in input, one from the second one), the function which assumes,
in each point of the domain, the minimum (resp., maximum) value between
the two values assumed by f1 and f2.

For the creation of numerical expressions, we de�ne the semantics V that returns
a set of concrete real values resulting from the speci�c operation. In particular:

• constVal(c) returns a singleton containing c;

• valueAtx returns, for every function of the set in input, its value in correspon-
dence of the input x.

For bop ∈ {≥, >,≤, <, 6=} we de�ne the semantics B : ℘(R)×℘(R)→ {true, false,>B}.
Given two sets of real values, the semantics of this operator returns:

• true if all the possible pairs of values r1, r2 (one from the �rst set in input,
one from the second one) satisfy the boolean comparison operator bop. For
example, when bop is ≥, we return true if all values in R1 are greater or equal
than those in R2.

• false if all the possible pairs of values r1, r2 (one from the �rst set in input,
one from the second one) satisfy the inverse comparison operator of bop. For
example, when bop is ≥, its inverse is < (see Table 4.1 for the complete list of
inverse operators); thus, we return false if all values in R1 are strictly smaller
than all those in R2.

• >B otherwise. This special boolean value represents a situation in which the
boolean condition may be evaluated to true some times, and to false other
times, depending on the two speci�c values in R1,R2 we are considering. The
partial order ≥B over these values was already de�ned in the previous chapter
(Section 3.5).

Note that the concrete semantics of our language is uncomputable because the
functions domain is R+ and we cannot compute their values in each point of the
domain in a �nite time.

4.5. Abstract Domain 117

Figure 4.4: Example of a trapezoid de�ned on [0, 3]

4.5 Abstract Domain

In this section we are going to present the abstract domain of Trapezoid Step Func-
tions, TSF. The presentation is roughly structured as explained in Section 1.6 (i.e.:
domain elements de�nition, partial order, top and bottom elements, glb and lub op-
erators, abstraction and concretization functions, widening), with the only di�erence
that in this section we are only going to give a validity condition for the de�nition of
the abstraction function, while the actual abstraction function is de�ned in a sepa-
rate section (4.6) because of its complexity. The abstract semantics, also, requires a
section on its own (4.7). We prove the correctness of all our de�nitions, by showing
the soundness of each operation on abstract elements (partial order, re�ne, glb, lub,
compact, widening), thus demonstrating that TSF is a lattice.

We start the abstract domain de�nition by introducing the key-idea behind it.
Given a function f and a set of ordered indices {ti}0≤i≤N , we approximate the
values of f in a step [ti, ti+1] by a trapezoid whose (i) two parallel sides are vertical,
in correspondence of ti and ti+1, and (ii) the other two sides are in the form f−(x) =
m−x+q− and f+(x) = m+x+q+ and approximate lower and upper values of f inside
[ti, ti+1]. For instance, Figure 4.4 depicts a trapezoid de�ned on the step [0, 3] with
f−(t) = 0.33t+ 1 and f+(t) = −0.17t+ 3.5 as lower and upper sides, respectively.

Formally, given a step [ti, ti+1], a single trapezoid is de�ned by two linear func-
tions, and each of these two functions is de�ned by two real numbers representing
the slope and intercept. Therefore, the pair of sides of each trapezoid are de�ned
by a tuple

v = (m−, q−,m+, q+)

where m−, q−,m+, q+ ∈ R ∪ {−∞,+∞}, which represents the two lines f−(x) =
m−x + q− and f+(x) = m+x + q+. We denote by f− and f+ the lower and the
upper side, respectively. TSF can be seen as a generalization of IVSF, whose two
horizontal sides are parallel, i.e., with f+(x) = q+ and f−(x) = q−.

118 4. The Trapezoid Step Functions Abstract Domain

Note that the two lines of a trapezoid in TSF can also go to∞: in particular, we
de�ne that f− can have value −∞ and f+ can have value +∞. In such cases, the
trapezoid does not have a lower or upper bound. In our domain, this is represented
by m− = q− = −∞ or m+ = q+ = +∞. 3 We do not admit the case where the slope
and intercept of a line are both∞ but with di�erent sign (i.e., f(x) = −∞×x+∞
is not allowed).

Following the standard notation on step functions [24], consider a generic set
V of values. These values could be simple numbers (integers, reals, ...) but also
more complicated structures like intervals or tuples. In our domain, a value will
be composed by two lines, the upper (f+) and the lower (f−) side of trapezoids.
Then, we represent a step function from time to V as a conjunction of constraints
of the form “ti : vi” such that ti ∈ R+ ∧ vi ∈ V . This means that the step function
switches to vi at time ti. For t ∈ [ti, ti+1] the function respects the constraints
represented by value vi. When t = ti+1, the abstract value of the function switches
�abruptly� to vi+1. We consider only �nite conjunctions of constraints, otherwise
the abstract operations of our domain would not be computable. A �nite sequence
of constraints f = t0 : v0∧ t1 : v1∧ · · · ∧ tN : vN represents the step function f such
that ∀t ∈ R+ : f(t) = vi with i = max({j ∈ [0, N] : tj ≤ t}). We use the compact
notation f =

∧
0≤i≤N ti : vi, with N ∈ N ∧ ∀i ∈ [0, N] : (ti ∈ R+ ∧ vi ∈ V). V is

the set of tuples {(m−, q−,m+, q+) : m−, q−,m+, q+ ∈ R ∪ {−∞,+∞}}. To lighten
up the notation, a quadruple vi = (m−i , q

−
i ,m

+
i , q

+
i) denotes f−i (t) = m−i t + q−i and

f+
i (t) = m+

i t+q
+
i . We will alternatively denote a step value as vi = (m−i , q

−
i ,m

+
i , q

+
i)

or vi = (f−i , f
+
i).

For example, the step function h with two steps t0 = 0, t1 = 3 with values, respec-
tively, v0 = (1,−1, 2, 1), v1 = (0, 3.5, 1

3
, 4) will be written as h = (0 : [1,−1, 2, 1])∧(3 :

[0, 3.5, 1
3
, 4]). The graphical representation of h (for the restricted domain [0, 10])

is depicted in Figure 4.5, where we can see the two trapezoids composing the step
function. On the upper and lower sides of the trapezoids we reported the equations
of the corresponding lines.

4.5.1 Normal Form and Equivalence Relation

However, di�erent abstract values may represent exactly the same step function. For
example, the conjunctions (0 : [0, 0, 1, 1]) ∧ (4 : [0, 0, 1, 1]) and (0 : [0, 0, 1, 1]) ∧ (7 :
[0, 0, 1, 1]) de�ne the same step function which, for every input t ∈ [0,+∞), returns
as output value the interval [0, t + 1]. To avoid that, we use the same notion of
normal form de�ned in [24]:

1. the switching times ti of a conjunction are sorted and di�erent (if f =
∧

0≤i≤N{ti :
vi} then 0 = t0 < t1 < · · · < tn < · · · < tN);

3The numerical order relationship ≤ is extended to consider −∞ and +∞.

4.5. Abstract Domain 119

Figure 4.5: A TSF abstract element on the domain [0, 10]

2. two consecutive constraints cannot have equal values (each vi must be di�erent
from vi+1, that is ∀i ∈ [0, N − 1],vi 6= vi+1)

With these conditions, the representation is unique. We will denote by Norm the
normalization procedure. The algorithm to compute the normalized form Norm(f)
of a given conjunction of constraints f is de�ned as follows. First we sort the
constraints by ascending switching times, with the convention that if two constraints
have the same time, then we only keep the one with the highest index. In this way,
we ful�l the �rst normalization condition. Then we remove any constraint ti : vi

such that vi−1 = vi. In this way, we ful�l the second normalization condition. Note
that the normalization process does not change the meaning of the representation:
for a conjunction f , it holds that ∀t ∈ R+f(t) = Norm(f)(t). In our previous
example, we would obtain a representation with a single constraint 0 : [0, 0, 1, 1].

Given two normalized conjunctions, we de�ne the same equality test as in [24]:∧
0≤i≤N

{ti : vi} =
∧

0≤j≤M

{ui : wi} ⇔ N = M ∧ ∀i ∈ [0, N], ti = ui ∧ vi = wi

The normalization process induces an equivalence relation ≡ de�ned by f ≡ g ⇔
Norm(f) = Norm(g).

4.5.2 Validity Constraints

We impose two constraints on abstract elements in order to be valid:

∀i ∈ [0, N], f−i (ti) ≤ f+
i (ti) ∧ f−i (ti+1) ≤ f+

i (ti+1) (4.1)

∀i ∈ [0, N − 1], [f−i (ti+1), f
+
i (ti+1)] ∩ [f−i+1(ti+1), f

+
i+1(ti+1)] 6= ∅ (4.2)

120 4. The Trapezoid Step Functions Abstract Domain

Figure 4.6: A TSF abstract element on the domain [0, 10] which violates the second
validity constraint at t = 3

(1) states that, at each step [ti, ti+1] of the function, the two lines f
+
i and f−i do

not intersect. This assumption is not restrictive, since we can always split a step
with intersecting sides into two smaller steps with not intersecting sides through the
re�ne operator de�ned in Section 4.5.5.

(2) states that two consecutive steps [ti, ti+1], [ti+1, ti+2] of a step function must
have at least one point in common at ti+1. This means that the interval of values
at t = ti+1 individuated by vi and the one individuated by vi+1 at the same input t
must have a non-empty intersection. This constraint is needed because otherwise the
concrete functions represented by the abstract element would not be continuous, and
it would be abstracted by a bottom value in our domain since we abstract functions
in C2+. In Figure 4.6 we can see an example of an abstract state which violates
this constraint. In particular, at t = 3 we can see that the upper side of the left
trapezoid passes for y = 3, while the lower side passes for y = 2, so the interval of
values individuated by the left trapezoid is [2, 3]. The interval individuated by the
right trapezoid, on the other hand, is [3.5, 5]. Since [2, 3]∩ [3.5, 5] = ∅, this abstract
state is not valid and it collapses to bottom. This is a sound approximation since
there is no continuous function that may satisfy this constraint.

4.5.3 Abstract Elements

The elements (that is, states) of our abstract domain, denoted by D], are normalized
�nite conjunctions of constraints

f =
∧

0≤i≤N

ti : vi

with
N ∈ N ∧ ∀i ∈ [0, N] : (ti ∈ R+ ∧ vi ∈ V)

4.5. Abstract Domain 121

Figure 4.7: A TSF abstract element on the entire domain R+

which satisfy the equations 4.1 and 4.2.
Note that, if it is not speci�ed otherwise, the abstract states of TSF refer to the

entire domain R+. Since the conjunctions we consider are �nite, this means that
the last trapezoid lacks its right side (it is not closed): the upper and lower sides
extend (on the right) to in�nite. We can see an example in Figure 4.7, where we
depict the same abstract state of Figure 4.5 but with an unrestricted domain. In
Figure 4.5 instead, the domain was restricted to [0, 10] and so the trapezoid on the
right was closed.

4.5.4 Partial Order

The partial order ⊆] on two functions f, g in D] is de�ned pointwisely, that is, for
all possible inputs t we check that the set of values assumed by f in that point is a
subset of the set of values assumed by g at the same point. Formally:

f ⊆] g ⇔ ∀t ∈ R+ : f(t) ⊆ g(t)

where f(t) = {v : f−j (t) ≤ v ≤ f+
j (t) ∧ t ∈ [tj, tj+1]} and the same holds for g(t).

To de�ne the partial order on step functions, we �rst de�ne a partial order on
single steps. Let vi = (f−i , f

+
i) and wj = (g−j , g

+
j) be the values of two steps on the

same domain [a, b]. Then:

vi v[a,b] wj ⇔ ∀t ∈ [a, b] : f−i (t) ≥ g−j (t) ∧ f+
i (t) ≤ g+j (t)

⇔ ∀t ∈ [a, b] : [f−i (t), f+
i (t)] ⊆ [g−j (t), g+j (t)]

⇔ [f−i (a), f+
i (a)] ⊆ [g−j (a), g+j (a)] ∧ [f−i (b), f+

i (b)] ⊆ [g−j (b), g+j (b)]

(4.3)

In other words, vi is smaller than wj if the area of the trapezoid identi�ed by vi

(in the domain [a, b]) is contained in the area of the trapezoid identi�ed by wj (in

122 4. The Trapezoid Step Functions Abstract Domain

[a, b] as well). To do this, we have to compare only the upper and lower sides of the
trapezoids. Formally, we should check that ∀t ∈ [a, b] : (f−i ≥ g−j ∧ f+

i ≤ g+j). Since
the sides are de�ned by straight lines and they do not intersect, this results into
checking only the values of such lines at the left and right extremes of the trapezoid.

Now we can give an e�ective condition for testing whether f ⊆] g. Let f =∧
0≤i≤N{ti : vi} and g =

∧
0≤j≤M{uj : wj} be two abstract states, then:

f ⊆] g
m

∀(i, j) ∈ [0, N]× [0,M] : [a, b] = [ti, ti+1] ∩ [uj, uj+1] 6= ∅ ⇒ vi v[a,b] wj

(4.4)

The condition 4.4 considers all intersections between steps from the two abstract
states, that is, all pairs of steps (ti, uj) from f and g that have a non-empty in-
tersection ([ti, ti+1] ∩ [uj, uj+1] 6= ∅). To check if two steps have an intersection
([ti, ti+1]∩ [uj, uj+1] 6= ∅), we can use the condition uj ≤ ti+1 ∧ uj+1 ≥ ti. Moreover,
if uj ≤ ti we have that [a, b] = [ti, uj+1]. Otherwise, we have that [a, b] = [uj, ti+1].
For each intersection, we then compare the two values (vi,wj) in [a, b].

If each step value of f is smaller than the value of every intersected step of g
(with respect to their intersection on the domain), then f ⊆] g.

Lemma 4.5.1 (Soundness of the partial order). If f, g ∈ D] are normalized, then

f ⊆] g ⇔ ∀t ∈ R+, f(t) ⊆ g(t)

Proof. We distinguish the two directions:

• (⇒) Let f =
∧

0≤i≤N{ti : vi} and g =
∧

0≤j≤M{uj : wj}, be such that f ⊆]
g, and let t be ∈ R+. Then there exists i ∈ [0, N] and j ∈ [0,M] such
that t ∈ [ti, ti+1] ∧ t ∈ [uj, uj+1]. Thus, [ti, ti+1] ∩ [uj, uj+1] 6= ∅, so f(t) =
[f−i (t), f+

i (t)] ⊆ [g−j (t), g+j (t)] = g(t) by de�nition of v[a,b].

• (⇐) Let f, g ∈ D] be such that ∀t ∈ R+, f(t) ⊆ g(t). Let i, j ∈ [0, N]× [0,M]
be such that [a, b] = [ti, ti+1] ∩ [uj, uj+1] 6= ∅, and let x be ∈ [a, b]. Since
∀t ∈ R+, f(t) ⊆ g(t), then we also have ∀x ∈ [a, b] : f(x) ⊆ g(x), that
is ∀x ∈ [a, b] : ([f−i (x), f+

i (x)] ⊆ [g−j (x), g+j (x)]). Then 4.3 we that that
vi v[a,b] wj for each possible pair (i, j) by the second line of Equation, and
f ⊆] g by Equation 4.4.

We can see an example of the partial order relationship between two abstract
states f and g on the domain [0, 15] in Figure 4.8. The abstract state f is represented
with straight lines, the abstract state g with dashed lines. f is de�ned on the set of
steps {0, 5, 10} while g is de�ned on the the set of steps {0, 4, 7, 11}. Then the com-
parison is made on the following intervals: [0, 4], [4, 5], [5, 7], [7, 10], [10, 11], [11, 15].
Since in each of these intervals we have that the straight lines lie within the area
de�ned by the dashed lines, we obtain that f ≤ g.

4.5. Abstract Domain 123

Figure 4.8: Partial order

Top and bottom

The top element of the domain is de�ned by:

>] = 0 : [0,−∞, 0,∞]

that is, the step function with only one step with value R, while ⊥] is a special
element such that:

γ(⊥]) = ∅ ∧ ∀f ∈ D],⊥] ⊆] f

4.5.5 Re�ne Operator

We de�ne a re�ne operator, which, given an abstract state of TSF and a set of
indices, adds these indices to the step list of the state. The concretization of the
abstract state remains the same after the application of a re�ne operator, since the
values vi are not modi�ed. This operator will be useful to make two abstract states
directly comparable, by making them de�ned on the same set of steps.

Consider an abstract state f =
∧

0≤i≤N{ti : vi} where T = {ti : 0 ≤ i ≤ N}
and a set of indices U = {uj : 0 ≤ j ≤ M}. Let S = {sk : ∀k ∈ [0, P], (sk ∈
(T ∪ U) ∧ sk < sk+1)} be the set of all the indices contained in T and U , ordered
and without repetitions (therefore P = N + M − |T ∩ U |). The re�ne operator on
this state is de�ned by:

Refine(f, U) =
∧

0≤k≤P

{sk : v̂k}

where v̂k = vmax{i:ti≤sk}. Intuitively, you can see that this operator does not change
the abstract information of the state. In fact we can enunciate the following lemma:

Lemma 4.5.2 (Re�nement). Given a normalized abstract state f , for any set of
indices S, it holds that f ≡ Refine(f, S).

124 4. The Trapezoid Step Functions Abstract Domain

Figure 4.9: Re�ne operator

Proof. The equivalence relation ≡ considers the normalized version of the two ele-
ments being compared. We know by hypothesis that f is already in a normalized
form, so we have to compare f with Norm(Refine(f, S)).

Suppose that f is de�ned on the indices set T , that is, ∀ti ∈ T , the step function
f has a step at ti. To underline this relationship, we write fT instead of f . Let
Refine(fT , S) = f ′R be the re�ned version of fT , where R = T ∪ S. This means
that the result of the re�ne operator is a step function f ′ de�ned on the indices
set R = T ∪ S. So we can write fT =

∧
i∈[0,N−1]{ti : vi} (supposing |T | = N) and

f ′R =
∧
j∈[0,M−1]{rj : v̂j} (supposing |R| = M).

By de�nition of re�ne, we know that ∀rj ∈ (S \ T) ⊆ R the value of the step rj
in f ′R is v̂j = vmax{i:ti≤rj}. So, the value of the step rj is the same as the one of a
consecutive step already present in fT . The normalization process removes any step
which has the same value of the previous one. Then each step rj ∈ (S\T) is removed
and the result of the normalization of f ′R is a step function f ′′T with step indices only
from the set T (since (T ∪ S) \ (S \ T) = T). Moreover, the value associated to
each step ti of f ′′T is vi, the same as in fT , since neither the re�ne operator nor
the normalization process change any step value. Then fT and f ′′T are de�ned on
the same indices set, and they have the same step values. We can conclude that
fT = f ′′T = Norm(f ′R) = Norm(Refine(fT , S)), thus f = Norm(Refine(f, S)) and
�nally, since f = Norm(f), we have f ≡ Refine(f, S) by de�nition of ≡.

We can see an example of the re�ne operator in Figure 4.9. The set of steps of
the original abstract state is [0, 5, 11], while the set of indices I is [2, 6, 9, 14]. On
the left we depict the original abstract state, on the right its re�ned version with
respect to I (the vertical lines are dashed in correspondence with the indices of I).

The re�ne operator will be used when dealing with two abstract states together
(for example, in the least upper bound operator) to re�ne both states through the
set of indices of the other state. For example, if f and g are the two abstract states
being considered, the preliminary step is to re�ne f with the steps of g, and to re�ne
g with the steps of f . In this way, we obtain two abstract states de�ned on the same
set of indices (that is, the union of the two original indices sets).

4.5. Abstract Domain 125

Note that the abstract state resulting from a re�nement operation is, in general,
not normalized, because it violates the second condition (i.e., two consecutive con-
straints cannot have equal values). This is not a problem, since the re�nement is
used as a preliminary step of various operations (glb, lub, widening, ...) but each of
these operations normalizes its �nal result, so we are sure that we will never produce
(at the end of a computation) an abstract state which is not normalized, even when
we used the re�nement throughout the computation.

4.5.6 Greatest Lower Bound

Given two elements x and y of the abstract domain, the greatest lower bound op-
erator de�nes the greatest element z = x ∩] y that under-approximates both x and
y. In TSF, this means that we have to create a sequence of trapezoids that are (i)
as vast as possible and (ii) contained in both the given sequences of trapezoids.

Let f ′ =
∧

0≤k≤N{xk : vk} and g′ =
∧

0≤j≤M{uj : wj} be two abstract states de-
�ned on the step sets X = {xk : k ∈ [0, N]} and U = {uj : j ∈ [0,M]}, respectively
(note that N + 1 = |X| and M + 1 = |U |, that is, the number of steps of an abstract
state corresponds to the cardinality of its step set). Let min(l1(t), l2(t), [a, b]) be
an operator which compares the lines l1(t) and l2(t) in the domain range [a, b] and
returns the one which is always below the other one, in the assumption that the two
lines do not intersect each other in such range. Since l1(t) and l2(t) are straight lines,
it su�ces to compare their values in t = a and t = b. Let max(l1(t), l2(t), [a, b]) be
the opposite operator, which returns the line always above. Let StepIndexes(f) be
a function which, given an abstract state f , extracts its step set. Then, Algorithm 3
represents the formal de�nition of the greatest lower bound of f ′ and g′ (i.e., f ′∩]g′).

An informal description of the algorithm is as follows:

Step 1 (lines 1-2 of the algorithm) In order to make the two abstract states f ′, g′

directly comparable, we re�ne them on the same set of steps, creating two
new abstract states f, g. Let f = Refine(f ′, U) and g = Refine(g′, X) be
these two new states. By Lemma 4.5.2, these re�ned states are equivalent to
f ′ and g′, so the greatest lower bound of f, g is also the greatest lower bound
of f ′, g′.

Step 2 Let T = {ti : i ∈ [0, P − 1]} (where P = |X ∪ U | = |T |) be the set of steps
indices of f and g (line 3). Let (f−i , f

+
i), (g−i , g

+
i) be the values (i.e., lower and

upper sides) of f, g in the generic step [ti, ti+1]. We will split each step [ti, ti+1]
into sub-steps, with respect to intersections of the sides of the two trapezoids
(one from f , one from g, lines 10-26). If there are no intersections, we leave
the step unchanged (line 25). Each step [ti, ti+1] will then generate one (or
more) steps in f ∩] g, depending on the intersections of the sides in such step.
The goal is to obtain sub-steps in which the sides of the two trapezoids do not
intersect each other in any point inside the sub-step range.

126 4. The Trapezoid Step Functions Abstract Domain

Algorithm 3 Pseudocode algorithm for glb computation
1: f ← Refine(f ′, U)
2: g ← Refine(g′, X)
3: T ← StepIndexes(f) = {ti} //note that StepIndexes(f) = StepIndexes(g)
4: P ← |T |
5: result← ∅
6: for i from 0 to P − 1 do
7: if f−i intersects g+i ∨ f+

i intersects g−i in]ti..ti+1[then
8: return ⊥]
9: end if
10: if f−i intersects g−i in tA ∈]ti..ti+1[then
11: if f+

i intersects g+i in tB ∈]ti..ti+1[then
12: if tA < tB then
13: resSteps ← ti : (max(f−i , g

−
i , [ti..tA]),min(f+

i , g
+
i , [ti..tA]))∧

∧tA : (max(f−i , g
−
i , [tA..tB]),min(f+

i , g
+
i , [tA..tB]))∧ ∧tB :

(max(f−i , g
−
i , [tB..ti+1]),min(f+

i , g
+
i , [tB..ti+1]))

14: else
15: //the same but reversing tA and tB
16: end if
17: else
18: resSteps ← ti : (max(f−i , g

−
i , [ti..tA]),min(f+

i , g
+
i , [ti..tA]))∧ ∧tA :

(max(f−i , g
−
i , [tA..ti+1]),min(f+

i , g
+
i , [tA..ti+1]))

19: end if
20: else if f+

i intersects g+i in tB ∈]ti..ti+1[then
21: resSteps ← ti : (max(f−i , g

−
i , [ti..tB]),min(f+

i , g
+
i , [ti..tB]))∧ ∧tB :

(max(f−i , g
−
i , [tB..ti+1]),min(f+

i , g
+
i , [tB..ti+1]))

22: else if [f−i (t), f+
i (t)] ∩ [g−i (t), g+i (t)] = ∅ in t = ti ∨ t = ti+1 then

23: return ⊥]
24: else
25: resSteps← ti : (max(f−i , g

−
i , [ti..ti+1]),min(f+

i , g
+
i , [ti..ti+1]))

26: end if
27: result← result ∧ resSteps
28: end for
29: if ∃si ∈ StepIndexes(result) : [result−i (si+1), result

+
i (si+1)] ∩

[result−i+1(si+1), result
+
i+1(si+1)] = ∅ //i.e., result does not satisfy the sec-

ond validity condition then
30: return ⊥]
31: else
32: return Norm(result)
33: end if

4.5. Abstract Domain 127

By Equation 4.1 (�rst validity condition), we know that, inside a step, the
upper and lower side of a trapezoid do not intersect. In fact, the two sides
could have an extreme in common (the value at ti or at ti+1) or they could
be the same line, but they surely do not have an intersection point inside
[ti, ti+1], otherwise they would violate the �rst constraint (Equation 4.1). For
this reason, we know for sure that f−i , f

+
i do not intersect each other, and

the same holds for g−i , g
+
i . The possible intersections inside (ti, ti+1) (extremes

excluded) are then: (1) between f−i and g−i , (2) between f+
i and g+i , (3)

between f−i and g+i , and (4) between f+
i and g−i .

In case 1 and 2 (intersection between f−i , g
−
i or between f+

i , g
+
i , lines 9-21),

we split the step in sub-steps with respect to the intersection point. Note that
we could obtain two or three sub-steps: if only f−i , g

−
i intersect each other

(lines 17-18) then we have two sub-steps (and the same happens if the only
intersection regards f+

i , g
+
i , lines 20-21 - see Figure 4.10(d)) but if there are two

intersections (one between f−i , g
−
i and the other between f+

i , g
+
i , lines 12-16 -

see Figure 4.10(e)) then we obtain three sub-steps.

In case 3 and 4 (intersection between f−i , g
+
i - Figure 4.10(b) - or between

f+
i , g

−
i - Figure 4.10(c), lines 7-8), instead of splitting the step with respect to

the intersection point, we immediately return ⊥] as result of the ∩] operation.
In fact, assume that f−i , g

+
i have an intersection (the same reasoning holds if

the intersection is between f+
i , g

−
i). Then, at one extreme of the step (i.e., at ti

or ti+1), the lower side of the trapezoid of f (f−i) is greater than the upper side
of the trapezoid of g (g+i). This means that, at such point, the two states have
no values in common since the areas of the trapezoids do not intersect: the
lowest value assumed by the continuous functions abstracted by f is greater
than the greatest value assumed by the continuous functions abstracted by g.
The result of the greatest lower bound must therefore be ⊥].
If the step [ti, ti+1] does not contain any intersection, two cases apply:

� if [f−i (ti), f
+
i (ti)]∩[g−i (ti), g

+
i (ti)] = ∅∨[f−i (ti+1), f

+
i (ti+1)]∩[g−i (ti+1), g

+
i (ti+1)] =

∅ (Figure 4.10(a), lines 22-23) then we return ⊥], because it means that
at one extreme of the step (i.e., at ti or ti+1) the lowest value of one state
is greater than the greatest value of the other one.

� otherwise, we do not need to split the step (line 25), since we are in the
case sketched by Figure 4.10(f).

Step 3 We know for sure that, in each of the sub-steps generated by the algorithm:
(i) the two states have some values in common (i.e., the areas of the trapezoids
have a non-empty intersection) at each point of the sub-step; (ii) inside the
sub-step the four sides of the two trapezoids derived from f and g do not have
any intersection. Then, for each sub-step it is easy to compute the value of the
corresponding trapezoid of the result (f ∩] g): the lower side will correspond

128 4. The Trapezoid Step Functions Abstract Domain

(a) No intersections, since
f−i is above g+i , so the result
of the glb operation is ⊥]

(b) One intersection be-
tween f−i and g+i , so the re-
sult of the glb operation is
⊥]

(c) Four intersections; the
result of the glb operation is
⊥] because f+i intersects g−i

(d) One intersection be-
tween f+i and g+i , the step is
split into two sub-steps. The
gray area represents the two
resulting trapezoids.

(e) Two intersections, one
between f−i , g

−
i and one be-

tween f+i , g
+
i . The step is

split into three sub-steps.
The gray area represents the
three resulting trapezoids.

(f) No intersections, the
step is not split into sub-
steps. The gray area rep-
resents the resulting trape-
zoid.

Figure 4.10: Examples of the glb sub-step splitting

4.5. Abstract Domain 129

Figure 4.11: The glb does not always preserve the second validity condition

to the greatest of the two lower sides of f, g in the sub-step, while the upper
side will correspond to the lowest of the two upper sides of f, g in the sub-step.
In Figures 4.10(d), 4.10(e) and 4.10(f) we can see the result of this procedure
in three di�erent cases (step split into two sub-steps, step split into three
sub-steps, step not split, respectively). The gray area represents the resulting
trapezoids of f ∩] g. We add the newly generated sub-steps to the result at
line 27 (at the end of each iteration of the loop).

Step 4 At the end of the computation (lines 29-33) we normalize the resulting abstract
state using Norm (line 32). In the abstract state f ∩] g, it could happen that
the intervals individuated by the two sides of two consecutive steps do not
intersect at the border between the two steps (for an example, see Figure
4.11, where the straight lines represent the trapezoids of f , the dashed lines
represent the trapezoids of g and the darkened areas represent the trapezoids
of f∩]g). For this reason, after computing the greatest lower bound h = f∩]g,
we perform a check that h respects the second validity condition (that is, the
situation of Figure 4.11 never happens). If the check fails, we return ⊥] as
result of the glb operation (lines 29-30). This happens because, if one of such
border intersections is empty, then the two functions f and g do not have any
possible value in common at that border and thus their lower bound in the
TSF domain does not exist.

In conclusion, the intersection f ∩] g creates a new step function whose value is
at every time t the intersection f(t) ∩ g(t). If this intersection is empty in at least
one point, we cannot return a continuous abstract function and then we de�ne f ∩] g
as ⊥], the bottom element of D].

Lemma 4.5.3 (∩] maintains the validity conditions). Let f and g be two abstract
states which both respect the validity conditions enunciated in Section 4.5 and which
are de�ned on the same set of indices T = {ti : i ∈ [0, N]} (if that is not the case,

130 4. The Trapezoid Step Functions Abstract Domain

we can use the re�ne operator). Let f ∩] g = h be their greatest lower bound. Then,
h respects the two validity conditions.

Proof. If h = ⊥], then it automatically respects the validity conditions (⊥] is a valid
element of the domain). Now assume h 6= ⊥] and h =

∧
j∈[0,M]{xj : vj = (h−j , h

+
j)}.

By construction of h, we know that T ⊆ X = {xj : j ∈ [0,M]}, that is, the steps
indices of f and g are a subset of those of h. In fact, h has a number of steps which
is greater or equal to the one of f and g, since each step of f and g generates from
one to three steps in h, depending on the sides intersections (lines 13, 15, 18, 21 and
25).

The validity conditions applied to h are the following ones:

1. ∀j ∈ [0,M], h−j (tj) ≤ h+j (tj) ∧ h−j (tj+1) ≤ h+j (tj+1)

2. ∀j ∈ [0,M − 1], [h−j (tj+1), h
+
j (tj+1)] ∩ [h−j+1(tj+1), h

+
j+1(tj+1)] 6= ∅

1. Consider the generic step [xj, xj+1], where j ∈ [0,M] and (h−j , h
+
j) is the value

of h in such step. By construction of h, we know that each step range [xj, xj+1]
of h is a subset of a step range from f, g, that is, ∃i : [xj, xj+1] ⊆ [ti, ti+1]
(lines 13, 15, 18, 21 and 25). Let (f−i , f

+
i), (g−i , g

+
i) be the values of f and

g in such step, respectively. By construction, we also know that the lines
f−i , f

+
i , g

−
i , g

+
i do not intersect each other inside [xj, xj+1] (lines 7,10,11,20).

Regarding (h−j , h
+
j), we know that h−j corresponds to f−i or g−i , and that h+j

corresponds to f+
i or g+i (since in the algorithm we always use the functions

max(·, ·, ·) and min(·, ·, ·) which return one of the �rst two inputs - lines 13,
15, 18, 21 and 25). If both sides h−j , h

+
j correspond to sides from the same

state (i.e., h−j = f−i ∧ h+j = f+
i or h−j = g−i ∧ h+j = g+i), then the �rst

validity condition is satis�ed, because both f and g satisfy it. Otherwise, either
h−j = f−i ∧ h+j = g+i or h−j = g−i ∧ h+j = f+

i . Suppose that h
−
j = g−i ∧ h+j = f+

i

(the other case is symmetric). Then, to prove that h satis�es the �rst validity
condition, we must prove that f+

i (xj) ≥ g−i (xj) ∧ f+
i (xj+1) ≥ g−i (xj+1):

• To prove f+
i (xj) ≥ g−i (xj), for the sake of a contradiction, suppose that

f+
i (xj) < g−i (xj). Then, the result of the glb operation would have been
⊥] (because [f−i (xj), f

+
i (xj)] ∩ [g−i (xj), g

+
i (xj)] = ∅), which is in contra-

diction with the hypothesis that h 6= ⊥].
• To prove f+

i (xj+1) ≥ g−i (xj+1), the reasoning is symmetrical.

2. The second validity condition is automatically respected by each output of
the glb computation, since we return ⊥] if the property is not satis�ed (lines
29-30).

Lemma 4.5.4 (∩] is the greatest lower bound operator). Let f, g be two abstract
states and let h = f ∩] g be their greatest lower bound. Then:

4.5. Abstract Domain 131

1. h ⊆] f ∧ h ⊆] g

2. k ⊆] h ∀k lower bound of f and g

Proof. Let us �rst assume that h 6= ⊥] (afterwards we will consider also the case
where h = ⊥]). Also, let f, g, h be de�ned on the same set of steps T = {ti : i ∈
[0, N]}. We can obtain this situation by re�ning the three abstract states on the
union of their step sets through re�ne. By Lemma 4.5.2 we know that an abstract
state and its re�ned version are equivalent, so the re�nement does not change the
order relationship between states. For this reason, in all our proofs we can use
indi�erently either the original abstract state or its re�ned version.

1. Since f, g, h are de�ned on the same set of indices T , we can write f =∧
i∈[0,N]{ti : fi}, g =

∧
i∈[0,N]{ti : gi} and h =

∧
i∈[0,N]{ti : hi}. By de�nition of

⊆], we have that h ⊆] f ∧ h ⊆] g ⇔ ∀i ∈ [0, N] : hi v[ti,ti+1] fi ∧ hi v[ti,ti+1] gi.
Let [ti, ti+1] be a generic step, where i ∈ [0, N]. By construction of h, we know
that f+

i and g+i do not intersect each other in [ti, ti+1], as well as f
−
i and g−i

do not intersect (lines 10,11,20). Then:

• For the upper line, we know, by construction, that h+i is the lowest be-
tween the two non-intersecting sides f+

i and g+i (lines 13, 15, 18, 21 and
25, where we usemin(f+

i , g
+
i , ·)), so ∀t ∈ [ti, ti+1], h

+
i (t) ≤ f+

i (t)∧h+i (t) ≤
g+i (t).

• For the lower line, we know, by construction, that h−i is the greatest
between the two not-intersecting sides f−i and g−i (lines 13, 15, 18, 21 and
25, where we usemax(f−i , g

−
i , ·)), so ∀t ∈ [ti, ti+1], f

−
i (t) ≤ h−i (t)∧g−i (t) ≤

h−i (t).

• From ∀t ∈ [ti, ti+1], h
+
i (t) ≤ f+

i (t) and from ∀t ∈ [ti, ti+1], f
−
i (t) ≤ h−i (t),

by de�nition of u v[a,b] v (Equation 4.3), it follows that hi v[ti,ti+1]

fi. From ∀t ∈ [ti, ti+1], h
+
i (t) ≤ g+i (t) ∧ g−i (t) ≤ h−i (t), it follows that

hi v[ti,ti+1] gi.

• Then, ∀i ∈ I,hi v[ti,ti+1] fi ∧ hi v[ti,ti+1] gi and so we conclude that
h ⊆] f ∧ h ⊆] g by de�nition of ⊆].

2. Let f, g, h be de�ned on the same set of indices T . By contradiction, assume
that ∃k : k is a lower bound of f and g, and k 6⊆] h. Let us suppose that
k is de�ned on T (we can always obtain it by applying re�ne). This means
that ∃i ∈ I : ki 6v[ti,ti+1] hi. Since h

−
i , h

+
i , k

−
i , k

+
i are straight lines, and by the

de�nition of v[a,b] (Equation 4.3), at least one of the following equations must
be satis�ed (otherwise it would hold ki v[ti,ti+1] hi):

• k+i (ti) > h+i (ti)

• k+i (ti+1) > h+i (ti+1)

132 4. The Trapezoid Step Functions Abstract Domain

• k−i (ti) < h−i (ti)

• k−i (ti+1) < h−i (ti+1)

Suppose that k+i (ti) > h+i (ti) is true (the reasoning is symmetrical for the
other three equations). By construction of h, we know that h+i = f+

i ∨h+i = g+i
(lines 13, 15, 18, 21 and 25, where h+i = min(f+

i , g
+
i , ·)). So we can rewrite

k+i (ti) > h+i (ti) as k+i (ti) > f+
i (ti) ∨ k+i (ti) > g+i (ti). If k+i (ti) > f+

i (ti)
holds, then ki 6v[ti,ti+1] fi, and this implies that k 6⊆] f . We have reached
a contradiction, because k is a lower bound of f . On the other hand, if
k+i (ti) > g+i (ti) holds, then ki 6v[ti,ti+1] gi, and this implies that k 6⊆] g. We
have reached a contradiction in this case, too, because k is also a lower bound
of g.

Assume now that h = ⊥].

1. This part of the proof is trivial, since ⊥] ⊆] f ∧ ⊥] ⊆] g by de�nition of ⊥].

2. If h = ⊥], then one between the following two facts must be true:

(a) in some point t of the domain, the two trapezoids of f, g did not have
any point in common: [f−i (t), f+

i (t)] ∩ [g−i (t), g+i (t)] = ∅ (supposing that
t ∈ [ti, ti+1]); this means that f−i (t) > g+i (t) ∨ g−i (t) > f+

i (t) (lines 8 and
23)

(b) the result of the glb computation did not respect the second validity con-
dition, because at the border between two steps [ti, ti+1] and [ti+1, ti+2] the
two trapezoids of h did not have any point in common: [h−i (ti+1), h

+
i (ti+1)]∩

[h−i+1(ti+1), h
+
i+1(ti+1)] = ∅ (lines 29-30)

Consider case (a), and suppose k 6= ⊥]. Since k is a lower bound of f, g, it must
respect the following condition: [k−i (t), k+i (t)] ⊆ [f−i (t), f+

i (t)]∧[k−i (t), k+i (t)] ⊆
[g−i (t), g+i (t)] throughout all the domain and in particular in the point t where,
by hypothesis, f−i (t) > g+i (t) ∨ g−i (t) > f+

i (t). Such condition implies that:
k−i (t) ≥ f−i (t) ∧ k+i (t) ≤ f+

i (t) ∧ k−i (t) ≥ g−i (t) ∧ k+i (t) ≤ g+i (t). Now, if
f−i (t) > g+i (t), considering that k−i (t) ≥ f−i (t), we obtain k−i (t) > g+i (t). This
fact, combined with k+i (t) ≥ k−i (t) (for the �rst validity condition of abstract
states), results in k+i (t) > g+i (t), which cannot hold, because k+i (t) ≤ g+i (t).
We obtained a contradiction. A similar reasoning can be done when g−i (t) >
f+
i (t) (instead of f−i (t) > g+i (t)). Since we reached a contradiction, k must be
⊥] and then ⊥] = k ⊆] h = ⊥].
Now consider case (b) (the result of the glb did not respect the second validity
condition - line 29). We will prove that any other lower bound k of f and
g does not respect the second validity condition, either. For the sake of a
contradiction, suppose that ∃k : k is a lower bound of f and g and k 6= ⊥].
The hypothesis [h−i (ti+1), h

+
i (ti+1)] ∩ [h−i+1(ti+1), h

+
i+1(ti+1)] = ∅ (violation of

4.5. Abstract Domain 133

the second validity condition by h) can be rewritten, by construction of h
(lines 13, 15, 18, 21 and 25, where we assign h−i = max(f−i , g

−
i , ·) and h+i =

min(f+
i , g

+
i , ·)), as [A,B]∩ [C,D] = ∅ where A = max(f−i (ti+1), g

−
i (ti+1)), B =

min(f+
i (ti+1), g

+
i (ti+1)), C = max(f−i+1(ti+1), g

−
i+1(ti+1)), D = min(f+

i+1(ti+1), g
+
i+1(ti+1))

(see also Figure 4.11 for the notation of A,B,C,D). This means that B <
C ∨ A > D. Suppose that A > D, exactly like it happens in Figure 4.11
(the reasoning is symmetrical if B < C). The abstract state k, being a lower
bound, must be less or equal than f and g. So, for example, k−i (ti+1) must
be greater or equal than f−i (ti+1) and g

−
i (ti+1). Thus, k

−
i (ti+1) ≥ A. For the

same reason (k is a lower bound of f, g), k+i+1(ti+1) must be less or equal than
both f+

i+1(ti+1) and g
+
i+1(ti+1): thus, k

+
i+1(ti+1) ≤ D. Then, since we know that

A > D, by transitivity we have k+i+1(ti+1) < k−i (ti+1), and this violates the
second validity condition. The TSF domain does not include abstract states
which do not respect such condition, so k becomes ⊥]. Trivially, it follows
⊥] = k ⊆] h = ⊥].

4.5.7 Least Upper Bound

Given two elements x and y of the abstract domain, the least upper bound operator
de�nes the least element z that over-approximates both x and y. In TSF, this means
that we have to create a sequence of trapezoids that are as narrow as possible and
that, at the same time, contain the two given sequences of trapezoids.

Let f ′ =
∧

0≤k≤N{xk : vk} and g′ =
∧

0≤j≤M{uj : wj} be two abstract states. In
order to de�ne the least upper bound of f ′ and g′, we use an algorithm very similar
to the one presented for the glb in Section 4.5.6. First, we re�ne f ′ and g′ on the
same set of steps, obtaining f = Refine(f ′, U) and g = Refine(g′, X) where X
and U are the step set of f ′ and g′, respectively. Then, for each step of f and g we
look at the two trapezoids and check if there are intersections either between the
two lower sides (f−i , g

−
i) or between the two upper sides (f+

i , g
+
i). We split the step

with respect to such intersections; if there are none, the step remains unsplit. In
each of these new steps, we are sure that neither the upper sides nor the lower sides
intersect each other. So, the resulting trapezoid for each new step is made by the
greatest of the upper sides and the lowest of the lower sides. For some examples,
see Figure 4.12. We formalize the procedure in Algorithm 4.

The algorithm is very similar to the one introduced for the glb, with the following
di�erences:

• min and max are reversed, since here we keep the lowest line between f−i , g
−
i

and the greatest line between f+
i , g

+
i in order to over-approximate fi and gi.

• we never return ⊥] because the lub between two values is always possible and
it also satis�es, by construction, the validity conditions (see also Lemma 4.5.6
for the formal proof).

134 4. The Trapezoid Step Functions Abstract Domain

Algorithm 4 Pseudo-code algorithm for lub computation
1: f ← Refine(f ′, U)
2: g ← Refine(g′, X)
3: T ← StepIndexes(f) = {ti} // StepIndexes(f) = StepIndexes(g)
4: P ← |T |
5: result← ∅
6: for i from 0 to P − 1 do
7: if f−i intersects g−i in tA ∈]ti..ti+1[then
8: if f+

i intersects g+i in tB ∈]ti..ti+1[then
9: if tA < tB then
10: resSteps ← ti : (min(f−i , g

−
i , [ti..tA]),max(f+

i , g
+
i , [ti..tA]))∧

∧tA : (min(f−i , g
−
i , [tA..tB]),max(f+

i , g
+
i , [tA..tB]))∧ ∧tB :

(min(f−i , g
−
i , [tB..ti+1]),max(f+

i , g
+
i , [tB..ti+1]))

11: else
12: //the same but reversing tA and tB
13: end if
14: else
15: resSteps ← ti : (min(f−i , g

−
i , [ti..tA]),max(f+

i , g
+
i , [ti..tA]))∧ ∧tA :

(min(f−i , g
−
i , [tA..ti+1]),max(f+

i , g
+
i , [tA..ti+1]))

16: end if
17: else if f+

i intersects g+i in tB ∈]ti..ti+1[then
18: resSteps ← ti : (min(f−i , g

−
i , [ti..tB]),max(f+

i , g
+
i , [ti..tB]))∧ ∧tB :

(min(f−i , g
−
i , [tB..ti+1]),max(f+

i , g
+
i , [tB..ti+1]))

19: else
20: resSteps← ti : (min(f−i , g

−
i , [ti..ti+1]),max(f+

i , g
+
i , [ti..ti+1]))

21: end if
22: result← result ∧ resSteps
23: end for
24: return Norm(result)

4.5. Abstract Domain 135

(a) No intersections, the
step remains unsplit, result-
ing in one trapezoid (colored
in gray)

(b) One intersection be-
tween f−i and g−i , resulting
in two sub-steps and, thus,
two trapezoids (colored in
gray)

(c) Two intersections, one
between f−i , g

−
i and one be-

tween f−i , g
−
i , resulting in

three sub-steps and, thus,
three trapezoids (colored in
gray)

Figure 4.12: Examples of the lub sub-step splitting

Lemma 4.5.5 (∪] is the least upper bound operator). ∪] is a least upper bound
operator. Let h = f ∪] g be the least upper bound of f and g. Then:

1. f ⊆] h ∧ g ⊆] h

2. h ⊆] k ∀k upper bound of f and g

Proof. Let f, g, h be de�ned on the same set of steps T = {ti : i ∈ [0, N]}: f =∧
i∈I{ti : fi}, g =

∧
i∈I{ti : gi} and h =

∧
i∈I{ti : hi}. We can obtain this situation

by re�ning the three abstract states on the union of their step sets.

1. By de�nition of ⊆], we have that f ⊆] h ∧ g ⊆] h ⇔ ∀i ∈ [0, N] : fi v[ti,ti+1]

hi ∧ gi v[ti,ti+1] hi. Let [ti, ti+1] be a generic step, where i ∈ [0, N]. By
construction of h, we know that f+

i and g+i do not intersect each other in
[ti, ti+1], as well as f

−
i and g−i do not intersect (lines 7, 8, 17). Then:

• For the upper line, we know by construction that h+i is the greatest
between the two non-intersecting sides f+

i and g+i (lines 10, 12, 15, 18,
20), so ∀t ∈ [ti, ti+1], h

+
i (t) ≥ f+

i (t) ∧ h+i (t) ≥ g+i (t).

• For the lower line, we know by construction that h−i is the lowest between
the two non-intersecting sides f−i and g−i (lines 10, 12, 15, 18, 20), so
∀t ∈ [ti, ti+1], h

−
i (t) ≤ f−i (t) ∧ h−i (t) ≤ g−i (t).

• From ∀t ∈ [ti, ti+1], h
+
i (t) ≥ f+

i (t) and from ∀t ∈ [ti, ti+1], h
−
i (t) ≤ f−i (t),

by de�nition of u v[a,b] v (Equation 4.3), it follows that fi v[ti,ti+1]

hi. From ∀t ∈ [ti, ti+1], h
+
i (t) ≥ g+i (t) ∧ h−i (t) ≤ g−i (t), it follows that

gi v[ti,ti+1] hi.

136 4. The Trapezoid Step Functions Abstract Domain

• Then, ∀i ∈ I, fi v[ti,ti+1] hi ∧ gi v[ti,ti+1] hi and so we conclude that
f ⊆] h ∧ g ⊆] h by de�nition of ⊆].

2. Assume that k is de�ned on the same set of steps T = {ti : i ∈ [0, N]} as that
of f, g, h (as said before, if this is not true, we can make it true by re�ning
each abstract state on the union of the four step sets, maintaining all the
relationships among such states). By contradiction, assume that h 6⊆] k, that
is ∃i ∈ [0, N] : hi 6v[ti,ti+1] ki. Since h−i , h

+
i , k

−
i , k

+
i are straight lines, and by

the de�nition of v[a,b] (Equation 4.3), at least one of the following equations
must be true (otherwise it would hold hi v[ti,ti+1] ki):

• k+i (ti) < h+i (ti)

• k+i (ti+1) < h+i (ti+1)

• k−i (ti) > h−i (ti)

• k−i (ti+1) > h−i (ti+1)

Suppose that k+i (ti) < h+i (ti) is true (the reasoning is symmetrical for the other
three equations). By construction of h, we know that h+i = f+

i ∨ h+i = g+i
(lines 10, 12, 15, 18, 20, where h+i = max(f+

i , g
+
i , ·)). So we can rewrite

k+i (ti) < h+i (ti) as k+i (ti) < f+
i (ti) ∨ k+i (ti) < g+i (ti). If k+i (ti) < f+

i (ti)
holds, then fi 6v[ti,ti+1] ki, and this implies that f 6⊆] k. We have reached
a contradiction, because k is an upper bound of f . On the other hand, if
k+i (ti) < g+i (ti) holds, then gi 6v[ti,ti+1] ki, and this implies that g 6⊆] k. We
have reached a contradiction in this case, too, because k is also an upper bound
of g.

Lemma 4.5.6 (∪] maintains the validity conditions). Let f, g be two abstract states
which both respect the validity conditions enunciated in Section 4.5 and which are
de�ned on the same set of indices T = {ti : i ∈ [0, N]} (if it is not the case, we
can use the re�ne operator). Let f ∪] g = h be their least upper bound. Then, the
abstract state h satis�es the two validity conditions.

Proof. Let h =
∧
j∈[0,M]{xj : vj = (h−j , h

+
j)} be the lub of f, g. By construction of h,

we know that T ⊆ X = {xj : j ∈ [0,M]}, that is, the steps indices of f and g are a
subset of those of h. In fact, h has a number of steps which is greater or equal to the
one of f, g, since each step of f, g generates from one to three steps in h, depending
on the sides intersections (lines 10, 12, 15, 18, 20). The validity conditions applied
to h are the following ones:

1. ∀j ∈ [0,M], h−j (xj) ≤ h+j (xj) ∧ h−j (xj+1) ≤ h+j (xj+1)

2. ∀j ∈ [0,M − 1], [h−j (xj+1), h
+
j (xj+1)] ∩ [h−j+1(xj+1), h

+
j+1(xj+1)] 6= ∅

4.5. Abstract Domain 137

1. Consider the generic step [xj, xj+1], where j ∈ [0,M] and (h−j , h
+
j) is the

value of h in such step. By construction of h, we know that each step range
[xj, xj+1] of h is a subset of a step range from f, g, that is, ∃i : [xj, xj+1] ⊆
[ti, ti+1] (lines 10, 12, 15, 18, 20). Let (f−i , f

+
i), (g−i , g

+
i) be the values of

f and g in such step, respectively. Regarding (h−j , h
+
j), we know that h−j

corresponds to the lowest line between f−i and g−i , and that h+j corresponds
to the greatest line between f+

i or g+i (lines 10, 12, 15, 18, 20, where we assign
h+j = max(f+

i , g
+
i , ·) and h−j = min(f−i , g

−
i , ·)). For this reason, it holds that

h+j (xj) ≥ f+
i (xj) ∧ h+j (xj) ≥ g+i (xj) (for the upper side) and that h−j (xj) ≤

f−i (xj) ∧ h−j (xj) ≤ g−i (xj) (for the lower side). By hypothesis, f satis�es the
�rst validity condition, so it holds also f+

i (xj) ≥ f−i (xj). Combining h
+
j (xj) ≥

f+
i (xj) ∧ f+

i (xj) ≥ f−i (xj) ∧ h−j (xj) ≤ f−i (xj) we obtain, by transitivity, that
h+j (xj) ≥ h−j (xj). The same reasoning can be done about the value of h in xj+1,
obtaining h+j (xj+1) ≥ h−j (xj+1). Then, h satis�es the �rst validity condition.

2. As before, consider the generic step [xj, xj+1], where j ∈ [0,M−1] and (h−j , h
+
j)

is the value of h in such step. By construction of h, ∃i : [xj, xj+1] ⊆ [ti, ti+1]
(lines 10, 12, 15, 18, 20). Let (f−i , f

+
i), (g−i , g

+
i) be the values of f and g

in such step respectively. Moreover, let (h−j+1, h
+
j+1), (f−i+1, f

+
i+1), (g

−
i+1, g

+
i+1)

be the values of f, g and h in [xj+1, xj+2] respectively. Using a similar no-
tation to the one introduced in the second part of Lemma 4.5.4, let A =
min(f−i (xj+1), g

−
i (xj+1)), B = max(f+

i (xj+1), g
+
i (xj+1)), C = min(f−i+1(xj+1),

g−i+1(xj+1)), D = max(f+
i+1(xj+1), g

+
i+1(xj+1)) be the lower and upper values

assumed by h in xj+1 with respect to the trapezoids of steps [xj, xj+1] and
[xj+1, xj+2]. The second validity condition ([h−j (xj+1), h

+
j (xj+1)]∩ [h−j+1(xj+1),

h+j+1(xj+1)] 6= ∅) can be then rewritten, by construction of h (lines 10, 12,
15, 18, 20, where we assign h+j = max(f+

i , g
+
i , ·) and h−j = min(f−i , g

−
i , ·)), as

[A,B]∩[C,D] 6= ∅. By contradiction, suppose that [A,B]∩[C,D] = ∅. Then it
must be that A > D or B < C. Suppose that A > D is true (the same reason-
ing applies to B < C symmetrically). Since A = min(f−i (xj+1), g

−
i (xj+1)) and

D = max(f+
i+1(xj+1), g

+
i+1(xj+1)), this means that f−i (xj+1) > f+

i+1(xj+1). This
is a contradiction, because either f has a step starting at xj+1 (and in this case
f would not respect the second validity condition at the border xj+1) or not.
In this second case, [xj+1, xj+2] ⊆ [ti, ti+1] and thus f−i = f−i+1 ∧ f+

i = f+
i+1.

Then, f−i (xj+1) > f+
i+1(xj+1) can be rewritten as f

−
i+1(xj+1) > f+

i+1(xj+1) which
violates the �rst validity condition inside step [ti, ti+1]. We reached a contra-
diction, so we must discard the absurd hypothesis that the second validity
condition is not respected by ∪].

138 4. The Trapezoid Step Functions Abstract Domain

Figure 4.13: Concretization function

4.5.8 Abstraction and Concretization Functions

The abstract step function f de�ned by
∧

0≤i≤N{ti : vi}, where vi = (f−i , f
+
i) =

(m−i , q
−
i ,m

+
i , q

+
i), represents the set of continuous, di�erentiable functions that are

bounded by the lines f−i (t) = m−i t + q−i and f+
i (t) = m+

i t + q+i for any time t ∈
[ti, ti+1]. The concretization function γ is thus de�ned by:

γ(
∧

0≤i≤N{ti : vi}) = {g ∈ C2
+|∀i ∈ [0, N],∀t ∈ [ti, ti+1], g(t) ∈ [f−i (t), f+

i (t)]}

where tN+1 is either +∞ if dom(f) = R+, or k if dom(f) = [0, k], with k constant.
Figure 4.13 depicts an example of an abstract state de�ned on the domain [0, 5]

with 4 steps (note that here tN+1 = 5). In this Figure we can see three possible
concrete functions (f1 = x3 − 7x2 + 12x − 2, f2 = ln(x + 1) and f3 = sin(x)) that
are all approximated by such abstract state.

The de�nition of an abstraction is not as direct as the concretization. As in
the case of the polyhedral domain [62], we cannot de�ne the best one: it is always
possible to increase the quality of the abstraction by increasing the number of steps.
Thus, for now, we only give a criterion (the same as [24]) for a function α to be
a safe abstraction (later, in Section 4.6, we will also give the de�nition of a sound
abstraction function). Let us �rst de�ne the lower- and upper-functions for a given
set of continuous real functions. Let Y be a continuous function (Y ∈ D). We de�ne
two functions Y and Y to be the inf- and sup-functions of Y : Y = λt.inf{y(t) :
y ∈ Y} and Y = λt.sup{y(t) : y ∈ Y}. Equivalently we de�ne the lower- and
upper-functions of a Trapezoid Step Function. Let f be ∈ D], the real-valued
step functions f and f are f = λt.f−i (t) and f = λt.f+

i (t) where, in both cases,
i = max({j ∈ N : tj ≤ t}). These four functions are used to de�ne the Validity
Condition.

Lemma 4.5.7 (Validity Condition). A function α : D → D] satis�es the Validity
Condition (V.C.) if and only if for all Y ∈ D, it holds that:

∀t ∈ R+, α(Y)(t) ≤ Y(t) ≤ Y(t) ≤ α(Y)(t)

4.5. Abstract Domain 139

This property states that the computed Trapezoid Step Function indeed encloses
the set {y(t) : y ∈ Y} for all t ∈ R+. The V.C. is a necessary and su�cient condition
for the abstraction α to be sound.

We now formulate the theorem that guarantees the soundness of the abstraction.

Theorem 4.5.8. If α satis�es the V.C., then for every Y ∈ D, Y ⊆ γ(α(Y)).

Proof. Let Y be ∈ D and f = α(Y) be ∈ D]. We have to prove that Y ⊆ γ(f).
Since α satis�es the V.C., we know that ∀t ∈ R+,∀y ∈ Y , y(t) ∈ f(t). Let us take a
y ∈ Y . y is a continuous function that veri�es ∀t ∈ R+, y(t) ∈ f(t), thus y ∈ γ(f).
Therefore, we have that Y ⊆ γ(f).

4.5.9 Compact Operator

The dual operator of re�ne is compact. This operator reduces the number of steps
contained in an abstract state, and it is useful in order to keep it below a given
threshold and make the analysis convergent (throughout the widening which exploits
this operator). Compact works by merging a pair of steps into a single one, and
repeating the same procedure until the threshold is reached. While re�ne leaves the
precision of an abstraction unchanged, the compact operator induces some loss of
precision, since it merges together some steps.

Let f =
∧

0≤i≤N{ti : vi} be an abstract state, composed by N + 1 steps, and let
M be the threshold to reach, with M < N + 1. The algorithm:

1. chooses the step with the minimum width (wi = ti+1 − ti)

2. merges it with the successive one

3. repeats 1 and 2 iteratively until the threshold M is reached.

We choose the step to be merged as the smallest one (i.e., the one with the smallest
width), but this choice is arbitrary: alternative solutions are possible (for example
considering the similarity of values of successive steps) and can be supported by our
approach as well. Another possibility would be to minimize the di�erence between
the slopes and intercepts of corresponding lines, that is, the following quantity:

(|m+
i −m+

i+1|) + (|q+i − q+i+1|) + (|m−i −m−i+1|) + (|q−i − q−i+1|)

As for the creation of the merged step, let Ai, Bi be the two extremes (the left
and right ones, respectively) of f+

i in [ti, ti+1], and let Ai+1, Bi+1 be the two extremes
of f+

i+1 in [ti+1, ti+2]. Then the upper side f ′+ of the merged step will have the slope
of the side linking Ai and Bi+1. If the point P = max(Bi, Ai+1) is greater than
such side, the intercept will be such that the side covers exactly P , otherwise it
is kept the original intercept of the side linking Ai and Bi+1. Figure 4.14 depicts

140 4. The Trapezoid Step Functions Abstract Domain

Figure 4.14: Merging of two steps within the compact operation

this situation. The same applies symmetrically for the lower side: we consider the
minimum between the two points at ti+1 and we check if such point is lower than
the side linking the two extremes at ti and ti+2.

A slightly di�erent process is required if the selected step is next to last (that
is, i = N − 1), since in such case we cannot rely on ti+2. For the upper side, we
consider f+

N and we increase its intercept if one of the extremes of f+
N−1 in [tN−1, tN]

is greater than such side. The same procedure applies symmetrically for the lower
side.

In addition, we can specify a list of steps which we do not want to remove from
the state. Let T be the set of steps of the abstract state f , and let X ⊆ T be the set
of steps of f that have to be preserved. Obviously, if M is the number of steps we
want in the resulting abstract state, |X| ≤ M holds,. Then, g = CompactX(f,M)
is an abstract state obtained by compacting f toM steps, and discarding only steps
coming from T \X. The algorithm presented above can be applied in this case as
well by considering only the steps in T \X when selecting the steps to remove.

Lemma 4.5.9 (Soundness of compact). Let f be ∈ D] and M be ∈ N. If g =
Compact(f,M), then f ⊆] g.

Proof. Let N be the number of steps of the abstract state f , where N > M . In
order to prove the proposition above, we have to prove that f ⊆] Compact(f,N−1),
that is, the execution of one step of the compaction, going from N steps to N − 1.
If the reduction of one step decreases the size of the abstract function, then our
proposition is proved to be valid, since the reduction function works by reducing
repeatedly one step at a time (being equivalent to an iterative process) and the
ordering is transitive. In fact, from f = Compact(f,N) ⊆] Compact(f,N − 1) ⊆]
. . . ⊆] Compact(f,M + 1) ⊆] Compact(f,M) = g, we derive (by transitivity of the
partial ordering) f ⊆] g.

Let i be the index of the step to be removed, and suppose that i < N − 2
(that is, the last step is not involved in the reduction; that case can be trivially
proved with slight modi�cations to this proof). The steps we are joining together
are then fi and fi+1; the result will be the step gi of the new abstract function.

4.5. Abstract Domain 141

Figure 4.15: Notation

Since the steps before and after i remain unchanged, in order to prove that f ⊆] g
we just need to prove that ∀t ∈ [ti, ti+1] : [f−i (t), f+

i (t)] ⊆ [g−i (t), g+i (t)] and ∀t ∈
[ti+1, ti+2] : [f−i+1(t), f

+
i+1(t)] ⊆ [g−i (t), g+i (t)]. We consider the two cases separately,

�rst [f−i (t), f+
i (t)] ⊆ [g−i (t), g+i (t)] and then [f−i+1(t), f

+
i+1(t)] ⊆ [g−i (t), g+i (t)].

We use the following notation, referring to a generic step [ti, ti+1]: A = f−i (ti),
B = f−i (ti+1), C = f+

i (ti), D = f+
i (ti+1). See Figure 4.15 for a graphical represen-

tation of this notation.

• ([f−i (t), f+
i (t)] ⊆ [g−i (t), g+i (t)]) For the upper side, we have two distinct cases:

� In the �rst one, the upper side passes for C, and D is below such side;
then trivially ∀t ∈ [ti, ti+1] : f+

i (t) ≤ g+i (t).

� Otherwise, the upper side passes for D, and C is below such side (since
the upper side is produced by lifting up the side passing for C, so C
necessarily remains below; this case is depicted in Figure 4.15); in this
case we have ∀t ∈ [ti, ti+1] : f+

i (t) ≤ g+i (t) as well.

The same can be said for the lower side: or the side that passes through A and
B is above, or the side passes for B and A is above (since the side passing for
A has been lowered). In both cases, we have that ∀t ∈ [ti, ti+1] : f−i (t) ≥ g−i (t).
Combining the two equations we obtain that ∀t ∈ [ti, ti+1] : (f−i (t) ≥ g−i (t) ∧
f+
i (t) ≤ g+i (t)) and this, combined with the constraint of Equation 4.1 (f−i
is always below f+

i in step i-th), implies that ∀t ∈ [ti, ti+1] : [f−i (t), f+
i (t)] ⊆

[g−i (t), g+i (t)].

• ([f−i+1(t), f
+
i+1(t)] ⊆ [g−i (t), g+i (t)]) this case is symmetrical to the previous one.

4.5.10 Widening

The widening operator is parametrized on:

• kS, corresponding to the maximum number of steps allowed in an abstract
state;

142 4. The Trapezoid Step Functions Abstract Domain

• kM , kQ, corresponding to the maximum value allowed for the slope and inter-
cept of trapezoid sides respectively;

• kI , kL, corresponding to the increment constants for the slope and intercept,
respectively.

All these parameters have to be positive. Thanks to these parameters, we can tune
the widening operators at di�erent levels of precision and e�ciency.

The widening operator ∇D] is then de�ned as follows.

∇D] : (D], D])→ D]

f∇D]g =


>] if |U | > kS

f if g ⊆] f
Norm(CompactU(hMQ, kS)) otherwise

where U is the step set of the abstract state f .
We distinguish three cases:

|U | > kS: f exceeds the maximum number of steps allowed in an abstract state, kS, and
we return >].

g ⊆] f : We do not have an ascending chain and we simply return f , which is already
normalized, being an element of D].

Otherwise: We return the normalized and compacted version of hMQ, keeping all the steps
U of f (we know that |U | ≤ kS, otherwise we would have returned >]). In this
way, we are sure that U will be a subset of the step set of the result (f∇D]g).
The abstract state hMQ is built as follows. Let f be de�ned on the indices set
U , and g be de�ned on the indices set V . Let f ′ = Refine(f, V) be the re�ned
version of f with the addition of the indices of g, and g′ = Refine(g, U) the
re�ned version of g with the addition of the indices of f . Then f ′ and g′ are
de�ned on the same set of steps T = U ∪V . So we have that f ′ =

∧
0≤i≤N{ti :

vi = (f−i , f
+
i)} and g′ =

∧
0≤i≤N{ti : wi = (g−i , g

+
i)}. We de�ne hMQ as:

hMQ =
∧

0≤i≤N

{ti : zi = (h−i , h
+
i)}

where (h−i , h
+
i) are de�ned as follows:

h−i (x) =


g−i (x) if f−i = g−i
−∞ if (mg−i

≤ −kM) ∨ (qg−i ≤ −kQ) ∨ (mf−i
≤ −kM) ∨ (qf−i ≤ −kQ)

(g−i)•(x) otherwise

h+i (x) =


g+i (x) if f+

i = g+i
+∞ if (mg+i

≥ kM) ∨ (qg+i ≥ kQ) ∨ (mf+i
≥ kM) ∨ (qf+i ≥ kQ)

(g+i)◦(x) otherwise

4.5. Abstract Domain 143

and

(g−i)•(t) = (mMIN−i
− kI)× t+ (qMIN−i

− kL)

(g+i)◦(t) = (mMAX+
i

+ kI)× t+ (qMAX+
i

+ kL)

mMIN−i
= min(mf−i

,mg−i
)

qMIN−i
= min(qf−i , qg

−
i

)

mMAX+
i

= max(mf+i
,mg+i

)

qMAX+
i

= max(qf+i , qg
+
i

)

The computation is symmetric for the lower and upper side, so let us focus on
h+i (x). For each step ti of f ′ and g′ we consider three distinct cases:

� f+
i = g+i : the side is the same in f ′ and g′, so we keep it unchanged.

� (mg+i
≥ kM) ∨ (qg+i ≥ kQ) ∨ (mf+i

≥ kM) ∨ (qf+i ≥ kQ): the slope (or the
intercept) of the side of one abstract state (g′ or f ′) exceeds the threshold
kM (kQ), so we move the side to +∞.

� Otherwise: we keep the maximum slope and intercept between their val-
ues in f+

i and g+i and then we increase them both by a prede�ned constant
quantity (kI for the slope, kL for the intercept).

Intuitively, the convergence is guaranteed by the combination of:

• the application of compact with the parameter kS;

• the parameters kM and kQ that limit the maximal values allowed for the slope
and the intercept of a line, respectively. If a certain line exceeds one of these
two values, then it goes to ±∞, stopping its possible growth in that direction;

• the • and ◦ operators, that shift a side down (•) and up (◦) for a prede�ned
amount respectively. In particular, referring to ◦, the maximum slope mMAX+

i

between the ones of f+
i and g+i is increased by kI , while the maximum intercept

qMAX+
i
between the one of f+

i and g+i is increased by kL. kI and kL are positive
values and ensure that we will reach the convergence in a �nite number of steps.

For the soundness of this operator we refer to the de�nition of [40, 43], through the
two properties of covering and termination.

Lemma 4.5.10 (Correctness of ∇D]). The widening operator ∇D] is correct, that
is, it respects the properties of covering and termination:

1. Covering: ∀f, g ∈ D] : f ⊆] (f∇D]g) ∧ g ⊆] (f∇D]g)

2. Termination: for every ascending chain {fj}j≥0, the ascending chain de�ned
as g0 = f0; gj+1 = gj∇D]fj+1 stabilizes after a �nite number of terms.

144 4. The Trapezoid Step Functions Abstract Domain

Proof. We prove �rst the covering property, then the termination one.

Covering By de�nition of ∇D] , we have three possible cases:

1. If |U | > kS we return >#, and trivially f ⊆] ># ∧ g ⊆] >#

2. If g ⊆] f then we return f and trivially f ⊆] f by the re�exivity property
of the partial order and g ⊆] f by hypothesis.

3. In the last case, suppose that the two functions are de�ned on the same
step set (we can obtain that with the re�ne operator, without chang-
ing their ordering by Lemma 4.5.2), f =

∧
0≤i≤N{ti : vi} ∧ g =∧

0≤i≤N{ti : wi}. Let h =
∧

0≤i≤N{ti : zi} be the result of the widen-
ing of f and g. We must prove that ∀i,wi v[ti,ti+1] zi ∧ vi v[ti,ti+1] zi.
Consider �rst wi v[ti,ti+1] zi. By de�nition of v[ti,ti+1], we have that
wi v[ti,ti+1] zi ⇔ [g−i (ti), g

+
i (ti)] ⊆ [h−i (ti), h

+
i (ti)] ∧ [g−i (ti+1), g

+
i (ti+1)] ⊆

[h−i (ti+1), h
+
i (ti+1)] ⇔ g−i (ti) ≥ h−i (ti) ∧ g+i (ti) ≤ h+i (ti) ∧ g−i (ti+1) ≥

h−i (ti+1) ∧ g+i (ti+1) ≤ h+i (ti+1). Regarding h
−
i (t), we know that it could

be:

� h−i (t) = g−i (t). Then ∀t ∈ [ti, ti+1] : g−i (t) ≥ g−i (t)

� h−i (t) = −∞. Then ∀t ∈ [ti, ti+1] : g−i (t) ≥ −∞
� h−i (t) = (g−i)•(t) that is h−i (t) = (mMIN−i

− kI)× t+ (qMIN−i
− kL) =

mMIN−i
×t−kI×t+qMIN−i

−kL. Since kI , kL are both≥ 0 by de�nition
and mMIN−i

≤ mg−i
∧qMIN−i

≤ qg−i also by de�nition, we can say that

h−i (t) = mMIN−i
× t+ qMIN−i

− kI × t− kL ≤ mg−i
× t+ qg−i = g−i (t)

holds ∀t ≥ 0.

The same happens symmetrically for h+i (x). We have then proved that
∀i : wi v[ti,ti+1] zi. The same reasoning can be made considering f instead
of g, ending in proving that ∀i : vi v[ti,ti+1] zi. Thus g ⊆] h ∧ f ⊆] h.

Termination We want to prove that the ascending chain {gj}j≥0 stabilizes after a �nite
number of terms. Consider a generic element of the chain, gj. Since the
chain is ascending, gj−1 ⊆] gj. If gj−1 = gj, the chain has stabilized and the
convergence is reached. Otherwise, we have that gj−1 ⊂] gj. By de�nition of
⊆], this means that the area of (at least) one trapezoid of gj has increased
with respect to the corresponding trapezoid of gj−1. Let (s−i , s

+
i) be the lower

and upper sides of such trapezoid in gj. The area of the step is increased
if the two lines (s−i and s+i) drift apart with respect to their values at the
preceding iteration, that is, in gj−1. In particular, or s−i went down (that is,
the slope, the intercept or both decreased), or s+i went up (that is, the slope,
the intercept or both increased). By de�nition of widening, we know that the
lines will stop increasing or decreasing when their slope or intercept reach the
threshold values (kM , kQ) they will be approximated by +∞ or −∞. We also
know that the growth in the number of steps is limited to kS, and that the

4.5. Abstract Domain 145

steps of the previous value in the chain will be preserved (the widening only
adds indices, but it does not remove them).

Suppose that the chain ascends of the minimum possible quantity (with re-
spect to our parameters kI , kL and the �oat numbers representation of the
computer).

Let us de�ne

maxIterationsToStopGrowth(i) = min(
|m+

i − kM |
kI

,
|q+i − kQ|

kL
)+

min(
|m−i − kM |

kI
,
|q−i − kQ|

kL
)

This value is an upper bound of the number of iterations needed for step ti
to reach the threshold after which it stops growing. In particular, consider a
generic step ti and the increase of its upper side. Since the slope is increased
of at least kI and, at the same time, the intercept is increased of at least kL,

the side will stop to grow after, at most, min(
|m+

i −kM |
kI

,
|q+i −kQ|

kL
) iterations (after

that, the side is set to +∞, its maximum value). The same happens for the

lower side, which stops to grow after, at most, min(
|m−i −kM |

kI
,
|q−i −kQ|

kL
) iterations.

Thus, each step ti is abstracted to top after at most min(
|m+

i −kM |
kI

,
|q+i −kQ|

kL
) +

min(
|m−i −kM |

kI
,
|q−i −kQ|

kL
) iterations, that is, the quantitymaxIterationsToStopGrowth(i).

Let g =
∧
i∈[0,N]{ti : vi = (m−i , q

−
i ,m

+
i , q

+
i)} be a generic element of the

ascending chain {gj}. Then, an upper bound of the maximum number of
iterations needed to converge is:

K =
∑N

i=0maxIterationsToStopGrowth(i)+
+(kS −N)×maxIterationsToStopGrowth(iMAX)

(4.5)

where iMAX = {i ∈ [0, N] : @j ∈ [0, N] : maxIterationsToStopGrowth(j) >
maxIterationsToStopGrowth(i)} is the step index which maximizes the quan-
tity maxIterationsToStopGrowth.

Equation 4.5 is composed by two parts:

�
∑N

i=0maxIterationsToStopGrowth(i) represents an upper bound of the
number of iterations needed for all the steps of g to reach the threshold
after which they stop growing. In fact, at each iteration of the widening,
at least one side of one step is moved up or down and this means that
its slope and intercept move closer to the thresholds kM , kQ. Each step
ti of g will stop to grow after, at most, maxIterationsToStopGrowth(i)
iterations. Summing this quantity for all the N steps of g, we obtain the
�rst part of Equation 4.5.

146 4. The Trapezoid Step Functions Abstract Domain

� (kS − N) × maxIterationsToStopGrowth(iMAX) represents an upper
bound of the number of iterations needed for all the (possibly) added
steps to reach the threshold after which they stop growing. In fact, we
know that the maximum number of steps allowed in an abstract state by
the widening is kS. The state g is composed by N steps, so at most kS−N
steps could be added to g along the chain. Nevertheless, we know that
the chain {gj} is increasing, so these added steps cannot have values that
are smaller (i.e., far from the thresholds that stop the growth) than the
already existing values in g. In order to have an upper bound of the iter-
ations needed by these added step to stop growing, we then suppose that
all these steps lie within the step of g which is farthest from the growth
stop. More precisely, let iMAX be the index of the step which maxi-
mizes the quantity maxIterationsToStopGrowth(·). Then, each added
step stops to grow after, at most, maxIterationsToStopGrowth(iMAX)
iterations. Multiplying this value by kS − N (the maximum number of
steps we can add to g) we obtain the second part of Equation 4.5.

Since K is the result of the summation of two �nite quantities, we can say that
the ascending chain {gj}j≥0 stabilizes after a �nite number of terms, which is
at most K.

4.5.11 The Lattice D]

Theorem 4.5.11. (D] ∪ {⊥]},⊆],⊥],>],∪],∩]) is a lattice.

Proof. By Lemma 4.5.1 we get that ⊆] is a partial order, by Lemma 4.5.5 that ∪] is
the least upper bound operator, by Lemma 4.5.4 that ∩] is the greatest lower bound
operator.

We also proved the correctness of the widening operator ∇D] in Lemma 4.5.10.
Therefore, we have de�ned and proved the correctness of all the operators required
to de�ne an abstract domain in the Abstract Interpretation framework.

4.6 Abstraction of a Continuous Function

In this section, we show how to compute the approximation of C2+ functions in IVSF
and TSF. We consider IVSF as well since [24] did not de�ne its abstraction function,
because they relied on a particular type of ODE solver [23]. For both domains,
we consider two di�erent approaches: when the step width is constant and �xed,
and when we automatically determine the step distribution. Note that we abstract
only one concrete function; this approach can be generalized to the abstraction of a

4.6. Abstraction of a Continuous Function 147

countable set of concrete functions C by computing the abstraction of each function
in the set and then returning the least upper bound of all the resulting abstract
states.

In the following subsections, we will denote by:

• f ∈ C2+ the continuous function we want to abstract;

• f ′, f ′′ its �rst and second derivatives;

• F ′0 the set containing the points of the domain where f ′(x) = 0 (the minimum
and maximum points of the function), that is, F ′0 = {t : f ′(t) = 0};

• F ′′0 the set containing the points of the domain where f ′′(x) = 0 (the in�ection
points), that is, F ′′0 = {t : f ′′(t) = 0};

• G′[a,b]0 the set containing the maximum and minimum points of f restricted to
the domain interval [a, b], that is, G′[a,b]0 = {f(t) : t ∈ ([a, b] ∩ F ′0)};

• G′′[a,b]0 the same set but for the in�ection points, that is, G′′[a,b]0 = {f(t) : t ∈
([a, b] ∩ F ′′0)}.

4.6.1 IVSF Abstraction Function, Fixed Step Width

Given a �xed step width w, suppose that [a, b] is a generic interval (b− a = w∧ a =

k × w ∧ b = (k + 1) × w ∧ k ≥ 0, w > 0). M = max({f(a), f(b)} ∪ G′[a,b]0) is
the maximum point of the function in the interval [a, b], extremes included, and
m = min({f(a), f(b)} ∪G′[a,b]0) is the minimum point of the function in the interval
[a, b], extremes included. The best abstraction in IVSF of this step is the interval
[m,M]. To build the abstraction of the function f , we repeat this procedure for
each step of the abstract state.

4.6.2 IVSF Abstraction Function, Arbitrary Step Width

For the IVSF abstract domain, we cannot �nd a priori the best way to split the
domain of f in sub-intervals. We could use di�erent techniques, for example:

• splitting in correspondence of the in�ection points of the function, and

• splitting in correspondence of the intermediate point between each pair of
minimum/maximum points.

There is no best choice that works in any case, since this choice depends on the
shape of the function. In some cases it is more precise to use the in�ection points
for splitting, in other cases the intermediate points yield more precision. In addition
we could split also in correspondence of the minimum/maximum points; sometimes
(more often than not) this increases the precision of the representation.

148 4. The Trapezoid Step Functions Abstract Domain

Figure 4.16: The abstraction on the step [a, b]

Once we have chosen a technique for splitting the domain in steps, we can apply
the procedure introduced in Section 4.6.1 to compute the abstraction of each single
step.

4.6.3 TSF Basic Abstraction Function, Arbitrary Step Width

In TSF a very good trade-o� between complexity and precision of the abstraction
can be achieved by splitting the domain in correspondence of (i) the maximum and
minimum points F ′0, and (ii) the in�ection points F ′′0.

Assume that [a, b] is a generic sub-interval obtained using this schema. Then the
two sides which compose the value of such step are the following ones (see Figure
4.16):

1. the side l1 linking the points P = (a, f(a)) and Q = (b, f(b)) (the points of f
in correspondence of the extremes of the interval [a, b]).

2. the side l2 which has the same slope as l1 and is tangent to f inside [a, b]. Since
we already know the slope of this side, we just need to compute its intercept.
The procedure is the following one:

(a) �nd the point xR ∈ [a, b] where the �rst derivative of f is equal to the
slope of l1: f ′(xR) = ml1 . This point can be computed by bisection in
[a, b].

(b) let R be the point with coordinates (xR, f(xR)). Then l2 is the side that
goes through the pointR and with slope equal to the one of l1 (ml2 = ml1).
The intercept is computed as follows: ql2 = f(xR)−ml2 × xR.

Note that the resulting sides l1 and l2 are parallel, as they have the same slope.
Moreover, l2 is a tangent of f .

4.6. Abstraction of a Continuous Function 149

4.6.4 TSF Basic Abstraction Function, Fixed Step Width

Also in the case of TSF we can de�ne the abstraction on a �xed step width. Suppose
that [a, b] is a generic interval determined by a �xed width w. First of all, we split
the interval in sub-intervals, following the schema introduced in Section 4.6.3. Then
for each sub-interval, we compute the upper and lower sides as speci�ed in Section
4.6.3. Finally, we have to �join� these sub-intervals into a single one (with range
[a, b]) through the compact operator (see Section 4.5.9).

Observe that the abstraction function of IVSF is less restrictive than the one of
TSF, since TSF's abstraction needs the second derivative of the function to know
the in�ection points.

4.6.5 Dealing with Floating Point Precision Issues in TSF

Unfortunately, the abstraction technique presented in Section 4.6.3 is theoretically
sound but it is not computable on a �nite precision machine, due to the rounding
issues of �oating point representation. The abstraction function depends on various
values: the stationary points (F ′0), the in�ection points (F ′′0), the point xr ∈ [a, b]
such that f ′(xR) = ml1. Even knowing exactly all the points in F ′0 and F ′′0 by
mathematical analysis, we could not be able to precisely represent them in a machine
(e.g.,

√
2). Therefore, we can only compute an approximation of such points and not

their exact value. In this section, we introduce some restrictions on the functions
we can manipulate and a re�nement of the basic abstraction function proposed in
Section 4.6.3 to enforce the soundness of the resulting abstraction function in a
�oating point computation.

We assume that f respects the following property. If x0 is a point such that
f ′(x0) = 0, then, for each interval [x, x+ ε] such that x0 ∈ [x, x+ ε], we have:

∀x ∈ [x, x+ ε] : f(x) ∈ [f(x)− τ, f(x) + τ]

where τ is a parameter of the analysis and ε is a constant depending on the ma-
chine in use. Intuitively, we ask that function's values change at most of τ around
stationary points. We impose the same constraint on the in�ection points (x s.t.
f ′′(x) = 0). Note that the value of τ has to be set by the user: the smaller the value,
the more precise the abstraction. The value of ε, instead, should be set based on
the standard in use on the machine (for instance, IEEE 754 for �oating points), in
order to choose the smallest possible value. In fact, the smaller is ε, the smaller we
can set τ (because, in the context of continuous functions, smaller changes in the
input imply also smaller changes in the output).

Like in Section 4.6.3, we split the domain in steps with respect to the stationary
points (F ′0) and the in�ection points (F ′′0). If we cannot pinpoint those points
exactly, we introduce an additional step of width ε in correspondence of them. The
exact location of the step [ti, ti+1] = [x, x+ε] depends on the numerical representation
of the machine and it obviously must contain the exact value of the considered

150 4. The Trapezoid Step Functions Abstract Domain

Figure 4.17: Creation of the step around stationary point π

stationary or in�ection point. Intuitively, x will be the greatest representable under-
approximation of the stationary/in�ection point. The value of such additional step
is vi = (0, f(x) − τ, 0, f(x) + τ). For the condition imposed above, we are sure
that this trapezoid (which is a rectangle, since the two sides are horizontal) soundly
contains the abstracted function in the considered step.

Let us see a simple example to better understand how these kinds of steps are
computed. Consider a function f in the restricted domain [0, 4]. Assume we know
by mathematical analysis that, in such domain, the function has only one stationary
point (in correspondence of x = π = 3.14159 . . .) and no in�ections points. More
formally, we know that: G′[0,4]0 = {π} and G′′[0,4]0 = ∅. Suppose that the machine in
use has a precision such that ε = 0.0001. This means that we can represent values
like 0, 0.0001, 0.0002, . . . , 3.1415, 3.1416, So, we are not able to represent any
other number between 3.1415 and 3.1416. Since 3.1415 ≤ π ≤ 3.1416, we choose
x = 3.1415. Then we have [x, x + ε] = [3.1415, 3.1416]. The resulting step function
constraint around the stationary point π is

ti = 3.1415 : vi = (0, f(3.1415)− τ, 0, f(3.1415) + τ)

where τ is a parameter given by the user and speci�c with respect to the function
which we want to abstract. We have created a step that starts at 3.1415 and whose
trapezoid lower and upper sides are horizontal lines at the height of f(3.1415) − τ
and f(3.1415) + τ , respectively. We can see this step depicted in Figure 4.17. In
this case the trapezoid is a rectangle. The next step will start at ti+1 = 3.1416.

For the steps that do not contain stationary and in�ection points, the computa-
tional schema of Section 4.6.3 is re�ned as follows. The side l1 (the one which links
the extremes of f in the step) is moved up (or down, depending on the concavity of
f in the step) of ε. This compensates for potential errors in the evaluation of the

4.6. Abstraction of a Continuous Function 151

Figure 4.18: Creation of steps without stationary/in�ection points

function values at the extremes. The other side l2 goes through the point xR′ such
that f ′(xR′) is the closest value to ml1 that we can reach (given the precision of the
machine). The slope of l2 is f ′(xR′) so that l2 is tangent to the function. Since we
know that the function is concave (or convex) in the considered subinterval, we are
sure that one of its tangents leaves the function always above (or below), resulting
in a safe approximation. This re�ned computational schema is represented in Figure
4.18.

The round dotted lines l1 and l2 represent the �nal result of the computation.
The intermediate process is as follows. First, we create the dashed line joining
P = (a, f(a)) and Q = (b, f(b)), then we move it up of ε, resulting in l1. Then,
since we cannot �nd the dashed line going through the point R (a line tangent to
the function and having the same slope as l1) because of rounding approximation,
we use instead the round dotted line going through R′, that is, the closest point to
R with respect to the machine precision. The slope of the line l2 is f ′(xR′), that is,
l2 is tangent in R′ to the function f being abstracted.

4.6.6 Dealing with Floating Point Precision Issues in IVSF

The same issues about �oating point rounding issues arise for the abstraction func-
tion presented in Section 4.6.1. In this case, though, it is very easy to make the
abstraction sound and we do not need to impose any requirement on the function to
abstract. After having determined the minimum and maximum values (m and M)
assumed by the function in the considered step, it is su�cient to return [m−ε,M+ε]
(instead of [m,M]) as step value. This compensates for possible approximation er-
rors due to the �nite precision of the machine.

152 4. The Trapezoid Step Functions Abstract Domain

4.7 Abstract Semantics

In this section we are going to de�ne only the abstract version of the concrete op-
erations presented in Section 4.4 which deal with functional expressions. For the
remaining language constructs (statement operations, logic combination of boolean
values, boolean comparisons), we refer to the usual abstract semantics of the clas-
sical Abstract Interpretation framework. This means that we are going to specify
the abstract semantics of newFun, constFun, valueAt, modulus, sum, di�erence,
product, division, composition, minimum, maximum.

The �rst three operators are simple:

• the abstract semantics of newFun is the abstraction function de�ned in Section
4.6;

• the creation of a constant function (constFun(c)) returns a step function with
a single step with value vi = (0, c, 0, c);

• the abstract semantics of valueAtx �nds the step ti such that ti ≤ x < ti+1 and
returns the interval of values (m,M) such that m = f−i (x) andM = f+

i (x). In
other words, it returns the interval delimited by the two sides of the trapezoid
containing the input x.

Now we are going to consider the arithmetic operators on functions. One of
them (the modulus) is unary, while all the others are binary operators. For the
rest of the section, let f, g be two abstract values de�ned on the same set of steps
T = {ti : i ∈ [0, N]}:

f =
∧

i∈[0,N]

{ti : fi}

g =
∧

i∈[0,N]

{ti : gi}

If the abstract operation receives in input two abstract functions de�ned on di�erent
sets of steps, we can always execute a preliminary re�nement of the two abstract
states on the union of their step sets.

The result of the abstract arithmetic operation is another abstract value, h,
de�ned on the same set of steps as the input functions:

h =
∧

i∈[0,N]

{ti : hi}

For each operation we are going to de�ne only how to compute the value hi associated
the generic step ti, that is the step ([ti, ti+1]), as the result of the abstract semantic
operation applied to the two corresponding steps ti from f and g. We assume that,
at ti, f has value fi = (m, q, n, r) = (f−i , f

+
i) and g has value gi = (m′, q′, n′, r′)

4.7. Abstract Semantics 153

= (g−i , g
+
i). If the operation is unary (i.e., the modulus), then we refer only to

ti : fi = (m, q, n, r) = (f−i , f
+
i) from f .

The abstract semantics of arithmetic operators is inspired by the interval arith-
metic presented in Section 2.2.

Last step

Note that, for the abstract operations of product, division and composition there is
the problem of the last step. In fact, such operations use the information about ti+1

(the right border of the interval), but the last step does not have this information,
so we are forced to return > in such step. The sum and di�erence operations do
not need the information about ti+1 so the computation of the last step is identical
to the one of the other steps. The modulus, min and max operation, instead, would
require such information, but, with a special treatment of the last step case, we are
able to return a value di�erent from > in such step.

Sum

The abstract sum operation returns, for each step, the two linear functions obtained
by summing the coe�cients of, respectively, the lower and upper functions from f
and g:

hi = (h−i , h
+
i) = (m+m′, q + q′, n+ n′, r + r′)

where:
h−i (t) = f−i (t) + g−i (t) = (mt+ q) + (m′t+ q′) = (m+m′)t+ (q + q′)
h+i (t) = f+

i (t) + g+i (t) = (nt+ r) + (n′t+ r′) = (n+ n′)t+ (r + r′)

Di�erence

The abstract di�erence operation works similarly to the sum one, but we have to
be careful to subtract the upper function of g from the lower function of f (and,
respectively, subtract the lower function of g from the upper function of f), so
that we are sure to obtain the minimum (respectively, maximum) values possible.
Formally:

hi = (h−i , h
+
i) = (m− n′, q − r′, n−m′, r − q′)

where:
h−i (t) = f−i (t)− g+i (t) = (mt+ q)− (n′t+ r′) = (m− n′)t+ (q − r′)
h+i (t) = f+

i (t)− g−i (t) = (nt+ r)− (m′t+ q′) = (n−m′)t+ (r − q′)

Product

The basic idea of the product abstract operation is to compute the product of all
four pairs of functions made by a function of f (f−i , f

+
i) and one of g (g−i , g

+
i),

overapproximate their quadratic components and �nally computing the values in

154 4. The Trapezoid Step Functions Abstract Domain

correspondence of the extremities of the step (keeping only the minimum and max-
imum values). More formally:

• We compute the products of functions pairs obtained by taking one function
from f and one from g. We obtain four parabolas with the following values:

A(t) = f−i (t)× g−i (t) = (mt+ q)× (m′t+ q′) = mm′t2 + (mq′ +m′q)t+ qq′

B(t) = f−i (t)× g+i (t) = (mt+ q)× (n′t+ r′) = mn′t2 + (mr′ + n′q)t+ qr′

C(t) = f+
i (t)× g+i (t) = (nt+ r)× (n′t+ r′) = nn′t2 + (nr′ + n′r)t+ rr′

D(t) = f+
i (t)× g−i (t) = (nt+ r)× (m′t+ q′) = nm′t2 + (nq′ +m′r)t+ q′r

• In each parabola, we overapproximate the quadratic term (t2) with the two
possible values ti and ti+1, which are the minimum and maximum values that
the variable t can assume in the considered step. We then obtain eight lines,
which we call Ai, Ai+1, Bi, Bi+1, Ci, Ci+1, Di, Di+1,, where the pedix indicates
the values substituted to t2 (i.e., Bi+1(t) = mn′(ti+1)

2 + (mr′ + n′q)t+ qr′).

• We look for the minimum and maximum values assumed by the eight lines in
correspondence of the two extremities of the step (ti and ti+1). We call S, T
the minimum and maximum values in correspondence of ti, and U, V those in
correspondence of ti+1:

S = min (Ai(ti), Bi(ti), Ci(ti), Di(ti), Ai+1(ti), Bi+1(ti), Ci+1(ti), Di+1(ti))
T = max (Ai(ti), Bi(ti), Ci(ti), Di(ti), Ai+1(ti), Bi+1(ti), Ci+1(ti), Di+1(ti))
U = min (Ai(ti+1), Bi(ti+1), Ci(ti+1), Di(ti+1), Ai+1(ti+1), Bi+1(ti+1), Ci+1(ti+1), Di+1(ti+1))
V = max (Ai(ti+1), Bi(ti+1), Ci(ti+1), Di(ti+1), Ai+1(ti+1), Bi+1(ti+1), Ci+1(ti+1), Di+1(ti+1))

• We return the trapezoid made by two lines SU and TV , i.e. the lines which
connect, respectively, the two minimum values (S, U) and the two maximum
ones (T, V):

hi = (h−i , h
+
i) = (mSU , qSU ,mTV , qTV)

where mXY and qXY represent, respectively, the slope and intercept of the line
connecting two points X, Y .

Division

The procedure to compute the division between two abstract functions works very
similarly to the one explained above for the product. However, here we must pay
particular attention to the possible division by/of zero: if one of the abstract func-
tions contains the value zero (i.e., it could assume the value zero in one or more
points of the step), then we will have to treat the situation appropriately. If the
abstract function which contains the zero is the denominator, then we return ⊥ (we
signal a possible computation error, a division by zero); if, instead, the abstract
function which contains the zero is the numerator, then we return > (since the di-
vision of �zero by something� results in ∞). If the zero is not present in any of the

4.7. Abstract Semantics 155

abstract functions, then we apply the same reasoning used for the product. More
formally:

• We compute the division of functions pairs obtained by taking one function
from f and one from g. We obtain four functions:

A(t) =
f−i (t)

g−i (t)
= mt+q

m′t+q′

B(t) =
f−i (t)

g+i (t)
= mt+q

n′t+r′

C(t) =
f+i (t)

g+i (t)
= nt+r

n′t+r′

D(t) =
f+i (t)

g−i (t)
= nt+r

m′t+q′

• In each of the four functions, we overapproximate the variable contained in the
denominator with the two possible values ti and ti+1, which are the minimum
and maximum values that the variable t can assume in the considered step.
We then obtain eight lines, which we call Ai, Ai+1, Bi, Bi+1, Ci, Ci+1, Di, Di+1,,
where the pedix indicates the values substituted to t in the denominator (for
example, Bi+1(t) = mt+q

n′ti+1+r′
and Di(t) = nt+r

m′ti+q′
).

• We look for the minimum and maximum values assumed by the eight lines
in correspondence of the two extremities of the step (ti and ti+1). Exactly as
we did for the product, we call S, T the minimum and maximum values in
correspondence of ti, and U, V those in correspondence of ti+1:

S = min (Ai(ti), Bi(ti), Ci(ti), Di(ti), Ai+1(ti), Bi+1(ti), Ci+1(ti), Di+1(ti))
T = max (Ai(ti), Bi(ti), Ci(ti), Di(ti), Ai+1(ti), Bi+1(ti), Ci+1(ti), Di+1(ti))
U = min (Ai(ti+1), Bi(ti+1), Ci(ti+1), Di(ti+1), Ai+1(ti+1), Bi+1(ti+1), Ci+1(ti+1), Di+1(ti+1))
V = max (Ai(ti+1), Bi(ti+1), Ci(ti+1), Di(ti+1), Ai+1(ti+1), Bi+1(ti+1), Ci+1(ti+1), Di+1(ti+1))

• We return the trapezoid made by two lines SU and TV , i.e. the lines which
connect, respectively, the two minimum values (S, U) and the two maximum
ones (T, V).

Considering also the possible division by/of zero, the �nal result returned by the
abstract division operation for the step ti is then the following:

hi = (h−i , h
+
i) =


⊥ if ∃t ∈ [ti, ti+1) : 0 ∈ [g−i (t), g+i (t)]

> if ∃t ∈ [ti, ti+1) : 0 ∈ [f−i (t), f+
i (t)]

(mSU , qSU ,mTV , qTV) otherwise

Composition

First of all, note that for this operation we do not need the two abstract values to
be de�ned on the same set of steps, because, given an input t, we do not compute
the values of both f, g in t: instead, we compute the value of only g in t and then

156 4. The Trapezoid Step Functions Abstract Domain

pass the result as input to f . In this case, then, the domain of f is related to the
codomain of g. We consider g =

∧
i∈[0,M]{ti : gi} and f =

∧
j∈[0,N]{uj : fj}. The

result of the composition f ◦ g will be an abstract function h =
∧
i∈[0,M]{ti : hi} (the

domain is the same of g).
The procedure to compute the composition of two abstract functions is the fol-

lowing: for each step ti of the inner function (g), we check its possible values; then,
we consider all the steps of f which domain includes at least one of such values and
we keep the lowest and greatest values assumed by f in those steps. More formally:

• We compute gmin, gmax which are, respectively, the minimum and maximum
values assumed by g−i , g

+
i throughout the interval [ti, ti+1]:

gmin = min
t∈[ti,ti+1]

g−i (t)

gmax = max
t∈[ti,ti+1]

g+i (t)

• We �nd all the steps of f which domain intersects the interval [gmin, gmax]:

J = {j : [uj, uj+1] ∩ [gmin, gmax] 6= ∅}

• We compute fmin, fmax which are, respectively, the lowest and greatest value
assumed by f−, f+ in all the steps fj (where j ∈ J):

fmin = min
j∈J

min
u∈[uj ,uj+1]

f−j (u)

fmax = max
j∈J

max
u∈[uj ,uj+1]

f+
j (u)

• We return the trapezoid made by two horizontal lines in correspondence of
fmin, fmax:

hi = (h−i , h
+
i) =

{
(0, fmin, 0, fmax) if gmax ≥ 0

⊥ otherwise

Note that, if gmax is less than zero, we return bottom, since there are no
possible values assumed by g which are correct inputs for f (the domain of
our abstract function is R+), so the composition of such functions cannot be
done in this step (J = ∅).

Note also that, to make this operator more precise, when dealing with the steps of
f intersected by [gmin, gmax], we could consider only the fraction of the step domain
which e�ectively intersects [gmin, gmax] instead of all the step. More formally, for
each step fj we should consider the values it assumes in the intersection [uj, uj+1]∩
[gmin, gmax].

4.7. Abstract Semantics 157

Minimum

To achieve more precision, for this operation (and for the next one, the maximum)
we will split each interval into subintervals, depending on (potential) intersections
between f−i and g−i and between f+

i and g+i . Thus, the number of steps of the
resulting abstract function is potentially increased with respect to the number of
steps of the two input functions. The procedure to compute the result is as follows:

• We look for intersections between the two upper lines and the two lower ones:
if f−i intersects g−i , we split the interval with respect to such intersection
point. Moreover, if f+

i intersects g+i , we split the interval with respect to
such intersection point, too. As a result of these two (potential) splittings, we
could obtain two subintervals (in case of one intersection), three subintervals
(in case of two intersections) or no subintervals (the step remains the same
because there are no intersection).

• For each subinterval obtained, let fg−min = min (f−i , g
−
i) be the function be-

tween f−i , g
−
i which is always below the other one (we are sure it exists be-

cause, by construction, they do not intersect in the subinterval). Also, let
fg+min = min (f+

i , g
+
i) be the function between f+

i , g
+
i which is always below

the other one.

• For each subinterval i′, return the pair of function fg−min, fg
+
min:

hi′ = (h−i′ , h
+
i′) = (fg−min, fg

+
min)

Note that this procedure can be used also for the last step, since it does not need
information from the next step to perform its computations.

Maximum

The procedure to compute this abstract operation is the same as the one described
for the pointwise minimum; the only di�erence is that, in this case, we return the
line always above the other:

• We look for intersections between the two upper lines and the two lower ones:
if f−i intersects g−i , we split the interval with respect to such intersection
point. Moreover, if f+

i intersects g+i , we split the interval with respect to
such intersection point, too. As a result of these two (potential) splittings, we
could obtain two subintervals (in case of one intersection), three subintervals
(in case of two intersections) or no subintervals (the step remains the same
because there are no intersection).

• For each subinterval obtained, let fg−max = max (f−i , g
−
i) be the function be-

tween f−i , g
−
i which is always above the other one (we are sure it exists be-

cause, by construction, they do not intersect in the subinterval). Also, let

158 4. The Trapezoid Step Functions Abstract Domain

fg+max = max (f+
i , g

+
i) be the function between f+

i , g
+
i which is always above

the other one.

• For each subinterval i′, return the pair of function fg−max, fg
+
max:

hi′ = (h−i′ , h
+
i′) = (fg−max, fg

+
max)

In this case, too, we can use the same procedure for the last step.

Modulus

This operation is unary, so we only consider one function, f . For each step [ti, ti+1],
where f has value (f−i , f

+
i) = (m, q, n, r), we create the corresponding step of the

resulting function h as follows:

hi = (h−i , h
+
i) =

{
(0, 0,mST , qST) if A ≤ 0 ∨B ≤ 0 ∨ C ≤ 0 ∨D ≤ 0

(m, q, n, r) otherwise

where
A = f−i (ti)
B = f+

i (ti)
C = f−i (ti+1)
D = f+

i (ti+1)
S = max (|A|, |B|)
T = max (|C|, |D|)

The result is derived as follows: if the area enclosed by the trapezoid is all above
the horizontal axis (that is, the �otherwise� case of our result), then we return the
same coe�cients of the input value, since the values are all positive already. In the
other case, we use the x-axis as lower function (m = q = 0) and the line linking the
two maximum absolute values at the borders (S at ti, T at ti+1) as upper function.

In this operation, we need to de�ne a special treatment for the last step:

• Let tN be the last step, with value fN = (mN , qN , nN , rN). Let AN , BN be the
values of the lower and upper line in correspondence of the step beginning:
AN = f−N (tN), BN = f+

N (tN).

• Find the coe�cients for the new lower line, m′, q′ as follows:

m′ =

{
mN if AN ≥ 0 ∧mN ≥ 0

0 otherwise

q′ =

{
qN if AN ≥ 0 ∧mN ≥ 0

0 otherwise

If the line is always above the t-axis, we return the same line, otherwise we
return the constant line having value 0.

4.8. Experimental Results 159

• Find the coe�cients for the new upper line, n′, r′ as follows:

n′ = max (|mN |, |nN |)

r′ =

{
rN if BN ≥ |AN |
rN + (|AN | −BN) otherwise

The slope of the new upper line is the biggest between the absolute values of
two original slopes mN , nN . The new upper intercept, instead, is at least the
same of the old upper one (rN), but it could be increased by (|AN | −BN), to
consider the fact that the absolute value of AN could now be the higher point
in correspondence of tN (instead of BN).

• We return the value:

hN = (h−N , h
+
N) = (m′, q′, n′, r′)

4.8 Experimental Results

In this section we present some experimental results about the use of TSF, and
we compare them with the ones obtained by IVSF. First of all, we explore how
the precision of TSF varies with the number of steps of the representation when
analyzing some representative functions. Then, we consider the embedded software
case study introduced in Section 4.2.

4.8.1 Varying the Number of Steps

Let us �rst analyze how the precision of TSF and IVSF scales with respect to the
number of steps which compose the abstract values. We apply the abstraction
function to a set of representative functions (namely, sin(x), x3, ex, and ln(x+ 1)4)
in the interval [0, 10] varying the number of steps from 4 to 128. We measure the
precision of a representation by computing the area covered by the abstract states
in the Cartesian plan: the wider the area, the rougher the abstraction. Table 4.2
reports the results of this computation. The �rst column reports the number of
steps. Then, for each analyzed function, we report the area of the TSF and IVSF
abstractions, and the ratio between the two areas. For instance, if the ratio is 50%,
it means that the TSF area is half of the IVSF one (i.e., it is twice more precise).

We implemented the computation of TSF in Java and we ran it on an Intel Core
2 Quad CPU 2.83 GHz with 4 GB of RAM, running Windows 7, and the Java SE
Runtime Environment 1.6.0_16-b01. The execution is always extremely fast: in the
worst case (function ex), TSF requires 40 msec to compute the approximation and
the area of the function for all the di�erent numbers of steps. This result is not

4Note that, since ln(x) is not continuous in x = 0, we apply it to x + 1 in order to have a
continuous function in the domain [0, 10]

160 4. The Trapezoid Step Functions Abstract Domain

Table 4.2: Precision of TSF and IVSF varying the number of steps

#s sin(x) x3 ex ln(x+ 1)
TSF IVSF Ratio TSF IVSF Ratio TSF IVSF Ratio TSF IVSF Ratio

4 4.14 15.10 27.4% 235.04 2500.00 9.4% 15894.07 55063.66 28.9% 0.63 5.99 10.5%
8 1.15 7.99 14.4% 58.64 1250.00 4.7% 4211.62 27531.83 15.3% 0.17 3.00 5.7%
16 0.30 4.01 7.6% 14.65 625.00 2.3% 1069.68 13765.92 7.8% 0.04 1.50 2.9%
32 0.08 2.04 3.7% 3.66 312.50 1.2% 268.50 6882.96 3.9% 0.01 0.75 1.5%
64 0.02 1.02 1.8% 0.92 156.25 0.6% 67.19 3441.48 2.0% 2.77E-03 0.37 0.7%
128 4.70E-03 0.51 0.9% 0.23 78.13 0.3% 16.80 1720.74 1.0% 6.93E-04 0.19 0.4%

particularly surprising since the computation mainly performs arithmetic operators
for whom modern processors are quite e�cient. Since the times of executions are
so low, we could not notice any signi�cant di�erence between TSF and IVSF even
if we would expect that IVSF is faster. In addition, we did not notice any relevant
memory consumption by the computation since it does not need to allocate any
memory.

In all cases, TSF is more precise than IVSF. In the worst case, TSF is almost 4
times more precise (since the ratio is ≈ 29%) and this happens when using a small
number of intervals (4). In the best case, it is approximately 330 times more precise
(the ratio is 0.3%), and this happens when using a lot of intervals (128).

Why does the precision of TSF get more and more precise with respect to the one
of IVSF when we increase the number of steps? IVSF uses rectangles to approximate
portions of the curve, so its precision is greater when the curve is ��at� (i.e., similar
to a horizontal line), while it is lower when the curve's slope is high. So, the amount
of precision depends more on the kind of function than on the steps width. The
precision of TSF, instead, does not depend on the curve slope, since the trapezoids
are able to well approximate various kinds of slope. The precision of TSF depends
only on how much the curve di�ers from a straight line within a single step. If in a
single step the curve is similar to a straight line, then the error is near to zero; if in a
single step the curve is very concave/convex then there is a lack of precision. When
increasing the number of steps in a given domain, each step has a smaller width:
for this reason, the bigger the number of steps, the more the function resembles a
straight line in each single step (instead that a convex/concave curve) and the more
the TSF precision increases. On the other hand, the decrease in a step width does
not modify the slope of the curve in each step, and this is why the precision of IVSF
does not increase as much as in the TSF domain.

4.8.2 The Integrator Case Study

Consider the case study presented in Section 4.2. Table 4.3 reports the intervals of
the values of intgrx computed by TSF and IVSF after 104 iterations of the while

loop. The smaller the interval, the more precise the analysis. The last column
reports the ratio between the widths of the two intervals. TSF obtains more precise

4.8. Experimental Results 161

Table 4.3: Values computed by TSF and IVSF on intgrx

steps TSF IVSF Ratio (%)
4 [-1.0263, 1.7367] [-4.8750, 4.8750] 28
8 [-0.2772, 0.3778] [-0.4760, 0.4760] 69
16 [-0.0740, 0.0870] [-0.1237, 0.1237] 65
32 [-0.0188, 0.0204] [-0.0312, 0.0312] 63
64 [-0.0047, 0.0049] [-0.0078, 0.0078] 62
128 [-0.0012, 0.0012] [-0.0020, 0.0020] 61

Figure 4.19: TSF (left) and IVSF (right) abstractions of sin(x), with 4 steps, on the
domain [0, 2π]

results in all the cases. Note that augmenting the numbers of steps in the abstraction
improves the precision of both domains, and the error ratio of TSF vs. IVSF stabilizes
around 60% even if it is slightly better when augmenting the number of steps.

4.8.3 Combination of TSF with IVSF

In the two case studies, we have seen that the TSF domain is able to approximate
more closely the shape of the abstracted function than IVSF. Moreover we noticed
that our abstraction gets more and more precise (with respect to IVSF) every time
we reduce the width of the steps in the representation. Consider, as a graphical
example, Figures 4.19 and 4.20. They compare the 4-steps abstraction of f = sin(x)
by TSF (on the left) and by IVSF (on the right) in the intervals [0, 2π] and [0, π

2
]

respectively.
On the one hand, these plots make clear that in general TSF better approximates

the shape of the function using trapezoids rather than the rectangles obtained with
IVSF. On the other hand, IVSF gives more precise bounds on the maximum and
minimum values assumed by the function because it has the advantage to preserve
the stationary points of a function throughout its entire domain. Unfortunately,
TSF does not preserve such information, since the trapezoids vertices might exceed
these values.

162 4. The Trapezoid Step Functions Abstract Domain

Figure 4.20: TSF (left) and IVSF (right) abstractions of sin(x), with 4 steps, on the
domain [0, π

2
]

Sometimes the right side of a trapezoid (de�ned on [ti, ti+1]) and the left side
of the next one (de�ned on [ti+1, ti+2]) have an intersection made up by only one
point: in these cases we know for sure which is the value assumed by the function
in correspondence of ti+1 (the border between the two trapezoids). In some cases,
this phenomenon happens also for IVSF, and not necessarily in correspondence of
the same points as TSF. In Figure 4.19 you can see this happening at t = π for both
TSF and IVSF: the information we have is that the function has precisely value 0 in
that point.

Finally, to compute the abstraction of IVSF it is necessary to know only the �rst
derivative (other than, obviously, the original function). TSF instead requires also
the second derivative, in order to locate the in�ection points of the function.

To summarize, TSF is more precise than IVSF but it requires more information on
the function and it does not necessarily preserve the minimum/maximum bounds
(while IVSF does). Since both domains track interesting information, it could be
useful in some applications (especially the ones where the stationary points of the
function have some relevancy), to consider a combination (i.e., the Cartesian product
or the reduced product presented in Section 2.11) of these two domains, to improve
the precision of the overall analysis and in particular to precisely bound the minimal
and maximal values of the function. For instance, consider the Cartesian product
of these two domains: the application of TSF× IVSF to the example of Figure 4.19
discovers that, at π

2
, the abstracted function has exactly value 1, since (i) TSF tracks

that its minimal value is 1, and (ii) IVSF tracks that its maximal value is 1. The
same happens in the analysis of our case study: we can precisely abstract the values
of sin(x) when it is at its maximum (or minimum) by taking the intersection of the
values approximated by TSF (that computes that the values are greater or equal
to 1 in the maximum, and less or equal than -1 in the minimum) and IVSF (that
computes that the values are less or equal to 1 in the maximum, and greater or
equal than -1 in the minimum).

4.9. Related Work 163

4.9 Related Work

As already explained in Section 4.1, hybrid systems are models for complex physical
systems where both discrete and continuous behaviours are important. Many ap-
plications are safety-critical, including car, railway, and air tra�c control, robotics,
physical-chemical process control, and biomedical devices. Hybrid systems veri�ca-
tion is then an important and very challenging problem, because of the interaction
between discrete and continuous dynamics.

Continuity is not a new topic in static analysis, even if it has been only partially
(and, most of all, separately from hybrid systems) explored so far. In fact, there
exists some work regarding continuous functions in general, but it is not thought
for the speci�c purpose of verifying the behaviour of hybrid systems. For example,
a useful domain theoretic characterization of continuous function can be found in
[70], but this work only describes the continuous functions at the concrete level, and
there is nothing involving their sound abstraction.

Regarding continuity analysis of programs, [97] was the �rst to argue for a test-
ing methodology for Lipschitz-continuity of software. [135] introduced a type system
that veri�es the Lipschitz-continuity of functional programs. This system does not
handle control �ow and does not consider any application other than di�erential
privacy. The paper [29] recently proposed a qualitative program analysis to auto-
matically determine if a program implements a continuous function. The practical
motivation they address is the veri�cation of robustness properties of programs
whose inputs can have small amounts of error and uncertainty. This work was fur-
ther extended by [30] to quantify the robustness of a program to uncertainty in its
inputs. Since they decompose the veri�cation of robustness into the independent
sub-problems of verifying continuity and piecewise robustness, they do not add new
insights to the speci�c problem of program continuity with respect to [29]. Our
treatment of continuous functions should be applicable to this particular setting
(continuity of programs) as well.

Note also that a Trapezoid Step Function is a sequence of trapezoids, one for
each step. But a TSF can be seen as a pair of PieceWise Linear (PWL) functions
as well, where one PWL function bounds the approximated continuous functions
from above and the other one bounds them from below. There exists an extensive
literature about PWL functions, since they played an important role in approxi-
mation, regression and classi�cation. One of the biggest problems concerns their
explicit representation in a closed form [37, 107]. Another important issue is to �nd
a PWL approximation of a certain function to minimize or bound the overall area
(or the distance in each point) between the original function and the approximation
[34, 102, 145]. Instead, our approach provides a sound approximation of a function
rather than bounding the error of its representation.

On the other hand, the veri�cation of hybrid systems is certainly a common
topic, but previous works on Abstract Interpretation-based strategies for such sys-
tems mainly involve the analysis of hybrid automata [92, 95] without speci�cally

164 4. The Trapezoid Step Functions Abstract Domain

considering the continuous environment of the system. [71] introduced domain-
speci�c abstract domains for digital �lters (in the context of ASTREE [18]), but did
not provide a generic treatment of continuous functions and their abstraction.

Given this context, to the best of our knowledge, IVSF has been the �rst formal-
ism to allow the integration of the continuous environment in an abstract interpre-
tation of embedded software. A static analyzer based on that formalism has been
implemented [22] in order to consider the interactions between the program and the
physical environments on which it acts. The analyzer (HybridFluctuat) is based
upon Fluctuat, a tool developed by CEA which aims at analyzing the numerical
precision and stability of complex algorithms. However, as far as we know, IVSF
theoretical framework has not been re�ned further since then.

In Section 4.8 we compared extensively the precision of our approach with respect
to IVSF and we showed that TSF is quite more precise than IVSF when abstracting
a representative set of continuous functions and when applied to a representative
case study.

4.10 Discussion

In this chapter we tackled the issue of approximating the physical environment of
embedded software through Abstract Interpretation, improving the current state-
of-the art de�ned by [24].

To this purpose, we introduced the Trapezoid Step Functions domain (TSF), a
new abstract domain aimed at approximating the behaviours of continuous func-
tions. We formally de�ned the structure of the domain together with the lattice and
widening operators, proving the soundness of our approach. We also introduced a
sound abstraction function that, given a concrete function, builds up its abstract
representation in TSF. Finally, we presented some experimental results about the
precision of TSF, and we compared them with the ones obtained by the Interval
Valued Step Functions domain of [24] (IVSF), that, at the best of our knowledge, is
the most re�ned domain in the context of the abstraction of functions in continuous
environments. The experimental results underline that TSF obtains abstractions
that are more precise than the ones obtained by IVSF.

Note that we also de�ned the abstract semantics of arithmetic operations involv-
ing continuous functions, even though such operations have not been used in the
section about experimental results and their correctness has not been proved (yet).
This semantics has been developed for the speci�c purpose of applying our domain
to the cost analysis of code [11] and it is the �rst step in that direction. However, in
the context of cost analysis, it is necessary to extend our approach to multivariate
functions (TSF only considers univariate ones) in order to allow more complex cost
models. We already started working on this new abstract domain and are very close
to its completion.

5

The Parametric Hypercubes

Abstract Domain

In this chapter we focus on the last of the three goals of our thesis, i.e. creating a
new approach to deal with relationships between variables, keeping into account the
speci�c features of physics simulations inside games software.

Computer Games Software is a fast growing industry, with more than 200 million
units sold every year, and annual revenue of more than 10 billion dollars. According
to the Entertainment Software Association (ESA), more than 25% of the software
played concerns sport, action, and strategy games, where physics simulations are
the core of the product, and compile-time veri�cation of behavioural properties is
particularly challenging for developers. Physics simulations are especially demand-
ing to analyze because they manipulate a large amount of interleaving �oating point
variables. Therefore, this application domain is an interesting workbench to stress
the trade-o� between accuracy and e�ciency of abstract domains for static analysis.

In this chapter, we introduce Parametric Hypercubes, a novel disjunctive non-
relational abstract domain. Its main features are: (i) it combines the low computa-
tional cost of operations on (selected) multidimensional intervals with the accuracy
provided by lifting to a power-set disjunctive domain, (ii) the compact representa-
tion of its elements aids the space complexity of the analysis, and (iii) the parametric
nature of the domain provides a way to tune the accuracy/e�ciency of the analysis
by just setting the widths of the hypercubes sides. The �rst experimental results
on a representative Computer Games case study outline both the e�ciency and the
precision of the proposal.

Similarly to Chapters 3 and 4, this chapter follows the structure explained in
Section 1.6: Section 5.1 introduces the problem and some basic terminology speci�c
of games software (even though an entire section of notation is not required), Section
5.2 presents the case study which we use to experiment with our approach and
Section 5.3 de�nes the language syntax supported by our analysis. Section 5.4
explains the concrete domain of reference, while Sections 5.5 and 5.6 formally de�ne
the abstract domain and semantics, respectively. Section 5.7 deals with issues related
to the practical use of the analysis. Section 5.8 contains the experimental results
of our analysis applied to the case study. Section 5.9 presents the related work. In
Section 5.10 we hint at other possible applications of our abstract domain outside

0This chapter is partially derived from [48].

166 5. The Parametric Hypercubes Abstract Domain

games software, by making a concrete example. Finally, Section 5.11 concludes.

Contents

5.1 Introduction . 167

5.2 Case Study . 171

5.3 Language Syntax . 173

5.4 Concrete Domain and Semantics 173

5.5 Abstract Domain . 174

5.5.1 Lattice Structure . 175

5.5.2 Abstraction and Concretization Functions 177

5.5.3 Widening Operator . 178

5.5.4 Enhancing Precision: O�sets 179

5.6 Abstract Semantics . 181

5.6.1 The Abstract Semantics of Arithmetic Expressions, I . . . 182

5.6.2 The Abstract Semantics of Boolean Conditions, B 183

5.6.3 The Abstract Semantics of Statements, S 184

5.7 Tuning the Analysis . 187

5.7.1 Initialization . 187

5.7.2 Tracking the Origins . 188

5.7.3 Width Choice . 189

5.8 Experimental Results . 191

5.8.1 Setting Up . 191

5.8.2 Varying the Minimum Width Allowed 192

5.8.3 Finding Appropriate Starting Values 192

5.8.4 Varying Other Parameters 196

5.8.5 Discussion . 198

5.8.6 Extending the Case Study from 2D to 3D 200

5.9 Related Work . 202

5.9.1 Abstract Domains . 202

5.9.2 Hybrid Systems . 204

5.10 Other Applications . 205

5.11 Discussion . 209

5.1. Introduction 167

5.1 Introduction

Context

The video game industry (sometimes referred to as the interactive entertainment
industry) is the economic sector involved with the development, marketing and sales
of video games. It encompasses dozens of job disciplines and employs thousands of
people worldwide. Today, the video game industry has a major impact on the
economy through the sales of major systems and games: for example, when the
game Call of Duty: Black Ops was launched, it took in over $650 million of sales
in the game's �rst �ve days and set a �ve-day global record for a movie, book or
videogame. According to industry statistics [10], the U.S. interactive entertainment
software publishing industry achieved retail sales of $10.5 billion in 2009. Unit sales
of computer and video games have increased from 226.3 million in 2005 to more
than 273 million in 2009.

A video game can be seen as a simulation of a �ctional world: every game is
populated by objects and characters which interact in some way with the user and
between themselves. An important feature of such entities is their movement: a
game where everything is always still would be quite uninteresting. Physics is an
integral part of most modern video game design, especially if the game is in 3D.
Computer animation physics (or game physics) involves the introduction of the laws
of physics into a simulation or game engine, particularly in 3D computer graphics,
for the purpose of making the e�ects appear more realistic to the observer. Typically,
simulation physics is only a close approximation of real physics, and computation is
performed using discrete values. Implementing game physics is quite an important
phase in the development process of a game, and for this reason there are a lot of
resources (books, websites, etc.) which handle this subject, for example [26, 68, 119].

Video game development is the software development process by which a video
game is produced. Game development is undertaken by a game developer - ranging
from an individual to a large company. In the early era of home computers and the
�rst video game consoles, a single programmer could handle almost all the tasks
of developing a game (programming, graphical design, sound e�ects, etc), taking
only a few weeks to complete its development. However, as computing and graphics
power increased, so did the size of development teams, as larger sta� were needed to
address increasing graphical and programming complexity. Now, budgets for games
production can easily reach tens of millions of dollars, even if middleware and pre-
built game engines are used to reduce development time. Most professional games
require one to three years to develop, further increasing the strain on budgets. A
consistent part of the budget of a videogame production is spent on testing, and on
consequent bug �xing. In fact, testing and quality assurance are vital for modern,
complex games: a game shipped with bugs can result in customers dissatisfaction
and failure to meet sales goals, causing critical economic damage for game software
manufacturers. In addition, given the formats that game titles are shipped in, such

168 5. The Parametric Hypercubes Abstract Domain

as ROM cartridge and DVD-ROM formats, they do not allow for bug �xes on the
�y. Until some years ago, the ROM cartridges and DVDs needed to be physically
collected and updated, making any bugs found post-release extremely costly to �x.
Now, consoles are all connected to the internet, so patches and updates can be
simply downloaded: however, the size of such patches is usually quite big (up to
2GB) and players are never happy to spend a lot of time waiting before they can
play again. For these reasons, if a bug makes it into the market, it can severely
tarnish a game vendor's brand. [8]

The quality assurance is carried out by game testers. In the early days of com-
puter and video games, no more than one or two testers were required due to the
limited scope of games. In some cases, the programmers alone could handle all the
testing. As games became more and more complex, though, the testing phase in-
creased in importance and with it the role of the game tester. A game tester analyzes
video games to document software defects as part of a quality control. Testing is a
highly technical �eld requiring computing expertise, and analytic competence. The
testers ensure that the game falls within the proposed design: it both works and
is entertaining. This involves testing of all features, compatibility, localization, etc.
However, testing is very expensive and for this reason it is often actively utilized
only towards the completion of the project, while it would be necessary throughout
the whole development process. At SEGA 1, in fact, developers researched advanced
software development tools that could help them to �nd and �x defects early. To
help get ahead of defects and ensure code quality in their games prior to release,
SEGA chose to employ Coverity Static Analysis [5] as a source code analysis tool
(after examining it together with two other static analysis tools). Since the ini-
tial deployment, Coverity's solution has been implemented in �ve additional SEGA
projects and now forty developers are using Coverity Static Analysis to analyze de-
velopment programs on a daily basis. According to the case study report [8], by
using Coverity Static Analysis, SEGA developers can �nd and �x bugs at an early
stage, which saves time and labor in the test process, improving the productivity of
the entire development process by approximately 20%. This example clearly shows
how static analysis can be e�ective in signi�cantly reducing testing time on games
software. Another testimony from the game software �eld about the importance of
static analysis comes from an in-depth blog article written by John Carmack 2 [9].
In this article, he describes his experiences in trying various static analysis tools to
�nd bugs in a large code base. A brief recap of his �ndings and opinions follows:

• Coverity has a very high signal to noise ratio: most of the issues highlighted
were clearly incorrect code that could have serious consequences. However, the

1SEGA Corporation is a Japanese multinational video game software developer.
2John Carmack is an American game programmer and the co-founder of id Software. Carmack

was the lead programmer of the id video games Commander Keen, Wolfenstein 3D, Doom, Quake,
Rage and their sequels. Carmack is best known for his innovations in 3D graphics, and is also the
founder and lead engineer of Armadillo Aerospace.

5.1. Introduction 169

cost of the licence is very high (thus a�ordable only if one has a big budget
available).

• Microsoft /analyze, a static analysis functionality which has been incorporated
into the Xbox 360 SDK, making it available to every Xbox 360 developer at
no extra charge. This tool only performs local analysis, but it poured out
mountains of errors nonetheless (far more than Coverity). However, there
were also lots of false positives. The disadvantage of this tool is that it works
only on the Xbox 360 code (so it does not cover the PC and PS3 speci�c
platform code, and the code for all the tools and utilities that only ran on the
PC).

• PVS-Studio has a good integration with Visual Studio and a convenient demo
mode. When tried by Carmack, it pointed out a number of additional impor-
tant errors (even on code that was already completely clean to /analyze). As
a nice additional feature, PVS-Studio also points out a number of things that
are common patterns of programmer errors. The problem of this tool is its
performance: it is terribly slow.

• PC-Lint (coupled with Visual Lint for IDE integration) is a tool which on the
one hand can be con�gured to do just about anything, but on the other hand
is not very friendly and requires a lot of hassle to make it work. However, it
found out new errors of signi�cance.

As we can see from Carmack's overview, every tool has its features and its downsides.
The common point is that every analyzer found (a lot of) signi�cant errors. In the
words of Carmack: �It is impossible to do a true control test in software development,
but I feel the success that we have had with code analysis has been clear enough
that I will say plainly it is irresponsible not to use it. If you are developing
commercial software, buying static analysis tools is money well spent.�.

State of the art

The main limitation of the static analysis tools cited above (Microsoft /analyze,
PSV-Studio, etc.) is that they can only verify syntactic structural properties of pro-
grams, for example: bu�er overruns, uninitialized memory, null pointer dereferences,
memory and resource leaks, conformance to coding guidelines, race conditions, dead-
locks, needless synchronization, and so on. While verifying this kind of properties
is certainly very important for any kind of program, for physics simulations it also
crucial to consider behavioural properties, i.e., if to check if the program behaves
according to a given speci�cation. Interesting properties on physical programs are,
for example, the insurance that a rocket reaches a stable orbit, or that a bouncing
ball arrives at a certain destination.

It is not easy to �nd tools that understand automatically what a physical simu-
lation does, because, usually, these kind of programs are characterized by:

170 5. The Parametric Hypercubes Abstract Domain

• a while loop which goes on endlessly: most of the times, a simulation consists
in the initialization of the state (i.e., the variables which compose the simu-
lated world) followed by an in�nite while loop which computes the numerical
integration over time (i.e., the inductive step of the simulation). Such loop is
executed until the game is stopped.

• a complex state made up by multiple real-valued variables. The variables of
a physics simulation are real-valued, because they represent continuous values
that map directly to physical aspects of the real world, like positions, velocities
(speed plus direction), and accelerations.

• strong dependencies among variables. The variables of a simulation are strongly
inter-related, because the simulation often makes decisions based on the values
of particular variables. For example, the velocity of an object changes abruptly
when there is a collision, which depends on the object position. Similarly, the
position changes accordingly to the velocity, which in turn depends on the
acceleration which may derive from the position (for a gravitational �eld) or
from other parameters.

Given these features, to statically prove interesting properties on physical simula-
tions we need to precisely track relationships between variables. However, traditional
approaches to static analysis are not best suited to deal with these kind of proper-
ties. On the one hand, non-relational domains are too approximate. On the other
hand, the computational cost of sophisticated relational domains like Polyhedra [62]
or Parallelotopes [14] is too high, and their practical use in this context becomes
unfeasible. Model Checking techniques, too, have performance issues (due to the
well-known state explosion problem). In Section 5.9 we will make a more detailed
comparison between our proposal and other existing techniques, coming from both
model checking and Abstract Interpretation.

Contribution

In this chapter, we introduce Parametric Hypercubes, a novel disjunctive non-
relational abstract domain. Its main features are: (i) it combines the low computa-
tional cost of operations on (selected) multidimensional intervals with the accuracy
provided by lifting to a power-set domain, (ii) the compact representation of its
elements allows to limit the space complexity of the analysis, and (iii) the para-
metric nature of the domain provides a way to tune the trade-o� between accuracy
and e�ciency of the analysis by just setting the widths of the hypercubes sides.
The domain can be seen as the combination of a suite of well-known techniques for
numerical abstract domain design, like disjunctive power-set, and conditional parti-
tioning. The most interesting points of our work are: (i) the approach: the design
of the domain has as starting point the features of the application domains, (ii) the
self-adaptive parametrization: a recursive algorithm is applied to re�ne the initial

5.2. Case Study 171

1 px = rand([0.0, 10.0]), py = rand([0.0, 50.0])

2 vx = rand([0.0, 60.0]), vy = rand([-30.0, -25.0])

3 dt = 0.05, g = -9.8, k = 0.8

4

5 while (true) do

6 if(py >= 0.0) then

7 (px, py) = (px + vx * dt, py + vy * dt)

8 (vx, vy) = (vx, vy + g * dt)

9 else

10 (px, py) = (px + vx * dt, 0.0)

11 (vx, vy) = (vx, -vy) * k

Figure 5.1: Bouncing ball case study

set of parameters in order to improve the accuracy of the analysis without sacri�cing
the performance, and (iii) the novel notion of �o�set� that allows to narrow the lack
of precision due to the �xed width of intervals. The analysis has been implemented,
and it shows promising results in terms both of e�ciency and precision when applied
to a representative case study of Computer Games Software.

5.2 Case Study

In this chapter, we chose to use the case study reported in Figure 5.1: it is inspired
by the bouncing ball hybrid system described in Section 4.1.

The program generates a bouncing ball that starts at the left side of the screen
(even though the exact initial position is not �xed), and it has a random initial
velocity. The horizontal direction of the ball is always towards the right of the
screen, since vx ≥ 0.Whenever the ball reaches the bottom of the screen, it bounces
(i.e., its vertical velocity is inverted). When the ball reaches the right border of the
screen, it disappears. We want to verify that T seconds after the generation of the
ball, such ball has already exited from the screen (we call this Property 1).

The structure of this program respects the generic structure of a physics simu-
lation, as explained in Section 5.1. The meanings of the variables are as follows:

• (px, py) represents the current position of the ball in the screen, and its initial
values are generated randomly;

• (vx, vy) represents the current velocity of the ball, and its initial values are
generated randomly as well;

• dt represents the time interval between iterations of the loop. This value
is constant and known at compile time (dt = 1/20 = 0.05 considering a
simulation running at 20 frames per second);

172 5. The Parametric Hypercubes Abstract Domain

1 balls = Set.empty

2 dt = 0.05, creationInterval = 3.0, timeFromLastCreation = 0.0

3 while (true) do

4 foreach ball in balls

5 updateBall(ball)

6 if(timeFromLastCreation >= creationInterval)

7 generateNewBall()

8 timeFromLastCreation = 0.0

9 else

10 timeFromLastCreation += dt

Figure 5.2: Bouncing ball generation

• g represents the force of gravity (−9.8);

• k represents how much the impact with the ground decreases the velocity of
the ball.

The while loop updates the ball position and velocity. To simulate the bouncing,
we update the horizontal position according to the rule of uniform linear motion,
while we force the vertical position to zero when the ball touches the ground and
we invert the vertical velocity. In addition, we decrease both the horizontal and
vertical velocity through the constant factor k, to consider the force which is lost in
the impact with the ground.

Verifying Property 1 on this program has a signi�cant practical interest, since
it is a basic physics simulation which can be used in many contexts [69]. For in-
stance, consider the program in Figure 5.2, where updateBall(b) moves the ball b
(through the body of the while loop of Figure 5.1) and generateNewBall() creates
a new ball (with the values of the initialization of Figure 5.1). It discretely gener-
ates bouncing balls on the screen. The interval between the creation of two balls
(creationInterval) is constant and known at compile time.

Proving Property 1 on the program in Figure 5.1 means that a single ball will
have exited the screen after T seconds. In addition, in the program of Figure 5.2,
we generate one ball each creationInterval seconds. This means that, having
veri�ed Property 1, we can guarantee that a maximum of d T

creationInterval
e balls will

be on the screen at the same time. Such information may be useful for performance
reasons (crucial in a game), since each ball requires computations for its rendering
and updating.

Non-disjunctive or non-relational static analyses are not properly suited to verify
Property 1. Consider for example the Interval domain where every variable of the
program is associated to a single interval. After a few iterations, when the vertical
position possibly goes to zero, the analysis is not able to distinguish which branch
of the if− then− else to take anymore. In this case, the lub operator makes the

5.3. Language Syntax 173

V ∈ V , I ∈ I, c ∈ R

E := c|rand(I)|V |E aop E where aop ∈ {+,−,×,÷}

B := E bop E|B and B|not B|B or B where bop ∈ {≥, >,≤, <, 6=}

P := V = E|if(B) then P else P |while(B) P |P ;P

Figure 5.3: Syntax

vertical velocity interval quite wide, since it will contain both positive and negative
values. After that, the precision gets completely lost, since the velocity variable
a�ects the position and vice-versa. On the other hand, the accuracy that would be
ensured by using existing disjunctive domains has a computational cost that makes
this approach unfeasible for practical use.

5.3 Language Syntax

Let V be a �nite set of variables, and I the set of all real-valued intervals. Figure
5.3 de�nes the language supported by our analysis.

We focus on programs dealing with mathematical computations over real-valued
variables. Therefore, we consider expressions built through the most common math-
ematical operators (sum, subtraction, multiplication, and division). An arithmetic
expression can be a constant value (c ∈ R), a non-deterministic value in an interval
(rand(I) where I ∈ I), or a variable (V ∈ V). We also consider boolean conditions
built through the comparison of two arithmetic expressions. Boolean conditions
can be combined as usual with logical operators (and, or, not). As for statements,
we support the assignment of an expression to a variable, if− then− else, while
loops, and concatenation. Even though this syntax is simple and limited, many
physical simulations can be built through it [20], since their complexity lies mostly
in their logic and not in the used constructs.

5.4 Concrete Domain and Semantics

Since we want to abstract a set of real-valued variables (i.e., all the non-constant
variables of the program as a whole), the concrete domain R is de�ned as the power-
set of environments of real values. As explained in Section 2.4, when the lattice is
the power-set of a set, the other operators immediately follow and the complete
de�nition of the lattice R is:

R = 〈℘(Vars→ R),⊆,∪,∩,Vars→ R, ∅〉

174 5. The Parametric Hypercubes Abstract Domain

Table 5.1: Concrete semantics

VJcK() = {c}
VJrandIK() = {r : r ∈ I}
VJVK(Σ) = {σ[varIndex(V)] : σ ∈ Σ}
VJaopK(R1,R2) = {r : ∃r1 ∈ R1, r2 ∈ R2 ∧ r = r1 aop r2}

where aop ∈ {+,−,×,÷}

We can now de�ne the concrete semantics of the language introduced in Section
5.3. For the statements operations and boolean conditions we refer to the usual se-
mantics of the classical Abstract Interpretation framework, applied to environments.
We specify here only the concrete semantics of mathematical expressions, which is
formalized in Table 5.1.

We de�ne the semantics V that, given the statement and eventually the values
of the arguments of the statement, returns a set of real values resulting from that
operation. In particular:

• the evaluation of a constant c returns a singleton containing only c itself;

• the extraction of a random value from an interval (rand(I)) returns the set
containing all values of the interval in input;

• the extraction of the value of a speci�c variable V returns all the values
which V assumes in each environment σ of the concrete set of environments
Σ (where σ[i] represents the value of the i-th variable of the environment, and
varIndex(x) returns the environment index associated to the variable x);

• aop ∈ {+,−,×,÷} returns, for every pair of real values (one from the �rst set
in input, one from the second one), the value resulting from their combination
through aop. For example, when aop is +, we return a set containing all the
summations of all possible pairs from the two input sets.

5.5 Abstract Domain

Intuitively, an abstract state of the Parametric Hypercubes domain (H) tracks dis-
junctive information relying on �oating-point intervals of �xed width. A state of H
is made by a set of hypercubes of dimension |Vars|. Each hypercube has |Vars| sides,
one for each variable, and each side contains an abstract non-relational value for the
corresponding variable. Each hypercube represents a set of admissible combinations
of values for all variables.

The name Hypercubes comes from the geometric interpretation of the elements
of H. The concrete state of a program with variables in Vars is an environment

5.5. Abstract Domain 175

in Vars → R. This can be isomorphically represented by a tuple of values where
each item of the tuple represents a program variable. Seen in this way, the concrete
state corresponds, geometrically, to a point in the |Vars|-dimensional space. Each
dimension of the space represents the possible values that the corresponding variable
of the program can assume. The concrete trace of a program is a sequence of points
in such space (one for each state of the trace). The hypercubes of our domain H
are volumes in the same |Vars|-dimensional space. Each side of the hypercube is
the concretization of the abstract value of the corresponding variable, and thus it
corresponds to a set of values in that dimension of the space. The concretization of
an hypercube is the set of all the points contained in its volume. A state in H is
composed by a set of hypercubes: its concretization is the union of all the volumes
of its hypercubes.

5.5.1 Lattice Structure

An abstract state ofH tracks a set of hypercubes, and each hypercube is represented
by a tuple of abstract values. The dimension of these tuples is equal to the number
of program variables: this means that each variable is associated to a given item of
the tuple (i.e., to a speci�c side of the hypercube). Consider, for instance, a program
in which Vars = {x1, x2}. In this case, the hypercubes of H are 2D-rectangles. In
particular, the two sides of a single hypercube are two abstract values, one for x1
and one for x2.

A priori, our approach is modular w.r.t. the non-relational abstract domain we
adopt to approximate the values of single variables inside an hypercube. However,
since we are targeting the analysis of physics simulations, we focus on the abstraction
of �oating-point variables through intervals of real values.

A set of hypercubes allows us to track disjunctive information, and this is useful
when the values of a variable are clustered in di�erent ranges: instead of having a
very big interval to cover them all (and which would cover also a lot of invalid values),
we use two (or more) smaller intervals. Since it would be particularly expensive to
perform all the lattice operators pointwisely, we partition the possible values into
intervals of �xed width. As an example, suppose that the initial vertical velocity
of the balls of our case study ranges between 50.0 and 60.0 or between −60.0 and
−50.0. A single interval would approximate these values with [−60.0..60.0], while
with our approach we track two intervals, [−60.0..−50.0] and [50.0..60.0] (with �xed
width 10.0), which distinguish between balls thrown downwards and balls thrown
upwards.

The performance of this domain, though, becomes a crucial point, because the
number of possible hypercubes in the space is potentially exponential with respect
to the number of partitions along each spatial axis. First of all, the complexity
is reduced by: (i) the use of a �xed width for each variable; (ii) partitioning the
possible intervals; and (iii) by the e�ciency of set operators on tuples. Then, another
performance booster is the use of a smart representation for intervals: in order to

176 5. The Parametric Hypercubes Abstract Domain

Figure 5.4: The abstract state of the case study after the initialization of the vari-
ables (focusing the attention only on px, py, when their widths are, respectively, 10.0
and 25.0)

store the speci�c interval range we just use a single integer representing it. This
is possible because each variable xi is associated to an interval width (speci�c only
for that variable), which we call wi and which is a parameter of the analysis. Each
width wi represents the width of all the possible abstract intervals associated to
xi. More precisely, given a width wi and an integer index m, the interval uniquely
associated to the variable xi is

[m× wi..(m+ 1)× wi]

Notice that the smaller the width associated to a variable, the more granular and
precise the analysis on that variable (and the heavier computationally the analysis).
In Section 5.6 we will show how to compute and adjust automatically the widths.

Example

Consider the case study of Section 5.2 and in particular the two variables px and py.
Suppose that the widths associated to such variables are, respectively, w1 = 10.0 and
w2 = 25.0. The hypercubes in this case are 2D-rectangles that can be represented
on the Cartesian plane. Each side of a hypercube is identi�ed by an integer index,
and a 2D hypercube is then uniquely identi�ed by a pair of integers. For instance,
the hypercube h1 = (0, 1) represents px ∈ [0.0..10.0] and py ∈ [25.0..50.0], while
the hypercube h2 = (0, 0) associates px to [0.0..10.0] and py to [0.0..25.0]. Figure
5.4 depicts the two hypercubes h1 and h2 associated to the initialization of the case
study. Instead, Figure 5.5 depicts the six hypercubes obtained after executing the
�rst iteration of the while loop. The ball is moving towards the right of the screen
and is going downwards: this is coherent with the fact that the horizontal velocity
is certainly positive (between 0.0 and 60.0), while the vertical velocity is certainly
negative (between −30.0 and −25.0).

5.5. Abstract Domain 177

Figure 5.5: The abstract state of the case study after the �rst iteration of the loop
(focusing the attention only on px, py, when their widths are, respectively, 10.0 and
25.0)

Domain De�nition

We now formalize our abstract domain. Each abstract state is a set of hypercubes,
where each hypercube is composed by |Vars| integer numbers. The abstract domain
is then de�ned by

H = ℘(Zn)

where n = |Vars|. The de�nition of lattice operators relies on set operators (as
explained in Section 2.4 about the power-set lattice): the partial order is de�ned
through set inclusion, the lub and glb are set union and set intersection, respectively,
while the bottom and top elements are the empty set and the set containing all
possible n-dimensional hypercubes, respectively. Formally:

Ĥ = 〈℘(Zn),⊆,∪,∩, ∅,Zn〉

Lemma 5.5.1. Ĥ = 〈℘(Zn),⊆,∪,∩, ∅,Zn〉 is a complete lattice.

Proof. The proof follows immediately by basic properties of set operators.

5.5.2 Abstraction and Concretization Functions

We now de�ne the abstraction and concretization functions in a parametric way,
i.e. independently from the kind of abstract domain (denoted here by A) used to
abstract the single variables of the program. Let n be the number of variables of
the program (n = |Vars|). Let σ ∈ Rn be a tuple and σi ∈ R be the i-th element of
such tuple.

The abstraction function maps a set of concrete environments into a set of hy-
percubes, i.e. a set of tuples of abstract values belonging to the generic abstract
domain A:

αH : ℘(Vars→ R)→ ℘(An)

178 5. The Parametric Hypercubes Abstract Domain

The formal de�nition of αH follows:

αH(E) = {h : ∃e ∈ E : ∀v ∈ Vars : αA(e[v]) = hvarIndex(v)}

Given a set of environments E, we associate to it the set of hypercubes {h} such that
there is at least one environment e for which the abstraction of the concrete value
of each variable (αA(e[v]), where e ∈ E is an environment, v ∈ Vars is a variable
and αA is the abstraction function of A) corresponds to the side of the hypercube
assigned to such variable (hvarIndex(v), where the function varIndex : Vars→ N, given
a variable, returns its index in the tuples which compose the elements of H).

We now de�ne the concretization function. Let

γA : A → ℘(R)

be the concretization function of abstract values of the non-relational abstract do-
main A, and

getAbsValuev : N→ A
be the function that, given an integer index, returns the abstract value (in the
domain A) which corresponds to that index inside the hypercube tuple v. Then,
the function

γVal : ℘(An)→ ℘(Rn)

concretizes a set of hypercubes to a set of vectors of n �oating point values. The
formal de�nition of γVal follows:

γVal(V) = {σ : ∃v ∈ V : ∀i ∈ [1..n] : σi ∈ γA(getAbsValuev(i))}

where V ∈ ℘(An) is a set of hypercubes. Finally, based on γVal, we can de�ne the
function γH, which maps a subset V of ℘(An) into an environment. The function

γH : ℘(An)→ ℘(Vars→ R)

concretizes the hypercubes domain. Formally:

γH(V) = {[x 7→ σvarIndex(x) : x ∈ Vars] : σ ∈ γVal(V)}

The function γH maps the vectors returned by γVal into concrete environments relying
on the function varIndex de�ned above for the abstraction function.

5.5.3 Widening Operator

The domain described so far does not ensure the convergence of the analysis. In
fact, a while loop may add new hypercubes with increased indices at each iteration,
and the dimension of the abstract state (i.e., the hypercubes set) would increase at
each iteration without converging. Thus, we need a way to force the convergence of
the analysis.

5.5. Abstract Domain 179

Given our abstract state representation, we �x for each variable of the program
a maximum integer index ni such that ni represents the interval

[ni × wi..+∞]

The same happens symmetrically for negative values (i.e., the index −ni represents
the interval [−∞.. − ni × wi]). In this way, the set of indices of a given variable is
�nite: then, the resulting domain has �nite height and the analysis is convergent
without the need to employ a speci�c widening operator.

This approach may seem too rough since we establish the bounds of intervals
before running the analysis. However, this allows us to control the number of possible
intervals in our hypercubes, and this is particularly important for the e�ciency of
the overall analysis. In addition, when analysing physics simulations we can use the
initialization of variables and the property to verify in order to establish convenient
bounds for the intervals. For instance, in the case study presented in Section 5.2 we
are interested in checking if a ball stays in the screen, that is, if px is greater than
zero and less than a given value w representing the width of the screen. Since we are
only interested in proving that the balls exit the screen, we can abstract together
all the values that are greater than w.

Observe that more sophisticated widening operators could be de�ned as an alter-
native to the adopted solution described above, but this could a�ect the performance
of the resulting analysis.

5.5.4 Enhancing Precision: O�sets

In this subsection we present a modi�cation of the abstract elements de�nition,
in order to increase the precision of the domain. In fact, a big loss of precision
may occur due to the fact that hypercubes proliferate too much, even using small
widths. Consider, for example, the statement x = x + 0.01 (which is repeated at
each iteration of the while loop) with 1.0 as the width associated to x. If the initial
interval associated to x was [0.0..1.0], after the �rst iteration we would obtain two
intervals ([0.0..1.0] and [1.0..2.0]) because the resulting interval would be [0.01..1.01],
which spans over two �xed-width intervals. For the same reason, after the second
iteration we would obtain three intervals ([0.0..1.0], [1.0..2.0] and [2.0..3.0]) and so
on: at each iteration we would add one interval.

In order to overcome these situations, we further improve the de�nition of our
domain: in each hypercube, each variable vi (associated to width wi) is related to
(other than an integer index i representing the �xed-width interval [i×wi..(i+ 1)×
wi]) a speci�c o�set

(om, oM)

inside such an interval. In this way, we use a sub-interval (of arbitrary width) inside
the �xed-interval width, thereby restricting the possible values that the variable can
assume. Both om and oM must be smaller than wi, greater than or equal to 0 and

180 5. The Parametric Hypercubes Abstract Domain

om ≤ oM . Then, if i and (om, oM) are associated to vi, this means that the possible
values of vi belong to the interval

[(i× wi) + om..(i× wi) + oM]

An element of our abstract domain is then stored as a map from hypercubes to
tuples of o�sets. In this way, we can keep the original de�nition of a hypercube as a
tuple of integers, but we also map each hypercube to a tuple of o�sets (one for each
variable). Now an abstract state is de�ned by

M : Z|V ars| → (R× R)|V ars|

that is a map where the domain is the set of hypercubes, and the codomain is the
set of tuples of o�sets.

The new partial order has to check, other than the set inclusion between the
two sets of hypercubes, also that the o�sets of the presumed-smaller element are all
included in the o�sets of the bigger element. Formally:

M1 ≤H M2 ⇔ dom(M1) ⊆ dom(M2) ∧ ∀h ∈ dom(M1) : M1(h) ≤O M2(h)

where ≤O is the partial order between tuples of o�sets and is de�ned as follows:

ρ1 ≤O ρ2 ⇔ ∀i ∈ [0, |V ars| − 1] : [o1i , O
1
i] ⊆ [o2i , O

2
i]

where ρ1, ρ2 are two tuples of pairs of o�sets de�ned such that ρ1i = (o1i , O
1
i)∀i ∈

[0, |V ars| − 1] and ρ2i = (o2i , O
2
i)∀i ∈ [0, |V ars| − 1]. The partial order ≤O checks

if the interval de�ned by each pair of o�sets of the �rst tuple ρ1 is included in the
interval de�ned by the corresponding o�set of the second tuple ρ2.

The greatest lower bound between two abstract states (M = M1 tM2) is
de�ned by

dom(M) = {h : h ∈ (dom(M1) ∩ dom(M2)) ∧ intersected(M1(h),M2(h))}

and
∀h ∈ dom(M) : M(h) = intersection(M1(h),M2(h))

where intersected(ρ1, ρ2) is a boolean function which checks if all pairs of o�sets
from the tuples in input have an intersection:

intersected(ρ1, ρ2) = true⇔ ∀i ∈ [0, |Vars| − 1] : [o1i , O
1
i] ∩ [o2i , O

2
i] 6= ∅

and intersection(ρ1, ρ2) is the function which actually computes the tuple of o�sets
resulting from the intersection of o�sets from ρ1, ρ2:

intersection(ρ1, ρ2) = ρ : ∀i ∈ [0,Vars]− 1] : ρi = [o1i , O
1
i] ∩ [o2i , O

2
i]

5.6. Abstract Semantics 181

The least upper bound between two abstract states (M = M1tM2) is de�ned
by dom(M) = dom(M1) ∪ dom(M2), and

∀h ∈ dom(M) : M(h) =


M1(h) if h ∈ dom(M1) ∧ h /∈ dom(M2)

M2(h) if h ∈ dom(M2) ∧ h /∈ dom(M1)

merge(M1(h),M2(h)) otherwise

where merge(o1, o2) creates a new tuple of o�sets by merging the two tuples of
o�sets in input: for each pair of corresponding o�sets (for example (m1,M1) and
(m2,M2)), the new o�set is the widest combination possible (i.e., (min(m1,m2) and
max(M1,M2))). Note that this de�nition corresponds to the pointwise application
of the least upper bound operator over intervals.

The widening operator is extended in the same way: it applies the standard
widening operators over intervals pointwisely to the elements of the vector repre-
senting the o�sets.

As for the abstraction and concretization functions, αH and γH have been
de�ned in a generic way with respect to the abstraction and concretization functions
of the non-relational domain used to abstract the single variables. Then, we just have
to explicit how to modify the abstraction and concretization function of intervals of
real values by considering also an o�set inside the interval. Both new de�nitions are
very simple:

• for the concretization function, given a �xed-width interval [a, b] and a pair of
o�sets (o,O), instead of returning the interval [a, b], we return the sub-interval
[a+ o, a+O];

• for the abstraction function, given a value r ∈ R, suppose that r ∈ [i×w..(i+
1) × w] (where w is the width associated to the variable we are abstracting).
Then, we return also the o�set pair (r − i × w, r − i × w) together with the
index i which represents the interval containing r.

5.6 Abstract Semantics

In this section, we are going to de�ne the abstract versions of the operations pre-
sented in Section 5.3. For the most part, the abstract semantics applies existing
semantic operators of boxed Intervals [51]. Here we sketch how these operators are
used to de�ne the semantics on H. In particular, we will de�ne:

• the abstract semantics I of arithmetic expressions, which receives an expression
and a single hypercube in input and returns an interval of real values resulting
from the execution of that expression when the variable values belong to that
hypercube.

182 5. The Parametric Hypercubes Abstract Domain

• the abstract semantics B of Boolean comparisons, which receives a single hy-
percube and two expressions in input and returns an abstract value of the
boolean domain (namely, true, false, or >) obtained by comparing the two
expressions (through ≥, >,≤, < or 6=) when the variable values belong to that
hypercube. Boolean conditions can be combined through logical operators
(and, or, not) in the usual way (i.e., exploiting the abstract semantics of the
boolean abstract domain).

• the abstract semantics S of statements, which receives in input a set of hyper-
cubes (the current abstract state) and returns a new set of hypercubes (the
new abstract state after the execution of the statement).

5.6.1 The Abstract Semantics of Arithmetic Expressions, I

Note that the semantics I returns an interval of real values which width is not �xed.
The restriction on the interval width will be enforced by the semantics of statements
(i.e., by the variable assignment).

Constants

We de�ne a constant as a variable which gets assigned only once with a constant
value, or a numerical value which appears in some statements (without being as-
signed to a speci�c variable). To simplify the treatment of constants, we execute a
preprocessing on the program with constant propagation, to remove constant vari-
ables and replace their uses with their numerical value.

The abstract semantics of an expression made up by a constant numeric value is,
simply, an interval of zero width: the extremes of the interval are the same and they
are equal to the value of the constant. Then, the abstract semantics of a constant
is:

IJcK h = [c, c]

Note that the value of the hypercube in input (h) is ignored because it is not needed
to compute the result.

Intervals

The abstract semantic of an expression made up by a random value inside an in-
terval of real values is exactly that interval, without modi�cations. We ignore the
hypercube passed in input.

IJrand([m,M])K h = [m,M]

5.6. Abstract Semantics 183

Variables

When the expression is made up by a variable, we must consider the abstract value
of that variable in the hypercube passed in input. Let hi be the integer index
associated to the i-th dimension of the hypercube, Vi the i-th variable de�ned in
the program and wi the width associated in the analysis to such variable. Then, the
abstract semantics of a variable is:

IJViK h = [hi × wi..(hi + 1)× wi]

If we also using o�sets and (oi, Oi) is the pair of o�sets associated to Vi, then
the abstract semantics is:

IJViK h = [(hi × wi) + oi..(hi × wi) +Oi]

Arithmetic Operations

We considered only the most used arithmetic operators. In particular, we considered
sum (+), subtraction (−), product (×) and division (÷). These operators should
su�ce for most physics simulations (for example, our case study requires only sum
and product - the change of sign being a multiplication for −1). Anyway, our frame-
work can be easily extended to support other operations (for example modulus), by
simply de�ning their abstract semantics when working on intervals of values.

The expression E := E1 aop E2 returns the interval obtained using the interval
arithmetic de�ned in Section 2.2, applied on the two intervals resulting from the
execution of the abstract semantics on the expressions E1, E2.

5.6.2 The Abstract Semantics of Boolean Conditions, B
We use the semantics I of arithmetic expressions to de�ne the abstract semantics
B of Boolean comparisons. This semantics returns an abstract value of the boolean
domain (true, false, or >). As it happened with I, also in this case we work with a
single hypercube (it will be the semantics of statements to deal with sets of hyper-
cubes).

Given a hypercube h and a Boolean comparison E1 bop E2 (where bop ∈ {≥, >
,≤, <, 6=}), B returns the boolean abstract value obtained by comparing the intervals
returned by the execution of the semantics I on E1 and E2. For example, if IJE1Kh
returns the interval i1 = [a, b] and IJE2Kh returns the interval i2 = [c, d], then we
have to compare the intervals i1, i2. The abstract comparison between them depends
on the speci�c comparison operator present in the statement:

• i1 6= i2 returns true if b < c ∨ a > d, false if b = c = a = d, and > otherwise.

• i1 < i2 returns true if b < c, false if a > d, top otherwise.

• i1 > i2 returns true if a > d, false if b < c, top otherwise.

184 5. The Parametric Hypercubes Abstract Domain

• i1 ≤ i2 returns true if b ≤ c, false if a ≥ d, top otherwise.

• i1 ≥ i2 returns true if a ≥ d, false if b ≤ c, top otherwise.

B will be used by the statement semantics S when computing the semantics of
if and while statements to discard the hypercubes that surely do not satisfy the
condition. Note that in this way we lose some precision. For instance, imagine that
in a given hypercube we know that x ∈ [0..5] (because the �xed width of intervals
associated to x is 5), and we check if x ≤ 3 when computing the semantics of an
if statements. The answer of B will be >, and so this hypercube will be used to
compute the semantics of both the branches. Indeed, we would know that x ∈ [0..3]
in the then branch, and x ∈ [4..5] in the else branch. Nevertheless, we cannot track
this information in our hypercube, since the width of the interval associated to x is
5. Anyway, we will present (Section 5.7.3) how we can recursively modify the widths
of the analysis to improve precision in these cases.

5.6.3 The Abstract Semantics of Statements, S
Assignment

Usually, with non-disjunctive domains, the abstract semantics of an assignment is
straightforward: you have to compute the abstract semantics of the expression and
update the abstract value of the variable with the result. In our domain, though,
we track a di�erent kind of information: we represent possible values of all variables
together (through hypercubes) and we consider disjunctive information (a set of
valid hypercubes instead of a single hypercube). Therefore, we must devise a speci�c
abstract semantics to deal with the assignment statement.

Let the assignment be Vi = e, where e is an arithmetic expression. Our approach
can then be sketched as follows:

• we consider, separately, each hypercube h of the current state;

• we compute the abstract semantics of the arithmetic expression e passing to
it the hypercube h (IJeKh).

• we create a new hypercube (or some new hypercubes, depending on the width
of the resulting interval), where the abstract value of Vi is the abstraction of
the interval resulting from e.

This approach does not necessarily produce a single hypercube, since the interval to
assign could have a greater width than the �xed width of the assigned variable (for
example, the interval [0..6] when w = 5). It could also happen that the resulting
interval width is smaller than the �xed width, but the interval spans over more than
one hypercube side, due to the �xed space partitioning (for example, the interval
[3..6] when w = 5, because the space is partitioned in [0..5], [5..10], etc.). In these

5.6. Abstract Semantics 185

cases, we build up several hypercubes that cover the resulting interval. Then, the
cardinality of H can increase after a statement execution, because each hypercube
could produce many new hypercubes. On the other hand, if many hypercubes of the
initial state map to the same hypercube in the resulting state, it could also happen
that the cardinality of H decreases (or remains unmodi�ed) after the execution of
an assignment.

Formally:

SJVi = eK H =
⋃
h∈H

assign(h, Vi, IJeK h)

where h is a hypercube, Vi is the assigned variable, and the assign function is
de�ned as:

assign(h, Vi, [a, b]) = {h[i 7→ m] : [m× wi..(m+ 1)× wi] ∩ [a..b] 6= ∅}

where [a..b] is the interval we are assigning (which depends on the hypercube
h, since we use its variables values to compute the result of the expression). The
output of this function is the set of hypercubes covering all the intervals that overlap
with the interval assigned to the given variable.

We repeat this process for each hypercube h in the abstract state by using it as
input for the computation of assign. In this way, we are able to over-approximate
the assignment while also keeping the �xed widths of the intervals, which are very
important for performance issues.

Assignment and O�sets

O�sets allow us to recover some precision when computing the abstract semantics of
assignment. In particular, as the expression semantics I returns intervals of arbitrary
widths, we can use such exact result to update the o�sets of the abstract state.

Formally, the semantics of the assignment considering o�sets is modi�ed as fol-
lows:

assign(h, Vi, [a..b]) = {h[i 7→ (m, om, oM)] : [m× wi..(m+ 1)× wi] ∩ [a..b] 6= ∅}

where h is a hypercube, Vi is the assigned variable, [a..b] is the interval we are
assigning and om, oM are computed as:

om =

{
0 if a ≤ (m× wi)
a− (m× wi) otherwise

oM =

{
wi if b ≥ ((m+ 1)× wi)
b− (m× wi) otherwise

186 5. The Parametric Hypercubes Abstract Domain

Consider the evaluation of statement x = x + 0.01 inside a while loop with 1.0
as width of x and [0..1] as initial value of x. After the �rst iteration, the abstract
semantics computes [0.0..1.0] and [1.0..2.0] with o�sets [0.01..1.0] and [1.0..1.01],
respectively. In this way, at the following iteration we would obtain again the same
two intervals with the o�sets changed to [0.02..1.0] and [1.0..1.02]. This results is
strictly more precise than the one obtained without o�sets, and it is an essential
feature of our abstract domain. For instance, in the case study of Figure 5.1 o�sets
will allow us to discover if a bouncing ball exits the screen after N iterations of the
while loop.

If-then-else

To precisely deal with branches of if statements, we partition the abstract state H
with respect to the evaluation of the branching condition. In particular, we compute
the abstract semantics B of the boolean condition on each hypercube of H and we
assign each hypercube to a speci�c partition, based on the result of the condition
semantics. Therefore, we obtain three partitions:

• the hypercubes for which the condition evaluates to true (pt);

• the ones for which the condition evaluates to false (pf);

• the ones for which we do not have a de�nitive answer (p>).

Once obtained these three partitions, we can compute selectively the abstract se-
mantics of the two branches, and in particular the then branch with pt ∪ p>, and
the else branch with pf ∪ p>.

Formally, the semantics of the if statements follows:

SJif(B) then P1 else P2K H = (SJP1K (pt ∪ p>)) ∪ (SJP2K (pf ∪ p>))

where

pt = {h ∈ H : BJBK h = true}
pf = {h ∈ H : BJBK h = false}
p> = {h ∈ H : BJBK h = >}

Concatenation of Statements

The abstract semantics of the concatenation of two statements is straightforward:
it executes the abstract semantics of the �rst statement, it takes the result and it
passes it as input to the abstract semantics of the second statement. Formally:

SJP1;P2K H = SJP2K (SJP1K H)

5.7. Tuning the Analysis 187

While Loop

The semantics of the while loop while(B)P exploits the standard abstract semantics
for loops, with one peculiarity: at each abstract execution of the loop iteration, the
semantics of the loop body is applied only on a restricted subset of hypercubes, i.e.
the ones for which the boolean condition of the loop evaluates to true or >.

Formally, let Ŝ = SJP K be the abstract semantics of the loop body P and let
H0 be the pre-loop state (i.e., a set of hypercubes). Then, the abstract iterations to
compute the semantics of the loop are de�ned as follows:

H1 = H0 ∪ (Ŝ HT
0)

H2 = H1 ∪ (Ŝ HT
1)

...

Hn = Hn−1 ∪ (Ŝ HT
n−1)

whereHT
i = {h ∈ Hi : BJBK h = (true∨>)}, that is, HT

i is the subset of hypercubes
of Hi for which the abstract evaluation of the loop condition B returns true or >.
We exclude from the computation of the loop body semantics the hypercubes which
certainly do not satisfy the loop condition B.

The abstract semantics of the loop is then obtained as the �xpoint of the iter-
ations de�ned above: we continue computing such iterations until Hn = Hn−1 for
some n ∈ N or until we reach a maximum number n# of iterations (after which we
employ the widening to ensure convergence in a �nite number of steps).

5.7 Tuning the Analysis

In this section we are going to talk about some practical issues regarding the analysis
using the Hypercubes domain. In particular, we are going to explain: (i) how to
initialize the hypercubes set at the beginning of the analysis, (ii) how to keep track
of the source of each hypercube (to give more interesting information other than
the boolean answer to the veri�cation of the property), and (iii) how to select the
interval widths in the hypercubes.

5.7.1 Initialization

Before starting the analysis we have to determine the number of sides each hypercube
will have. To do this, we must �nd all the variables (V ars) of the program which
are not constants (i.e., assigned only once at the beginning of the program).

We require the program to initialize all the variables at the beginning of the
program. Note that physics simulations, like our case study, satisfy this requirement
because they are made up by an initialization of all variables, followed by a while

loop which contains the core of the program (i.e., the update of the simulated world).

188 5. The Parametric Hypercubes Abstract Domain

Otherwise, we can consider a dummy initialization (i.e., 0.0) for all variables which
are not initialized at the beginning of the program. The actual initialization of the
variables will be treated as a normal assignment, without any loss of precision.

The initialization of the analysis is then made in two steps:

1. For each initialized variable, we compute its abstraction in the non-relational
domain chosen to represent the single variables. The resulting set of abstract
values could contain more than one element. Let us call α(V) the set of
abstract values associated to the initialization of the variable V ∈ V ars.

2. We compute the Cartesian product of all sets of abstracted values (one for
each variable). The resulting set of tuples (where each tuple has the same
cardinality as V ars) is the initial set of hypercubes of the analysis.

Formally:
H = X

V ∈V ars

α(V)

As an example, consider the code of our case study in Figure 5.1. First of
all, we must identify the variables which are not constants: dt, g, k are assigned
only during the initialization, so we do not include them in V ars. The set of not-
constant variables is then V ars = {V1 = px, V2 = py, V3 = vx, V4 = vy}, and so
|V ars| = 4. Suppose that the widths associated to the variables are w1 = 10.0, w2 =
25.0, w3 = 30.0, w4 = 5.0. Then, the abstraction of each variable is α(V1) = {0},
α(V2) = {0, 1}, α(V3) = {0, 1}, and α(V4) = {−6}. The Cartesian product of these
abstractions brings us to the following initial set of hypercubes:

H = {h1 = (0, 0, 0,−6), h2 = (0, 0, 1,−6), h3 = (0, 1, 0,−6), h4 = (0, 1, 1,−6)}

If we use o�sets, we also associate each hypercube to a tuple of pairs of o�sets (one
for each variable). For example, the hypercube h1 would be associated to the o�sets
tuple O = 〈(0.0, 10.0), (0.0, 25.0), (0.0, 30.0), (0.0, 5.0)〉.

5.7.2 Tracking the Origins

During the analysis of a program we also track, for each hypercube of the current
abstract state, the initial hypercubes (origins) from which it is derived. To store
such information, we proceed as follows.

Let Hi be the set of hypercubes obtained for the i-th statement of the program.
The data structure of a hypercube h contains also an additional set of hypercubes,
hor, which are its origins and are always a subset of the initial set of hypercubes,
i.e., ∀h : hor ⊆ H0.

At the �rst iteration, each hypercube contains only itself in its origins set:

∀h ∈ H0 : hor = {h}

5.7. Tuning the Analysis 189

When we execute a statement of the program, each hypercube produces some
new hypercubes: at this stage, the origins set is simply propagated. For example,
if h generates h1, h2, then hor1 = hor2 = hor. When merging all the newly produced
hypercubes in a single set (the abstract state associated to the point of the program
just after the executed statement), we also merge through set union the sets of
origins of any repeated hypercube.

For example, consider Hi = {ha, hb} and let h1, h2 be the hypercubes produced
by ha executing statement i-th and h2, h3 be those produced by hb. Then, Hi+1 =
{h1, h2, h3} and hor1 = hora , h

or
2 = hora ∪ horb and hor3 = horb .

5.7.3 Width Choice

The choice of the interval widths is quite important, because it in�uences both the
precision and e�ciency of the analysis. The widths in�uence the granularity of the
space partitioning with respect to each variable. On the one hand, if we use smaller
widths we certainly obtain more precision, but the analysis risks being too slow. On
the other hand, with bigger widths the analysis will be surely faster, but we could
not be able to verify the desired property.

The width selection can be automatized. We implemented a recursive algo-
rithm which adjusts the widths automatically, starting with bigger ones and then
decreasing them only in the portions of space where it is really needed, to avoid
compromising the performance.

We start with wide intervals (i.e., coarse precision, but fast results) and we run
the analysis for the �rst time. We track, for each hypercube of the �nal abstract
state, the initial hypercubes (origins) from which it is derived (as explained in the
previous section).

At the end of the analysis, we check, for each hypercube of the �nal set, if the
desired property is veri�ed. We associate to each origin its �nal result by merging the
results of its derived �nal hypercubes: some origins will certainly verify the property
(i.e., they produce only �nal hypercubes which satisfy the property), some will not,
and some will not be able to give us a de�nite answer (because they produce both
hypercubes which verify the property and hypercubes which do not verify it). We
can partition the starting hypercubes set with respect to this criterion (obtaining,
respectively, the yes set, the no set and the maybe set).

We run the analysis again, but only on the origins which did not give a de�nite
answer (the maybe set). To obtain more precise results in this speci�c space portion,
the analysis is now run with halved widths. Note that this step is only performed
until we reach a speci�c threshold, i.e., the minimum width allowed for the analysis.
This parameter can be speci�ed by the user (together with the starting widths).
The smaller this threshold is, the more precise (but slower) the analysis becomes.

At the end of this recursive process, we obtain three �nal partitions of the variable
space: a set of starting hypercubes which certainly verify the property (yes set), a
set of starting hypercubes which certainly do not verify the property (no set), and

190 5. The Parametric Hypercubes Abstract Domain

a set of starting hypercubes which, at the minimum width allowed for the analysis,
still do not give a de�nite answer (maybe set). The analysis is then able to tell us
which initial values of the variables permit to verify the property (the union of all
the yes sets encountered during the recursive algorithm) and which do not. Thanks
to these results, the user can modify the initial values of the program, and run
the analysis again, until the answer is that the property is veri�ed for all initial
values. In our case study, for example, we can adjust the possible initial positions
and velocities until we are sure that the ball will exit the screen in a certain time
frame.

The formalization of this recursive algorithm is presented in Algorithm 5.

Algorithm 5 The width adjusting recursive algorithm
function Analysis(currWidth,minWidth, startingHypercubes)

return (yes ∪ yes′, no ∪ no′,maybe′)
where
(yes, no,maybe) = hypercubesAnalysis(currWidth, startingHypercubes)
if currWidth/2.0 ≥ minWidth then

(yes′, no′,maybe′) = Analysis(currWidth/2.0,minWidth,maybe)
else

(yes′, no′,maybe′) = (Set.empty, Set.empty,maybe)
end if

end function

The overall analysis takes as input the starting width, the minimum width al-
lowed and the set of starting hypercubes (obtained from the initialization of the
program as described in Section 5.7.1). It executes the analysis on such data
with the function hypercubesAnalysis, which returns three sets of hypercubes
(yes, no, maybe) with the meaning explained above. Then, if the halved width is
still greater than the minimum one allowed, the algorithm performs a recursive step
by repeating the analysis function only on the maybe hypercubes set (with halved
width).

Note that the three �nal hypercubes sets (the yes,no,maybe partitions) will con-
tain hypercubes of di�erent sizes: this happens because each hypercube can come
from a di�erent iteration of the analysis, and each iteration is associated to a speci�c
hypercube size. A certain portion of the variable space could give a de�nite answer
even at coarse precision (for example, when the horizontal velocity of the ball is suf-
�ciently high, the values of other variables do not matter so much), while another
portion could need to be split in much smaller hypercubes to give interesting results.

5.8. Experimental Results 191

5.8 Experimental Results

In this section we present some experimental results on the case study introduced in
Section 5.2. We want to check if Property 1 is veri�ed on the program of Figure 5.1
and, in particular, we want to know which subset of starting values brings to verify
it. We implemented our analysis in the F# language with Visual Studio 2012. We
ran the analysis on an Intel Core i5 CPU 1.60 GHz with 4 GB of RAM, running
Windows 8 and the F# runtime 4.0 under .NET 4.0.

5.8.1 Setting Up

We set the initial widths associated to all variables to 100.0 and the minimum width
allowed to 5.0. As for Property 1, we set T = 5, i.e., we want to verify if the ball
is surely out of the screen within 5 seconds from its generation. Since dt = 0.05,
a simulation during 5 seconds corresponds to 5/0.05 = 100 iterations of the while

loop. To verify this property, we apply trace partitioning [118] to track one abstract
state per loop iteration until the 100-th iteration (we do not need to track precise
information after the 100th iteration). The position which corresponds to the exiting
from the screen is 100.0: if after 100 iterations the position px is surely greater than
100.0, then Property 1 is veri�ed. The whole of these values (starting variables
values and widths, minimum width allowed, number of iterations, position to reach)
make up our standard workbench data. We will experiment to study how e�ciency
and precision change when modifying some parameters of the analysis, and for each
test we will specify only the values which are di�erent with respect to the standard
workbench data. We will start by running the analysis on the standard workbench
data, and then we will experiment by changing other values, one at a time, to study
how the e�ciency and precision change. In particular, we will start by showing how
precision and performance are a�ected by changing the minimum width allowed.
After that, we will concentrate on the horizontal velocity variable (vx) and we will
show how we can use our analysis as a form of �assisted debugging� to understand
which starting values of a variable bring to verify the property and which not.

For each test, the analysis returns three sets of starting hypercubes:

• the initial values of the variables which satisfy the property (yes set);

• the initial values of the variables which surely do not satisfy the property (no
set);

• the initial values of the variables which may or not satisfy the property (maybe
set).

To make the results more immediate and clearer, we computed for each yes and
no set the corresponding volume covered in the space by their hypercubes. We
also consider the total volume of the variable space, i.e., the volume covered by

192 5. The Parametric Hypercubes Abstract Domain

Table 5.2: Varying the minimum width allowed (MWA)
MWA Time (sec.) yes+no volume Precision
3 530 131934 88%
5 77 99219 66%
12 11 40625 27%
24 1 25000 17%
45 0.2 0 0%

all possible values with which the program variables are initialized. In the case
of the standard workbench data, the total volume is 10.0 × 50.0 × 60.0 × 5.0 =
150000. Dividing the sum of yes and no volumes by the total volume, we obtain
the percentage of the cases for which the analysis gives a de�nite answer. We will
call this percentage the precision of the analysis.

Note that the total volume refers to the initial variable space, i.e., to the space
de�ned by the intervals assigned to the variables at the beginning of the program.
The yes, maybe, and no volumes refer to the same space, since they are de�ned in
terms of starting hypercubes. These volumes are all �nite, since we suppose that
all the variables are initialized by a bound interval, and this is always the case in
Computer Games Software.

5.8.2 Varying the Minimum Width Allowed

First of all, we run the analysis modifying the minimum width allowed (MWA)
parameter, to see how the precision and performance are a�ected. In Table 5.2
and Figure 5.6 we report the results of these tests. In Figure 5.6 the horizontal
axis represents the value of the MWA parameter. On the vertical axis we reported,
respectively, the precision of the analysis (as de�ned in the previous paragraph) and
the execution time.

From these results, we can clearly see the trade-o� between performance and
precision: the performance decreases when we set small widths, and it is instead
very good on bigger ones. On the other hand, by decreasing the MWA we also gain
more precision. For instance, when MWA = 45 we do not have any certain answer,
while with MWA = 3 the certain answers cover the 88% of the volume space, a quite
precise result.

5.8.3 Finding Appropriate Starting Values

In Table 5.3 we reported the results of a series of successive tests obtained by chang-
ing the horizontal velocity of the ball (vx). In particular, we made up a series of
tests simulating the behaviour of a developer using our analysis to debug his code.

• Let us suppose that we wrongly inserted a starting interval of negative values

5.8. Experimental Results 193

Figure 5.6: Varying the minimum width allowed - Plots

194 5. The Parametric Hypercubes Abstract Domain

(between -120 and 0) for the horizontal velocity variable vx. The �rst test (#
1) shows us that the program does not work correctly, since the no volume
is 100%. Also, to give this answer, the analysis is very quick because a low
MWA (45) su�ces.

• After that, we try (test # 2) with very high positive velocities (between 60
and 120) and we obtain (also very quickly) a 100% of positive answer: we then
know for sure that with these velocities the program works correctly.

• Now it remains to verify what happens with velocities between 0 and 60, and
we try this in test # 3, where we decrease the MWA because we need more
precision (the results with greater MWA were presented in Section 5.8.2).
Some values of vx (i.e., ≥ 31.25) ensure that the property is veri�ed, some
other values (i.e., ≤ 12.5) ensure that the property is not veri�ed, but the
ones in between are uncertain.

• To do a double check about this data, we execute also tests # 4 and # 5, where
we keep, respectively, only the low (between 0 and 15) and the high (between
30 and 60) values: in both cases the analysis is fairly quick in con�rming the
100% no and 100% yes.

• So we try with a smaller MWA (3) in test # 6 on the interval [15..30]: about
a quarter of the starting values produces yes and another quarter produces
no. The no derives from low values (smaller than 18) and we con�rm this in
test # 7. As for medium-high values, test # 6 shows that, with a velocity
greater than 25, the answer is almost always yes. It is not always yes because,
with this range of velocities, the values of other variables become important
to verify the property.

• Test # 8, in fact, shows us that velocities within 25 and 30 produce an 82%
of yes, but a 18% of maybe remains.

• Finally, in test # 9 we modify also other two variables with values chosen
looking at the results from test # 6 and # 8: in particular, we set the horizontal
position (px) between 5 and 10, and the vertical position (py) between 40 and
50. With such values, the answers are 100% yes.

After these tests, the developer of the case study is sure that, with horizontal
velocities greater than 30, the program certainly satis�es the property chosen to
verify). For values between 25 and 30, other variable values must be changed (px
and py) to make the program work correctly. Making some other tests, we could
also explore what happens with values between 18 and 25. However, with values
below 18 the program will certainly not satisfy the property.

5.8. Experimental Results 195

Table 5.3: Varying the horizontal velocity (vx)
Test vx interval MWA Time (sec) Answer Comment
1 [-120 .. 0] 45 1 no = 100% With negative values the

answer is always no.
2 [60 .. 120] 45 0.2 yes = 100% With very high positive val-

ues the answer is always yes.

3 [0 .. 60] 5 77
yes = 45%
no = 21%

Uncertainty. High values
(≥ 31.25) imply yes, low
values (≤ 12.5) imply no.

4 [0 .. 15] 24 0.5 no = 100% Double check on low values:
answer always no.

5 [30 .. 60] 5 30 yes = 100% Double check on medium-
high values: answer always
yes.

6 [15 .. 30] 3 526
yes = 27%
no = 25%

Uncertainty. Low values (≤
18) imply no, for high val-
ues (≥ 25) depends also on
other variables.

7 [15 .. 18] 5 7 no = 100% Double check on medium-
low values: answer always
no.

8 [25 .. 30] 3 164
yes = 82%
maybe = 18%

Double check on medium-
high values: answer almost
always yes. In this case, also
values of other variables in-
�uence the result.

9 [25 .. 30] 5 1 yes = 100% Modi�ed also py ([40 .. 50])
and px ([5 .. 10]). Answer
always yes.

196 5. The Parametric Hypercubes Abstract Domain

5.8.4 Varying Other Parameters

In Section 5.8.2 we showed how the precision and performance of the analysis change
when modifying the MWA parameter. Here, we do similar experiments for other
variables of the program: we will change their initial values (one variable at a time)
and we will show how this gives us some important clues about the behaviour of the
simulation. In this case, in fact, we focus only on the volume of the yes set (instead
of the precision, i.e. the whole of yes and no): we want to understand how changing
the values of some parameters in�uences the satisfaction of the property to verify.
For each battery of tests, we will show a plot with the proportion of positive answers
(value in [0, 1], where 0 means that the property is never satis�ed and 1 means that
the property is satis�ed in every execution of the program because the yes volume
corresponds to the total volume) and a plot with the execution time.

Position to Reach

In Figure 5.7 we report the results obtained by running the analysis with di�erent
values for the position that the ball has to reach to exit the screen. When using
value 100 (the one from the standard workbench data), we obtain approximately a
45% of success rate, i.e., half of the starting values volume results in the veri�cation
of the property. Intuitively, this corresponds to say that roughly half of the balls
thrown by a continued execution of program will satisfy the property. However,
if we increase the value of this parameter, we see that the success rate decreases
rapidly, and with very high values (from 225 onward) the success rate is zero (i.e.,
no ball will ever be able to exit the screen within the desired time).

Horizontal Velocity, vx

In Figure 5.8 we report the results obtained by running the analysis with di�erent
starting intervals for the horizontal velocity of the ball, vx. This is very similar to
what we did in Section 5.8.3 and in fact it con�rms our previous �ndings: intervals
covering only negative values never satisfy the property (the ball goes in the wrong
direction!), while intervals covering high values (i.e., [40, 100]) always satisfy the
property.

Vertical Position, py

In Figure 5.9 we report the results obtained by running the analysis with di�erent
starting intervals for the vertical position of the ball, py. We can see that this
variable does not in�uence signi�cantly the veri�cation of the property: the success
rate is 45% when py ∈ [0, 50], while it is slightly less than 60% when the interval is
higher ([50, 100] or [100, 150]).

5.8. Experimental Results 197

Figure 5.7: Varying the position to reach to exit the screen

Figure 5.8: Varying the starting horizontal velocity

198 5. The Parametric Hypercubes Abstract Domain

Figure 5.9: Varying the starting vertical position

Vertical Velocity, vy

In Figure 5.10 we report the results obtained by running the analysis with di�erent
starting intervals for the vertical velocity of the ball, vy. In this case, too, this
variable does not seem to hold great signi�cance regarding the property of interest:
the success rate does not change much when varying the starting interval of vy, and,
especially, there is not a recognizable pattern in this change.

Horizontal Position, px

In Figure 5.11 we report the results obtained by running the analysis with di�erent
starting intervals for the horizontal position of the ball, px. Here the pattern is
clear: the higher the starting horizontal position (i.e., the more to the right of the
screen is the starting point), the higher the success rate. This is very reasonable
and it is the dual of modifying the position to reach: both parameters in�uence the
horizontal distance of the ball from its starting point to its objective.

5.8.5 Discussion

In these scenarios, we ran the analysis by manually changing the initial values of
program variables. In Figure 5.12 you can see the GUI of the analysis tool that
we implemented and used to obtain the results presented in the previous sections.
From such an interface, the user can set up the starting intervals of all four vari-

5.8. Experimental Results 199

Figure 5.10: Varying the starting vertical velocity

Figure 5.11: Varying the starting horizontal position

200 5. The Parametric Hypercubes Abstract Domain

Figure 5.12: Analysis tool

ables (px, vx, py, vy), as well as the starting widths of the hypercubes sides and the
minimum width allowed. In the results pane, the tool writes the execution time of
the analysis, together with the volumes of the yes and no sets. It also computes the
precision of the analysis in percentage as explained before (yes+no

total
).

Notice that this process could be automatized. This process can be highly inter-
active, since the tool could show to the user even partial results while it is automat-
ically improving the precision by adopting narrower intervals on the maybe portion
as described by Algorithm 5. In this way, the user could iterate the process until it
�nds suitable initial values.

The execution times obtained so far underline that the analysis is e�cient enough
to be the basis of practical tools. Moreover, the analysis could be parallelized by
running in parallel the computation of the semantics for each initial hypercube:
exploiting several cores or even running the analysis in the cloud, we could further
improve the e�ciency of the overall analysis.

5.8.6 Extending the Case Study from 2D to 3D

The bouncing ball we used as case study featured a two-dimensional motion (hor-
izontal and vertical). However, the most part of modern video games are set in
three dimensions. For example, think about sport games: in many of them we can
�nd a ball which bounces (tennis, volleyball, basketball, soccer, etc.). To consider
these applications we must extend the 2D bouncing ball to 3D, by adding a third
positional variable (pz) together with a velocity in such direction (vz). The code of
the 3D motion of the bouncing ball is very similar to the 2D one (see Figure 5.13),
because the depth component (z) of the motion behaves like the horizontal one (x).
Note that we put dots instead of an interval in the assignment of some variables
(py, vx, vz) because we will vary them in the following tests.

Since our approach is generic with respect to the number of program variables,

5.8. Experimental Results 201

1 px = rand([0.0, 10.0]), py = rand(...), pz = rand([0.0,10.0])

2 vx = rand(...), vy = rand([-30.0, -25.0]), vz = rand(...)

3 dt = 0.05, g = -9.8, k = 0.8

4

5 while (true) do

6 if(py >= 0.0) then

7 (px, py, pz) = (px + vx * dt, py + vy * dt, pz + vz * dt)

8 (vx, vy, vz) = (vx, vy + g * dt, vz)

9 else

10 (px, py, pz) = (px + vx * dt, 0.0, pz + vz * dt)

11 (vx, vy, vz) = (vx, -vy, vz) * k

Figure 5.13: The bouncing ball case study extended in three dimensions

it is immediate to apply it to this new case study. The hypercubes will now be
part of a six-dimensional variable space, because we need to track the values of six
variables (px, py, pz, vx, vy, vz). Obviously, increasing the variable space increases
also the complexity of the analysis. Note that the property to verify changes: the
ball can now exit the screen also because it is too far from the observer (i.e., its
depth is very high). The purpose of the analysis is then to verify if the ball exceeds
a certain position in x or in z within a speci�c time frame (the same one of the 2D
case study, 5 seconds).

In Table 5.4 we report the results of some tests executed on the 3D case study.
We experiment by modifying the values of some parameters, while keeping some
others �xed. In particular, the starting values of px, pz, vy are always included in
the intervals [0, 10], [0, 10], [−30,−25], respectively. For each test, we report the
starting values of py, vx, vz, the minimum width allowed (MWA), the position to
reach (both in x and z) to exit the screen (for the veri�cation of the property), the
execution time in seconds, the yes+no and total volumes, as well as the derived
value of precision in percentage (computed as described before, i.e. yes+no

total
× 100).

Some general considerations about the tests results follow:

• the variable space to explore is consistently bigger than in the 2D case study,
where the total volume of the standard workbench data was 150000. Here,
the smallest total volume is 500000 but we consider also much bigger volumes
(like the 30 millions of test # 1, even though in such case the performance
su�ers considerably).

• the precision of the approach is very high. In most tests, we are able to classify
100% of the starting values volume between yes e no (i.e., between the starting
values which certainly make the program satisfy - or not - the property).

• the analysis can be very fast in some cases (i.e., tests # 2,3,4) .

202 5. The Parametric Hypercubes Abstract Domain

Table 5.4: Results of the analysis of the 3D bouncing ball case study
#
test

py vx vz M
W
A

Position
x to
reach

Position
z to
reach

Time
(sec.)

yes+no

volume
total vol-
ume

Precision

1 [0,50] [0,60] [30,50] 5 100 100 2153 30000000 30000000 100.0%
2 [40,50] [0,10] [40,50] 5 100 100 0.5 500000 500000 100.0%
3 [40,50] [50,60] [40,50] 5 100 100 0.4 500000 500000 100.0%
4 [40,50] [0,10] [0,10] 5 100 100 0.5 500000 500000 100.0%
5 [40,50] [0,30] [25,55] 5 100 100 270 3562500 4500000 79.2%
6 [10,20] [0,30] [25,55] 5 100 100 285 3562500 4500000 79.2%
7 [40,50] [20,30] [25,35] 5 100 100 65 187500 500000 37.5%
8 [40,50] [20,30] [25,35] 3 100 100 3613 499999.938 500000 100.0%
9 [40,50] [50,60] [40,50] 5 200 200 112 499999.969 500000 100.0%

• if the precision of the result is not satisfactory, we can improve it by using a
smaller MWA, as clearly demonstrated by tests # 7 and 8. The precision of test
7 is smaller than 40% (with a good performance). To improve this result,
we execute again the test decreasing the MWA to 3. The precision remarkably
improves (100%) but, at the same time, the performance is compromised.

5.9 Related Work

As already discussed in Section 5.1, computer games ful�l a very important role
in today's software panorama. Such programs would greatly bene�t from static
analysis approaches which could let the developer verify not only structural but also
behavioural properties of the code. Unfortunately, until now there is lack of such
tools and we try to �ll this gap with our proposed abstract domain H. Parametric
Hypercubes is a disjunctive non-relational abstract domain speci�cally tailored to
analyze physics simulations (an integral part of almost every modern game) but
which is also parametric on the inner domain (the one used to abstract the single
variables) and could thus be exploited in many other applications.

In this section we are going to: (i) explore the similarities between H and other
(general purpose) abstract domains known in the literature; and (ii) compare our ap-
proach with existent analysis techniques for hybrid systems (which are quite similar
to our de�nition of physics simulation).

5.9.1 Abstract Domains

A number of di�erent numerical abstract domains have been studied in the litera-
ture, and they can be classi�ed with respect to a number of di�erent dimensions:
�nite versus in�nite height, relational versus non-relational, convex versus possibly
non-convex, and so on. The computational cost increases when lifting from �nite
non�relational domains like Sign or Parity, to in�nite non�relational domains like

5.9. Related Work 203

Intervals, to sophisticated in�nite relational domains like Octagons [123], Polyhedra
[62], Pentagons [114], and Stripes [74], or to donut-like non-convex domains [78].
Moreover, when considering possibly non-convex disjunctive domains, as obtained
through the power-set operator [77], the complexity of the analysis is growing (as
well as its accuracy) in a full orthogonal (exponential) way. Instead, we designed a
speci�c disjunctive domain relying on Intervals that reduces the practical complexity
of the analysis by adopting indexes and o�sets.

Noticeable e�orts have been put both to reduce the loss of precision due to the
upper bound operation, and to accelerate the convergence of the Kleene iterative
algorithm. Some ways to reduce the space dimension in polyhedra computations
relying on variable elimination and Cartesian factoring are introduced in [91]. Seladji
and Bouissou [138] designed re�nement tools based on convex analysis to express
the convergence of convex sets using support functions, and on numerical analysis
to accelerate this convergence applying sequence transformations. On the other
hand, Sankaranarayanan et al. [137] faced the issue of reducing the computational
cost of the analysis using a power-set domain, by adopting restrictions based on �on
the �y elaborations� of the program's control �ow graph. E�ciency issues about
convergence acceleration by widening in the case of a power-set domain have been
studied by Bagnara et al. in [17]. All these domains do not track disjunctive
information.

The trace partitioning technique designed by Mauborgne and Rival [118] pro-
vides automatic procedures to build suitable partitions of the traces yielding to a
re�nement that has great impact both on the accuracy and on the e�ciency of the
analysis. This approach tracks disjunctive information, and it works quite well when
the single partitions are carefully designed by an expert user. Unluckily, given the
high number of hypercubes tracked by our analysis, this approach is de�nitely too
slow for the scenario we are targeting.

Our spatial representation and width adjustment resembles the hierarchical data-
structure of quadtrees in [101]. However, this paper contains only a preliminary
discussion of the quadtree domain, and as far as we know it has not been further
developed nor applied. Moreover, their domain is targeted to analyze only machine
integers (while we deal with real values) and the width is the same in each spatial
axis (while we use a di�erent width for each variable and o�sets).

[90] introduced the Boxes domain, a re�nement of the Interval domain with
�nite disjunctions: an element of Boxes is a �nite union of boxes. Each value of
Boxes is a propositional formula over interval constraints and it is represented by
the Linear Decision Diagrams data structure (LDDs). Note that the size of an
LDD is exponential in the number of variables. We use a �xed width and a �xed
partitioning on each hypercube dimension, while they do not employ constraints of
this kind. In addition, Boxes uses a speci�c abstract transformer for each possible
operation (for example, distinguishing x = x + v, x = a × x, x = a × y and also
making assumptions on the sign of constants) while our de�nitions are more generic.
Finally, Boxes' implementation is based on the speci�c data structure of LDDs and

204 5. The Parametric Hypercubes Abstract Domain

cannot be extended to other base domains, while our approach can.
Another similarity comes from the model checking �eld: our self-adaptive parametriza-

tion of the width shares some common concepts with the CounterExample Guided
Abstraction Re�nement (CEGAR) [39]. CEGAR begins checking with a coarse
(imprecise) abstraction of the system and progressively re�nes it, based on spurious
counterexamples seen in prior model checking runs. The process continues until
either an abstraction proves the correctness of the system or a valid counterexample
is generated.

5.9.2 Hybrid Systems

If on the one hand Parametric Hypercubes have been tailored to Computer Games
Software applications, on the other hand some of their features may also be ap-
plied to other contexts. In particular, our de�nition of Computer Games Software
applications (i.e., an in�nite reactive loop, a complex state space with many real-
valued variables, and strong dependencies among variables) exactly matches that of
real-time synchronous control-command software (found in many industries such as
aerospace and automotive industries). Hybrid systems 3 and hybrid automata have
been widely applied to verify this software. The formal analysis of large scale hybrid
systems is known to be a very di�cult process [13]. In general, existing approaches
su�er from performance issues or limitations on the property to prove, on the shape
of the program, etc. For instance, [25] deals a simpler example than ours (a bouncing
ball with only vertical motion) and in their benchmarks the variable space is quite
limited: the velocity is a �xed constant, and the starting position varies only between
10 and 10.1. Instead, our Hypercubes can deal with velocities and positions bound
inside any intervals of values. Also in [19] the variable space is more restricted than
in our approach: the benchmark Heater works on the variable space [0..5], the Nav-
igation one on [3.5..3.6]× [3.5..3.6] and the Two-tanks on [5..5]× [6..6]; In addition,
this analysis returns an abstraction of the �nal state of the program, while we also
give information about which starting values are responsible for the property veri�-
cation and which not. [92] presents an application of the Abstract Interpretation by
means of convex polyhedra to hybrid systems. This work is focused on a particular
class of hybrid systems (linear ones), and it is able to represent only convex regions
of the space, since it employs the convex hull approximation of a set of values. [12]
presents algorithms and tools for reachability analysis of hybrid systems by relying
on predicate abstraction and polyhedra. However, this solution su�ers from the
exponential growth of abstract states and relies on expensive abstract domains. Fi-
nally, [134] concerns safety veri�cation of non-linear hybrid systems, starting from
a classical method that uses interval arithmetic to check whether trajectories can
move over the boundaries in a rectangular grid. This approach is similar to ours in
the data representation (boxes). However, they do not employ any concept of o�set,

3about which we already talked in Section 4.1

5.10. Other Applications 205

their space partitioning is not �xed and the examples they experimented with cover
a very limited variable space.

Concluding this survey, we can then a�rm that the Parametric Hypercubes
proposal presented in this chapter can be seen as a selection and a combination
of most of the techniques cited in Section 5.9.1, tailored to get a solution that
properly suits the features of Computer Games Software applications (and physics
simulations in particular), where we need to track precisely a lot of disjunctive
information. However, the parametric nature of the domain (in the abstraction of
single variables) and some general domain features (like width parameter tuning,
and interval o�sets) make our domain suitable to be used also in more general
applications than only physics simulations inside games software (hybrid systems,
for instance).

5.10 Other Applications

In this section we are going to show how our domain H can be useful in the analysis
of generic programs (changing the abstract domain on which it is parametrized).
In particular, given the disjunctive non-relational nature of H, the best applicative
scenarios are those where the variables of the program are inter-related in some way
without, however, having any explicit dependency.

For example, consider the code reported in Figure 5.14. This program manipu-
lates the value of two integer variables (x and y) inside a while loop which goes on
until a counter i reaches the constant value N starting from zero (and increasing by
one at each iteration). Note that, inside the loop, the value of x is assigned anew at
each iteration (line 5), receiving its value as input from outside the program (i.e.,
from the user or from a sensor in a physical environment). At the end of the loop,
we �nd a if− then− else statement which executes two di�erent sub-programs
(P1 or P2) depending on the sign of the product of the integer variables x, y.

If we analyze this program using the Sign domain to abstract x, y, we obtain (at
line 13, that is after the loop but before testing the branching condition) that both
variables have value >, i.e. no information at all. The same happens using more
precise domain (Intervals, Polyhedra, etc.). This happens because in this case study
there are no explicit dependencies between the values of x, y. However, by looking
carefully at the code, we can �gure out that the signs of x and y are always the
opposite of the other. In fact:

• at line 8, y gets a strictly negative value, because x has surely a strictly positive
value (since we enter that branch only if x ≥ 0 and then we execute x = x + 1,
thus certainly obtaining a value greater than zero);

• at line 10, instead, y is strictly positive and in that branch we are sure that x
is strictly negative.

206 5. The Parametric Hypercubes Abstract Domain

1 x = 1;

2 y = -1:

3 i = 0;

4 while (i<N){

5 x = fromInput();

6 if (x >= 0)

7 x = x + 1;

8 y = -x;

9 else

10 y = (y * y) + 1;

11 i++;

12 }

13 if (x * y) > 0 {

14 P_1;

15 } else {

16 P_2;

17 }

Figure 5.14: A generic case study with implicit dependencies between variables

For this reason, we know that the branching condition at line 13 will always be
false: thus, the sub-program P1 will never be executed, while the sub-program P2
will always be executed. It is di�cult, however, to show this property by using
existing numerical domains.

Our domain H is able to understand this program invariance and we are now
going to see how. First of all, consider the Sign domain where the lattice is made
by the values: ⊥,−, 0,+,>. We use this abstract domain to abstract the single
variables of the program. We exclude the variable i from the analysis, since it is
used only to determine the number of iterations executed the loop and we consider
this number to be unknown at compile time (the analysis converges anyway). The
variable space is made by two dimensions and the hypercubes are then pairs of
values from the Sign domain. Given the hypercube h = (s1, s2), the sign s1 is the
abstraction of x, while s2 is the abstraction of y. The analysis using H the proceeds
as follows:

Initialization (lines 1-3)

Since x has a strictly positive value and y a strictly negative one, the state of the
program after the initialization of the variables is the singleton set:

H0 = {(+,−)}

5.10. Other Applications 207

First iteration of the loop (lines 4-12)

• assignment of x (line 5): x gets an unknown value, so we have to build a
new hypercube for each possible abstraction of such variable. The value of y
remains unaltered, so each new hypercube will still have value − in its second
component. The resulting set of hypercubes is: H1 = {(−,−), (0,−), (+,−)}.

• branching condition (line 6): the hypercubes set is partitioned based on the
branching condition. The subset of hypercubes satisfying the condition isH2 =
{(0,−), (+,−)}, while the subset of hypercubes not satisfying the condition is
H3 = {(−,−)}.

• then branch (lines 7-8): we execute this branch on the subset H2. The �rst
statement increases the value of x by a positive quantity. Given the classical
abstract semantics of Sign, we know that this operation results in a positive
value, when applied both to a positive or to a zero value. Then, the hyper-
cube (0,−) transforms itself into (+,−) and the hypercube (+,−) remains
unchanged. Since the two resulting hypercubes are the same one, the result is
a singleton set containing only the hypercube (+,−). The second statement of
the branch assigns to y the opposite sign of x: the hypercube (+,−) becomes
then (+,−), again (the opposite of plus is minus, so the sign of y does not
change). The �nal result of this branch is the hypercubes set H4 = {(+,−)}.

• else branch (line 10): we execute this branch on the subsetH3. The statement
multiplies y by itself, and then increases this value by a positive quantity.
Since in H2 there is only the hypercube (−,−), we know for sure that y has
a strictly negative value. The multiplication of a strictly negative value by
another strictly negative value returns a strictly positive value. Adding a
positive quantity to a positive value returns, again, a strictly positive value.
Then, the hypercube (−,−) has transformed itself into (−,+). The �nal result
of this branch is the hypercubes set H5 = {(−,+)}.

• line 11: we have to merge the result of the two branches by making the union
of the two hypercubes sets. We obtain, as a result of the �rst iteration of the
loop, the set H6 = H4 ∪H5 = {(+,−), (−,+)}.

Second iteration of the loop (lines 4-12)

Since H6 6= H0, the analysis has not converged yet and we must execute another
abstract iteration of the loop, starting this time from the hypercubes set H6.

• assignment of x (line 5): x gets an unknown value, while the value of y remains
unaltered. The resulting set of hypercubes is: H7 = {(−,−), (0,−), (+,−),
(−,+), (0,+), (+,+)}.

208 5. The Parametric Hypercubes Abstract Domain

• branching condition (line 6): the hypercubes set is partitioned based on the
branching condition. The subset of hypercubes satisfying the condition isH8 =
{(0,−), (+,−), (0,+), (+,+)}, while the subset of hypercubes not satisfying
the condition is H9 = {(−,−), (−,+)}.

• then branch (lines 7-8): we execute this branch on the subset H8. The �rst
statement increases the value of x by a positive quantity: then, the hyper-
cubes (0, ·) transform themselves into (+, ·) and the hypercubes (+, ·) remain
unchanged. The result is the set {(+,−), (+,+)}. The second statement of
the branch assigns to y the opposite sign of x: the hypercubes (+, ·) become
all (+,−) (since the opposite of plus is minus). The �nal result of this branch
is the hypercubes set H10 = {(+,−)}.

• else branch (line 10): we execute this branch on the subset H9. The state-
ment multiplies y by itself, and then increases this value by a positive quantity.
H9 contains two hypercubes: the multiplication transforms the �rst hypercube
(−,−) into (−,+) (since −×− = +) and the second hypercube (−,+) into it-
self (since +×+ = +). We have obtained a set containing only one hypercube,
(−,+) which remains unaltered after the addition of the positive quantity to
y. The �nal result of this branch is the hypercubes set H11 = {(−,+)}.

• line 11: we have to merge the result of the two branches by making the union
of the two hypercubes sets. We obtain, as a result of the second iteration of
the loop, the set H12 = H10 ∪H11 = {(+,−), (−,+)}.

Loop convergence

After the second iteration of the loop we have reached convergence, because H12 =
H6.

Branching condition (line 13)

The abstract state after the loop is H12 = {(+,−), (−,+)}. This hypercubes set is
partitioned based on the branching condition. The subset of hypercubes satisfying
the condition is H13 = ∅, while the subset of hypercubes not satisfying the condition
is H14 = {(+,−), (−,+)} = H12. From this result we get that the sub-program P1

is never executed (since it is applied to an empty set of hypercubes).
With this example we showed that H is able to prove interesting properties also

on programs which are not necessarily physics simulations. In this particular case,
we parametrized H on the simple Sign domain. We obtained a precise and e�cient
analysis, since: (i) we proved the property of interest; (ii) the number of hypercubes
contained in the abstract state is always very low; and (iii) the convergence is reached
only after two abstract iterations of the loop.

5.11. Discussion 209

5.11 Discussion

In this chapter we dealt with the use of Abstract Interpretation techniques to allow
for static veri�cation of behavioural properties in the �eld of Computer Games
software. In particular, we focused on physics simulations, a very important part of
modern games.

To this purpose, we designed the Parametric Hypercubes domainH, a disjunctive
non-relational abstract domain which combines in an original way concepts coming
from many well-known abstraction approaches. An abstract state of this domain
approximates all the variables of the program together and can be seen as a non-
convex volume in the variable space; in particular, it is de�ned as a set of convex
sub-volumes (hypercubes) in such space. The way in which each single variable is
abstracted is parametrized on a base abstract domain. We de�ned the structure
of this domain and its abstract semantics on a simple (yet expressive) language.
We thoroughly described a representative case study coming from the �eld of game
software, and showed the precision of the approach. The performance of the analysis
makes it feasible to apply it in practical settings.

Even though in the presentation of the domain we focused mostly on a speci�c
application, we showed also: (i) the similarities between physics simulations and
hybrid systems; (ii) the analysis of a generic program (Section 5.10). Thus, our do-
main can be interesting for employment in various context other than game software,
especially to analyze program with implicit relationships between variables.

210 5. The Parametric Hypercubes Abstract Domain

6

Conclusions

In this thesis we have contributed to the �eld of program veri�cation through the
design of several novel abstract domains.

Our �rst contribution is the design of a generic framework for string analysis,
composed by �ve abstract domains which approximate string values in di�erent
ways. The freedom o�ered by our framework is multiple: (i) the user can choose
which domain to use for the speci�c analysis to perform, based on the preferred
trade-o� between precision and performance; (ii) since the abstracted string oper-
ators are the most common, these abstractions can be used to analyze programs
written in almost any language which supports strings; (iii) other string operators
can be added to the framework by de�ning their abstract semantics for each of the
�ve domains; (iv) the framework is agnostic with respect to the speci�c property
to prove, since it only de�nes approximations of lexical variables, and can thus be
applied to many contexts. Obviously, so much freedom does not have only posi-
tive consequences: the user could make the wrong domain choice and, for each new
analysis, she has to implement the code to check if the resulting abstract string
satis�es the property to verify. For this reason, an important future work concerns
the de�nition (and implementation) of a suite of property checks for all domains, by
choosing a subset of interesting properties based on the most common applications
of string analysis. Another future work regards the applicability of our framework
in other contexts than string analysis, by generalizing even further the domains. In
fact, a string can be seen also as an array of characters: thus, we could generalize our
analysis in order to manage arrays of any base type (not only characters), combining
it with domains which abstract relevant properties of such base types.

Our second contribution is the improvement of an existing abstract domain for
the abstraction of continuous functions (IVSF, presented in [24]) through the novel
domain TSF. Comparing the results given by TSF and IVSF in some case studies,
we showed that TSF is indeed more precise than IVSF, while maintaining almost
the same performance. To evaluate more precisely the e�cacy of TSF, we could
do a formal complexity analysis on the domain operations. Another ambitious and
possibly very interesting extension to our domain would be to change the de�nition
of the upper and lower sides of the trapezoids from straight lines into more complex
functions (e.g., polynomials) to further increase the precision of the representation.

Even though the TSF domain was built for a speci�c application (i.e., to approx-

212 6. Conclusions

imate the values of the inputs given by the environment in the context of hybrid
systems), its de�nition opens an interesting research direction, because the literature
does not o�er a lot of existing approaches to abstract continuous functions. For this
reason, there are many other case studies and application �elds in which TSF could
be useful. For example, we could apply TSF to the approximation of the solutions
of Ordinary Di�erential Equations (as done by IVSF) or we could explore how to
use TSF to approximate the values produced by a program (e.g., a simulator of the
results given by sensors in embedded systems). We could also try to use our do-
main to verify the continuity of programs. In addition, we concretely plan to apply
TSF domain to the cost analysis of code [11]: to this purpose, we already de�ned
the abstract semantics of the most common arithmetic operations (sum, product,
composition, etc.). In this context, we must extend our approach to multivariate
functions (TSF represents only univariate ones) in order to allow for more complex
cost models. We already started working on the de�nition of a new domain for
bivariate functions (PBF, Parallelepiped Block Functions) and we are close to its
completion.

Our third contribution is the design of a novel approach for the e�cient analysis
of programs with strong relationships between variables, resulting in the de�nition
of the Parametric Hypercubes abstract domain (H). Applied to the analysis of
a bouncing ball (a common physical event in a computer game), the domain gave
satisfactory results, showing that our approach can be e�ectively applied to practical
settings and infer interesting information. Also, its applications are not limited to
physics simulations. In fact, thanks to the modularity of the domain, it is possible
to track relationships between variables which do not necessarily represent physical
quantities: we proved this through the successful analysis of another case study
(not related to game software) where the single variables were abstracted through
the Sign domain.

Note that our approach o�ers plenty of venues in order to improve its results,
thanks to its �exible and parametric nature. In particular, we could: (i) increase
the precision by intersecting our hypercubes with arbitrary bounding volumes which
restrict the relationships between variables in a more complex way than the o�sets
presented in Section 5.5.4; (ii) increase the performance of Algorithm 5 by halving
the widths only on some axes, chosen through an analysis of the distribution of
hypercubes in the yes,no,maybe sets; and (iii) study the derivative with respect to
time of the iterations of the main loop in order to de�ne temporal trends to re�ne
the widening operator (thus eliminating the need of doing loop unrolling).

As a �nal methodological note, observe that our three contributions are very
di�erent as far as their topics are concerned. What they strongly have in common,
instead, is the approach to their de�nition, an approach which is induced by the
Abstract Interpretation framework. First of all, when building an abstract domain,
it must be clear what is the object to abstract and which are the practical contexts

213

for the application of such domain. Secondly, the abstraction must be de�ned: this
implies the creation of a lattice of abstract elements, together with all the needed
operations on the lattice (most importantly, the partial order and the glb and lub
operators, as well as an abstraction and concretization functions, and a widening
operator). To apply the abstract domain to the analysis of code, a language syntax
supported by the domain needs to be identi�ed (and this obviously depends on
the target application) and approximated through the de�nition of a sound abstract
semantics. All the abstract domains presented in this thesis have been built following
this procedure.

Note also that, when building a new abstract domain, the contribution does
not lie only in the abstract domain itself. In fact, abstract domains should not be
seen as isolated objects: they are part of a bigger picture, composed by the Ab-
stract Interpretation framework and all the previously de�ned abstract domains.
Metaphorically, we could see each abstract domain as a single Lego c© piece, which
can be composed through some standard connectors with all other pieces to build
more complex constructions. As showed in Section 2.11, there are many possibili-
ties to combine abstract domains with each other. For example, in [153] the authors
performed information leakage analysis by combining two very di�erent domains (a
symbolic one and a numeric one) through the reduced product. Another possibility
of combination has been exempli�ed by our third contribution, where the main ab-
stract domain was parametrized with respect to other abstract domains (to abstract
the single variables): our target application employed a domain for �oating point
variables, but we also showed how the domain can be e�ective using other abstract
domains (i.e., the Sign one), depending on the speci�c application to analyze. The
future work concerning our novel framework for string analysis presents the same
feature: we would like to exploit the overall abstractions for sequences of objects
but changing the abstraction of the single objects. This will be done through the
creation of a parametric abstract domain.

214 6. Conclusions

Bibliography

[1] OWASP. Top ten project. https://www.owasp.org/index.php/Top_10_

2013-T10. Accessed: 2013-05-22.

[2] R. Skeel. Roundo� error and the Patriot missile. SIAM News, 25(4):11, 1992.
http://www.siam.org/siamnews/general/patriot.htm.

[3] VDC Research (2012-02-01) - Automated Defect Prevention
for Embedded Software Quality. http://alm.parasoft.com/

embedded-software-vdc-report/. Accessed: 2012-04-10.

[4] Computer based safety systems - technical guidance for assessing software
aspects of digital computer based protection systems. http://www.hse.gov.
uk/nuclear/operational/tech_asst_guides/tast046.pdf.

[5] Coverity Static Analysis Veri�cation Engine (Coverity SAVE). http://www.

coverity.com/products/coverity-save.html. Accessed: 2013-06-05.

[6] FDA (2010-09-08). http://www.fda.gov/MedicalDevices/

ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/

InfusionPumps/ucm202511.htm. Accessed: 2010-09-09.

[7] J. L. Lions et al. ARIANE 5, �ight 501 failure, report by the inquiry board,
1996. http://sunnyday.mit.edu/accidents/Ariane5accidentreport.

html.

[8] SEGA - Coverity Case Study. http://www.coverity.com/

wpcme-resources/Coverity_Sega_Case_Study.pdf. Accessed: 2013-05-27.

[9] Static Code Analysis. http://www.altdevblogaday.com/2011/12/24/

static-code-analysis/. Accessed: 2013-05-27.

[10] Video Games in the 21st Century: The 2010 ESA Report. http:

//www.theesa.com/facts/pdfs/videogames21stcentury_2010.pdf. Ac-
cessed: 2013-05-30.

[11] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost analysis
of java bytecode. In Proceedings of ESOP '07, LNCS. Springer-Verlag, 2007.

[12] R. Alur, T. Dang, and F. Ivancic. Reachability analysis of hybrid systems via
predicate abstraction. In Hybrid Systems: Computation and Control, Fifth
International Workshop, LNCS 2289, pages 35�48. Springer-Verlag, 2002.

 https://www.owasp.org/index.php/Top_10_2013-T10
 https://www.owasp.org/index.php/Top_10_2013-T10
http://www.siam.org/siamnews/general/patriot.htm
http://alm.parasoft.com/embedded-software-vdc-report/
http://alm.parasoft.com/embedded-software-vdc-report/
http://www.hse.gov.uk/nuclear/operational/tech_asst_guides/tast046.pdf
http://www.hse.gov.uk/nuclear/operational/tech_asst_guides/tast046.pdf
http://www.coverity.com/products/coverity-save.html
http://www.coverity.com/products/coverity-save.html
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm202511.htm
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm202511.htm
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm202511.htm
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
 http://www.coverity.com/wpcme-resources/Coverity_Sega_Case_Study.pdf
 http://www.coverity.com/wpcme-resources/Coverity_Sega_Case_Study.pdf
http://www.altdevblogaday.com/2011/12/24/static-code-analysis/
http://www.altdevblogaday.com/2011/12/24/static-code-analysis/
http://www.theesa.com/facts/pdfs/videogames21stcentury_2010.pdf
http://www.theesa.com/facts/pdfs/videogames21stcentury_2010.pdf

216 Bibliography

[13] R. Alur, T.A. Henzinger, G. La�erriere, and G.J. Pappas. Discrete abstrac-
tions of hybrid systems. Proceedings of the IEEE, 88(7):971�984, 2000.

[14] G. Amato and F. Scozzari. The abstract domain of parallelotopes. Electronic
Notes Theoretical Computer Science, 287:17�28, 2012.

[15] J. P. Aubin and A. Cellina. Di�erential Inclusions: Set-Valued Maps and
Viability Theory. Springer-Verlag New York, Inc., 1984.

[16] R. Bagnara, P. M. Hill, and E. Za�anella. Widening operators for powerset
domains. In Proceedings of the Fifth International Conference on Veri�cation,
Model Checking and Abstract Interpretation (VMCAI 2004, pages 135�148.
Springer-Verlag, 2004.

[17] R. Bagnara, P. M. Hill, and E. Za�anella. Widening operators for powerset
domains. STTT, 9(3-4):413�414, 2007.

[18] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Mon-
niaux, and X. Rival. A static analyzer for large safety-critical software. In
Proceedings of the ACM SIGPLAN 2003 conference on Programming language
design and implementation, PLDI '03, pages 196�207. ACM, 2003.

[19] O. Bouissou. Proving the correctness of the implementation of a control-
command algorithm. In Static Analysis, 16th International Symposium, SAS
2009, Los Angeles, CA, USA, August 9-11, 2009. Proceedings, volume 5673 of
Lecture Notes in Computer Science, pages 102�119. Springer, 2009.

[20] O. Bouissou. From control-command synchronous programs to hybrid au-
tomata. In Analysis and Design of Hybrid Systems (ADHS'12), June 2012.

[21] O. Bouissou, E. Conquet, P. Cousot, R. Cousot, K. Ghorbal, D. Lesens,
S. Putot, M. Turin, and E. Goubault. Space software validation using ab-
stract interpretation. In Proceedings of DASIA 2009, 2009.

[22] O. Bouissou, E. Goubault, S. Putot, K. Tekkal, and F. Vedrine. Hybrid�uc-
tuat: a static analyzer of numerical programs within a continious environment.
In In Proc. of the 21st Computer Aided Veri�cation (CAV'09, pages 620�626.
Springer, 2009.

[23] O. Bouissou and M. Martel. GRKLib: a guaranteed runge-kutta library.
In Follow-up of International Symposium on Scienti�c Computing, Computer
Arithmetic and Validated Numerics. IEEE Press, 2007.

[24] O. Bouissou and M. Martel. Abstract interpretation of the physical inputs
of embedded programs. In Veri�cation, Model Checking, and Abstract Inter-
pretation, 9th International Conference, VMCAI 2008, San Francisco, USA,

Bibliography 217

January 7-9, 2008, Proceedings, volume 4905 of Lecture Notes in Computer
Science, pages 37�51. Springer, 2008.

[25] O. Bouissou, S. Mimram, and A. Chapoutot. Hyson: Set-based simulation of
hybrid systems. In Proceedings of the 23rd IEEE International Symposium on
Rapid System Prototyping, RSP 2012, Tampere, Finland, pages 79�85, 2012.

[26] D. M. Bourg. Physics for Game Developers. O'Reilly Media, 2001.

[27] C. Brabrand, A. Møller, and M. I. Schwartzbach. Static validation of dynam-
ically generated HTML. In Proc. ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering (PASTE), pages 221�
231, June 2001.

[28] A. Bressan and A. Cortesi. Directionally continuous selections in banach
spaces. Nonlinear Analysis, Theory, Methods and Applications, 13(8):987�
992, 1989.

[29] S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity analysis of pro-
grams. In Proceedings of POPL '10, pages 57�70, 2010.

[30] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. NavidPour. Proving pro-
grams robust. In Proceedings of SIGSOFT FSE '11, pages 102�112, 2011.

[31] L. Chen, A. Miné, and P. Cousot. A sound �oating-point polyhedra abstract
domain. In Programming Languages and Systems, 6th Asian Symposium,
APLAS 2008, Bangalore, India, December 9-11, 2008. Proceedings, volume
5356 of Lecture Notes in Computer Science, pages 3�18. Springer, 2008.

[32] L. Chen, A. Miné, J. Wang, and P. Cousot. Interval polyhedra: An abstract
domain to infer interval linear relationships. In Static Analysis, 16th Inter-
national Symposium, SAS 2009, Los Angeles, CA, USA, August 9-11, 2009.
Proceedings, volume 5673 of Lecture Notes in Computer Science, pages 309�
325. Springer, 2009.

[33] T. Choi, O. Lee, H. Kim, and K. Doh. A practical string analyzer by the
widening approach. In Proceedings of APLAS '06, pages 374�388. Springer,
2006.

[34] F.S. Chou, C. M. Wang, and G. D. Cheng. Optimal bounding of curves by
continuous piecewise linear functions. Engineering Optimization, 21(4):307�
317, 1993.

[35] A. Christensen, A. Møller, and M. Schwartzbach. Precise analysis of string
expressions. In Proceedings of SAS '03, pages 1�18. Springer-Verlag, 2003.

218 Bibliography

[36] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Static analysis for
dynamic XML. Technical Report RS-02-24, BRICS, May 2002. Presented at
Programming Language Technologies for XML (PLAN-X) 2002.

[37] L.O. Chua and S. M. Kang. Section-wise piecewise-linear functions: Canon-
ical representation, properties, and applications. Proceedings of the IEEE,
65(6):915�929, 1977.

[38] R. Clarisó and J. Cortadella. The octahedron abstract domain. In Roberto
Giacobazzi, editor, Static Analysis, 11th International Symposium, SAS 2004,
Verona, Italy, August 26-28, 2004, Proceedings, volume 3148 of Lecture Notes
in Computer Science, pages 312�327. Springer, 2004.

[39] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction re�nement. In Computer Aided Veri�cation (CAV), 12th
International Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000,
Proceedings, volume 1855 of Lecture Notes in Computer Science, pages 154�
169. Springer, 2000.

[40] A. Cortesi. Widening operators for abstract interpretation. In Proceedings of
SEFM '08. IEEE, 2008.

[41] A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Combinations of abstract
domains for logic programming: open product and generic pattern construc-
tion. Science of Computer Programming, 38(1-3):27�71, August 2000.

[42] A. Cortesi, G. Costantini, and P. Ferrara. A survey on product operators in
abstract interpretation. In A. Banerjee, O. Danvy, K.-G. Doh, and J. Hatcli�,
editors, Semantics, Abstract Interpretation, and Reasoning about Programs:
Essays Dedicated to David A. Schmidt on the Occasion of his Sixtieth Birthday,
Manhattan, Kansas, USA, 19-20th September 2013, volume 129 of Electronic
Proceedings in Theoretical Computer Science (EPTCS), pages 325�336. Open
Publishing Association, 2013.

[43] A. Cortesi and M. Zanioli. Widening and narrowing operators for abstract
interpretation. Computer Languages, Systems & Structures, 37(1):24�42, 2011.

[44] G. Costantini. Abstract domains for static analysis of strings. Master's thesis,
Ca' Foscari University of Venice, 2010.

[45] G. Costantini, P. Ferrara, and A. Cortesi. Static analysis of string values. In
Proceedings of 13th International Conference on Formal Engineering Methods,
ICFEM 2011, volume 6991 of LNCS, pages 505�521. Springer, 2011.

Bibliography 219

[46] G. Costantini, P. Ferrara, and A. Cortesi. Linear approximation of continuous
systems with trapezoid step functions. In Programming Languages and Sys-
tems - 10th Asian Symposium, APLAS 2012, Kyoto, Japan, December 11-13,
2012. Proceedings, volume 7705 of Lecture Notes in Computer Science, pages
98�114. Springer, 2012.

[47] G. Costantini, P. Ferrara, and A. Cortesi. A suite of abstract domains for static
analysis of string values. to appear in Software: Practice and Experience, 2013.

[48] G. Costantini, P. Ferrara, G. Maggiore, and A. Cortesi. The domain of para-
metric hypercubes for static analysis of computer games software. In Pro-
ceedings of 15th International Conference on Formal Engineering Methods,
ICFEM 2013 (to appear), LNCS. Springer, 2013.

[49] P. Cousot. Mit course 16.399: Abstract interpretation.

[50] P. Cousot. Semantic foundations of program analysis. In S.S. Muchnick and
N.D. Jones, editors, Program Flow Analysis: Theory and Applications, chap-
ter 10, pages 303�342. Prentice-Hall, Inc., Englewood Cli�s, New Jersey, 1981.

[51] P. Cousot. The calculational design of a generic abstract interpreter. In
Calculational System Design. NATO ASI Series F. IOS Press, Amsterdam,
1999.

[52] P. Cousot. Integrating physical systems in the static analysis of embedded con-
trol software. In APLAS, volume 3780 of Lecture Notes in Computer Science,
pages 135�138. Springer, 2005.

[53] P. Cousot and R. Cousot. Abstract interpretation: A uni�ed lattice model for
static analysis of programs by construction or approximation of �xpoints. In
Conference Record of the Fourth ACM Symposium on Principles of Program-
ming Languages, Los Angeles, California, USA, January 1977, pages 238�252.
ACM, 1977.

[54] P. Cousot and R. Cousot. Constructive versions of tarski's �xed point theo-
rems. Paci�c Journal of Mathematics, 82:43�57, 1979.

[55] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
In Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, POPL '79, pages 269�282, New York, NY, USA,
1979. ACM.

[56] P. Cousot and R. Cousot. Abstract interpretation and application to logic
programs. Journal of Logic Programming, 13(2-3):103�179, July 1992.

[57] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of
Logic and Computation, 2(4):511�547, 1992.

220 Bibliography

[58] P. Cousot and R. Cousot. Higher-order abstract interpretation (and applica-
tion to comportment analysis generalizing strictness, termination, projection
and PER analysis of functional languages), invited paper. In Proceedings
of the 1994 International Conference on Computer Languages, pages 95�112,
Toulouse, France, 16�19 May 1994. IEEE Computer Society Press, Los Alami-
tos, California.

[59] P. Cousot and R. Cousot. Formal language, grammar and set-constraint-based
program analysis by abstract interpretation. In FPCA, pages 170�181, 1995.

[60] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D.Monniaux, and
X. Rival. The astreé analyzer. In Programming Languages and Systems, 14th
European Symposium on Programming,ESOP 2005, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2005, Ed-
inburgh, UK, April 4-8, 2005, Proceedings, volume 3444 of Lecture Notes in
Computer Science, pages 21�30. Springer, 2005.

[61] P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for
fully automatic and scalable array content analysis. In Proceedings of the 38th
annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 105�118, New York, NY, USA, 2011. ACM.

[62] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proceedings of the 5th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, POPL '78, pages 84�96,
New York, NY, USA, 1978. ACM.

[63] M. Das, S. Lerner, and M. Seigle. Esp: path-sensitive program veri�cation
in polynomial time. In Proceedings of the ACM SIGPLAN 2002 Conference
on Programming language design and implementation, PLDI '02, pages 57�68,
New York, NY, USA, 2002. ACM.

[64] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. Védrine.
Towards an industrial use of �uctuat on safety-critical avionics software. In
Proceedings of the 14th International Workshop on Formal Methods for In-
dustrial Critical Systems, FMICS '09, pages 53�69, Berlin, Heidelberg, 2009.
Springer-Verlag.

[65] D. Delmas and J. Souyris. Astrée: from research to industry. In Pro-
ceedings of the 14th international conference on Static Analysis, SAS'07, pages
437�451, Berlin, Heidelberg, 2007. Springer-Verlag.

[66] Dr. A. Deutsch. Static veri�cation of dynamic properties. Technical report,
PolySpace Technologies, November 2003.

Bibliography 221

[67] K. Doh, H. Kim, and D. Schmidt. Abstract parsing: Static analysis of dy-
namically generated string output using lr-parsing technology. In Proceedings
of SAS '09, pages 256�272. Springer-Verlag, 2009.

[68] D. H. Eberly and K. (contributor) Shoemake. Game Physics. Morgan Kauf-
mann, 2003.

[69] D.H. Eberly. Game Physics. Interactive 3D technology series. Elsevier Science,
2010.

[70] A. Edalat and A. Lieutier. Domain theory and di�erential calculus (functions
of one variable). Mathematical. Structures in Comp. Sci., 14(6), 2004.

[71] J. Feret. Static analysis of digital �lters. In Programming Languages and
Systems, 13th European Symposium on Programming, ESOP 2004, Held as
Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings, volume
2986 of Lecture Notes in Computer Science, pages 33�48. Springer, 2004.

[72] P. Ferrara. Static type analysis of pattern matching by abstract interpre-
tation. In Formal Techniques for Distributed Systems, Joint 12th IFIP WG
6.1 International Conference, FMOODS 2010 and 30th IFIP WG 6.1 Inter-
national Conference, FORTE 2010, Amsterdam, The Netherlands, June 7-9,
2010. Proceedings, volume 6117 of Lecture Notes in Computer Science, pages
186�200. Springer, 2010.

[73] P. Ferrara, R. Fuchs, and U. Juhasz. Tval+ : Tvla and value analyses together.
In Software Engineering and Formal Methods - 10th International Conference,
SEFM 2012, Thessaloniki, Greece, October 1-5, 2012. Proceedings, volume
7504 of Lecture Notes in Computer Science, pages 63�77. Springer, 2012.

[74] P. Ferrara, F. Logozzo, and M. Fähndrich. Safer unsafe code for .net. In
OOPSLA '08: Proceedings of the 23rd ACM SIGPLAN conference on Object
oriented programming systems languages and applications, pages 329�346, New
York, NY, USA, 2008. ACM.

[75] P. Ferrara and P. Müller. Automatic inference of access permissions. In Ver-
i�cation, Model Checking, and Abstract Interpretation - 13th International
Conference, VMCAI 2012, Philadelphia, PA, USA, January 22-24, 2012. Pro-
ceedings, volume 7148 of Lecture Notes in Computer Science, pages 202�218.
Springer, 2012.

[76] G. Filé, R. Giacobazzi, and F. Ranzato. A unifying view of abstract domain
design. ACM Computing Surveys (CSUR), 28(2):333�336, June 1996.

222 Bibliography

[77] G. Filé and F. Ranzato. The powerset operator on abstract interpretations.
Theor. Comput. Sci., 222(1-2):77�111, 1999.

[78] K. Ghorbal, F. Ivancic, G. Balakrishnan, N. Maeda, and A. Gupta. Donut
domains: E�cient non-convex domains for abstract interpretation. In Pro-
ceedings of VMCAI '12, pages 235�250. Springer-Verlag, 2012.

[79] R. Giacobazzi and F. Ranzato. Re�ning and compressing abstract domains. In
Proceedings of the 24th International Colloquium on Automata, Languages and
Programming, ICALP '97, pages 771�781, London, UK, UK, 1997. Springer-
Verlag.

[80] R. Giacobazzi and F. Ranzato. Optimal domains for disjunctive abstract
interpretation. Sci. Comput. Program, 32:1�3, 1998.

[81] R. Giacobazzi and F. Ranzato. The reduced relative power operation on ab-
stract domains. Theoretical Computer Science, 216(1-2):159�211, March 1999.

[82] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations
complete. J. of the ACM, 47(2):361�416, 2000.

[83] E. Goubault, M. Martel, and S. Putot. Some future challenges in the validation
of control systems. In European Congress on Embedded Real Time Software
(ERTS), 2006.

[84] E. Goubault and S. Putot. Static analysis of numerical algorithms. In In
Proceedings of SAS'06, LNCS 4134, pages 18�34. Springer-Verlag, 2006.

[85] C. Gould, Z. Su, and P. Devanbu. Static checking of dynamically generated
queries in database applications. In Proceedings of ICSE '04, pages 645�654.
IEEE Computer Society, 2004.

[86] P. Granger. Static analysis of arithmetical congruences. Int. Journal of Com-
puter Mathematics, 30:165�190, 1989.

[87] P. Granger. Static analysis of linear congruence equalities among variables
of a program. In Samson Abramsky and T. S. E. Maibaum, editors, TAP-
SOFT 91: Proceedings of the International Joint Conference on Theory and
Practice of Software Development, Brighton, UK, April 8-12, 1991, Volume
1: Colloquium on Trees in Algebra and Programming (CAAP 91), volume 493
of Lecture Notes in Computer Science, pages 169�192. Springer, 1991.

[88] P. Granger. Improving the results of static analyses programs by local de-
creasing iteration. In Proceedings of the 12th Conference on Foundations of
Software Technology and Theoretical Computer Science, LNCS, pages 68�79,
London, UK, UK, 1992. Springer-Verlag.

Bibliography 223

[89] S. Gulwani. Automating string processing in spreadsheets using input-output
examples. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2011, Austin, TX, USA,
January 26-28, 2011, pages 317�330. ACM, 2011.

[90] A. Gur�nkel and S. Chaki. Boxes: A symbolic abstract domain of boxes.
In Static Analysis - 17th International Symposium, SAS 2010, Perpignan,
France, September 14-16, 2010. Proceedings, volume 6337 of Lecture Notes in
Computer Science, pages 287�303. Springer, 2010.

[91] N. Halbwachs, D. Merchat, and L. Gonnord. Some ways to reduce the space
dimension in polyhedra computations. Formal Methods in System Design,
29(1):79�95, 2006.

[92] N. Halbwachs, P. Raymond, and Y.-E. Proy. Veri�cation of linear hybrid
systems by means of convex approximations. In Proceedings of SAS '94, LNCS,
pages 223�237. Springer-Verlag, 1994.

[93] R. Halder and A. Cortesi. Obfuscation-based analysis of sql injection attacks.
In Proceedings of the The IEEE symposium on Computers and Communica-
tions, ISCC '10, pages 931�938, Washington, DC, USA, 2010. IEEE Computer
Society.

[94] M. Handjieva and S. Tzolovski. Re�ning static analyses by trace-based parti-
tioning using control �ow. In Static Analysis, 5th International Symposium,
SAS '98, Pisa, Italy, September 14-16, 1998, Proceedings, volume 1503 of
Lecture Notes in Computer Science, pages 200�214. Springer, 1998.

[95] T. A. Henzinger and P.-H. Ho. A note on abstract interpretation strategies
for hybrid automata. In Proceedings of Hybrid Systems II, LNCS. Springer,
1995.

[96] M. Heymann, G. Meyer, and S. Resmerita. Analysis of zeno behaviors in
hybrid systems. In In: Proceedings of the 41st IEEE Conference on Decision
and Control, Las Vagas, NV (2002, pages 2379�2384, 2002.

[97] N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, second edition,
2002.

[98] P. Hooimeijer and M. Veanes. An evaluation of automata algorithms for string
analysis. In Proceedings of VMCAI '11. Springer Verlag, 2011.

[99] H. Hosoya and B. Pierce. Xduce: A statically typed xml processing language.
ACM Trans. Internet Technol., 3(2):117�148, 2003.

224 Bibliography

[100] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types for xml.
ACM Trans. Program. Lang. Syst., 27(1):46�90, January 2005.

[101] J. M. Howe, A. King, and C. Lawrence-Jones. Quadtrees as an abstract do-
main. Electronic Notes in Theoretical Computer Science., 267(1):89�100, 2010.

[102] H. Imai and M. Iri. An optimal algorithm for approximating a piecewise linear
function. Journal of information processing, 9(3):159�162, 1987.

[103] G. Janssens and M. Bruynooghe. Deriving descriptions of possible values
of program variables by means of abstract interpretation: De�nitions and
proofs. Technical Report CW-107, Computer Science Dept., K.U. Leuven,
March 1990.

[104] G. Janssens and M. Bruynooghe. Deriving description of possible values of
program variables by means of abstract interpretation. Journal of Logic Pro-
gramming, 13(2-3):205�258, 1992.

[105] S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for JavaScript. In
Proc. 16th International Static Analysis Symposium (SAS), volume 5673 of
LNCS. Springer-Verlag, August 2009.

[106] T. P. Jensen. Disjunctive program analysis for algebraic data types. ACM
Transactions on Programming Languages and Systems (TOPLAS), 19(5):751�
803, September 1997.

[107] C. Kahlert and L.O. Chua. A generalized canonical piecewise-linear represen-
tation. IEEE Transactions on Circuits and Systems, 37(3):373�383, 1990.

[108] M. Karr. A�ne relationships among variables of a program. Acta Inf., 6:133�
151, 1976.

[109] S.-W. Kim and K.-M. Choe. String analysis as an abstract interpretation. In
Proceedings of VMCAI '11. Springer Verlag, 2011.

[110] C. Kirkegaard and A. Møller. Type checking with XML Schema in Xact. Tech-
nical Report RS-05-31, BRICS, September 2005. Presented at Programming
Language Technologies for XML (PLAN-X).

[111] C. Kirkegaard and A. Møller. Static analysis for Java Servlets and JSP. In
Proc. 13th International Static Analysis Symposium (SAS), volume 4134 of
LNCS. Springer-Verlag, August 2006. Full version available as BRICS RS-06-
10.

[112] C. Kirkegaard, A. Møller, and M. I. Schwartzbach. Static analysis of
XML transformations in Java. IEEE Transactions on Software Engineering,
30(3):181�192, March 2004.

Bibliography 225

[113] B. Livshits. Improving software security with precise static and runtime anal-
ysis. PhD thesis, Stanford, CA, USA, 2006. AAI3242585.

[114] F. Logozzo and M. Fähndrich. Pentagons: a weakly relational abstract domain
for the e�cient validation of array accesses. In Proceedings of the 2008 ACM
Symposium on Applied Computing (SAC), Fortaleza, Ceara, Brazil, March
16-20, 2008, pages 184�188. ACM, 2008.

[115] J. Lygeros, C. Tomlin, and S. Sastry. Hybrid Systems: Modeling, Analysis and
Control. 2008.

[116] R. Manevich, M. Sagiv, G. Ramalingam, and J. Field. Partially disjunctive
heap abstraction. In Proceedings of the 11th International Symposium, SAS
2004, pages 265�279. Springer, 2004.

[117] I. Mastroeni. Abstract Non-Interference - An Abstract Interpretation-based Ap-
proach to Secure Information Flow. PhD thesis, University of Verona, Verona,
Italia, 2005.

[118] L. Mauborgne and X. Rival. Trace partitioning in abstract interpretation
based static analyzers. In Proceedings of ESOP '05, pages 5�20. Springer-
Verlag, 2005.

[119] I. Millington. Game Physics Engine Development. Morgan Kaufmann, 2007.

[120] A. Miné. A few graph-based relational numerical abstract domains. In In
Static Analysis Symp, pages 117�132. Springer-Verlag, 2002.

[121] A. Miné, École Normale, and Supérieure Paris. A new numerical abstract
domain based on di�erence-bound matrices. In Proceedings of the 2nd Sym-
posium on Programs as Data Objects (PADO 2001), volume 2053 of Lecture
Notes in Computer Science, pages 155�172. Springer-Verlag, 2001.

[122] Y. Minamide. Static approximation of dynamically generated web pages. In
Proceedings of WWW '05, pages 432�441. ACM, 2005.

[123] A. Miné. The octagon abstract domain. Higher Order Symbol. Comput.,
19(1):31�100, March 2006.

[124] A. Møller, M. Østerby Olesen, and M. I. Schwartzbach. Static validation of
XSL Transformations. ACM Transactions on Programming Languages and
Systems, 29(4), July 2007.

[125] A. Møller and M. I. Schwartzbach. The design space of type checkers for XML
transformation languages. In Proc. 10th International Conference on Database
Theory (ICDT), volume 3363 of LNCS, pages 17�36. Springer-Verlag, January
2005.

226 Bibliography

[126] A. Møller and M. I. Schwartzbach. XML graphs in program analysis. Science
of Computer Programming, 76(6):492�515, June 2011. Earlier version in Proc.
ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation
(PEPM) 2007.

[127] A. Møller and M. Schwarz. HTML validation of context-free languages. In
Proc. 14th International Conference on Foundations of Software Science and
Computation Structures (FoSSaCS), volume 6604 of LNCS. Springer-Verlag,
March 2011.

[128] D. Monniaux. Analyse statique : de la théorie à la pratique. Habilitation to
direct research, Université Joseph Fourier, Grenoble, France, jun 2009.

[129] R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cli�, New Jersey,
1966.

[130] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of xml schema
languages using formal language theory. ACM Trans. Internet Technol.,
5(4):660�704, November 2005.

[131] A. Mycroft. Completeness and predicate-based abstract interpretation. In
Proceedings of the 1993 ACM SIGPLAN symposium on Partial evaluation
and semantics-based program manipulation, PEPM '93, pages 179�185, New
York, NY, USA, 1993. ACM Press.

[132] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[133] E. Noether. Idealtheorie in ringbereichen. Mathematische Annalen, 1921.

[134] S. Ratschan and Z. She. Safety veri�cation of hybrid systems by constraint
propagation based abstraction re�nement. In Proceedings of HSCC 2005, vol-
ume 3414 of Lecture Notes in Computer Science, pages 573�589. Springer,
2005.

[135] J. Reed and B. C. Pierce. Distance makes the types grow stronger: a calculus
for di�erential privacy. In Proceedings of ICFP '10, pages 157�168, 2010.

[136] X. Rival and L. Mauborgne. The trace partitioning abstract domain. ACM
Trans. Program. Lang. Syst., 29(5), August 2007.

[137] S. Sankaranarayanan, F. Ivan£i¢, I. Shlyakhter, and A. Gupta. Static analysis
in disjunctive numerical domains. In Proceedings of the 13th international
conference on Static Analysis, SAS'06, pages 3�17. Springer-Verlag, 2006.

Bibliography 227

[138] Y. Seladji and O. Bouissou. Fixpoint computation in the polyhedra abstract
domain using convex and numerical analysis tools. In Proceedings of VMCAI
'08, pages 149�168. Springer-Verlag, 2013.

[139] A. Simon, A. King, and J. M. Howe. Two variables per linear inequality as
an abstract domain. In Proceedings of the 12th international conference on
Logic based program synthesis and transformation, LOPSTR'02, pages 71�89,
Berlin, Heidelberg, 2003. Springer-Verlag.

[140] J. Souyris and D. Delmas. Experimental assessment of astrée on safety-
critical avionics software. In Proceedings of the 26th international conference
on Computer Safety, Reliability, and Security, SAFECOMP'07, pages 479�
490, Berlin, Heidelberg, 2007. Springer-Verlag.

[141] F. Spoto. Julia: A generic static analyser for the java bytecode. In Proceedings
of FTfjP'2005, 2005.

[142] N. Tabuchi, E. Sumii, and A. Yonezawa. Regular expression types for strings
in a text processing language. Electr. Notes Theor. Comput. Sci., 75:95�113,
2002.

[143] A. Tarski. A lattice-theoretical �xpoint theorem and its applications. Paci�c
Journal of Mathematics, 5:285�309, 1955.

[144] P. Thiemann. Grammar-based analysis of string expressions. In Proceedings
of TLDI '05, pages 59�70. ACM, 2005.

[145] I. Tomek. Two algorithms for piecewise-linear continuous approximation of
functions of one variable. IEEE Trans. Comput., 23(4):445�448, 1974.

[146] A.J. van der Schaft and J.M. Schumacher. An Introduction to Hybrid Dynam-
ical Systems. Lecture Notes in Control and Information Sciences. Springer,
2000.

[147] P. van Hentenryck, A. Cortesi, and B. Le Charlier. Type analysis of prolog
using type graphs. Journal of Logic Programming, 22(3):179�208, 1995.

[148] A. Venet and G. Brat. Precise and e�cient static array bound checking for
large embedded c programs. In Proceedings of the ACM SIGPLAN 2004 con-
ference on Programming language design and implementation, PLDI '04, pages
231�242, New York, NY, USA, 2004. ACM.

[149] J. H. Wilkinson. Rounding Errors in Algebraic Processes. Dover Publications,
Incorporated, 1994.

[150] F. Yu, T. Bultan, M. Cova, and O. Ibarra. Symbolic string veri�cation: An
automata-based approach. In Proceedings of SPIN '08, 2008.

228 Bibliography

[151] F. Yu, T. Bultan, and B. Hardekopf. String abstractions for string veri�cation.
In Model Checking Software - 18th International SPIN Workshop, Snowbird,
UT, USA, July 14-15, 2011. Proceedings, volume 6823 of Lecture Notes in
Computer Science, pages 20�37. Springer, 2011.

[152] F. Yu, T. Bultan, and O. H. Ibarra. Relational string veri�cation using multi-
track automata. In Implementation and Application of Automata - 15th In-
ternational Conference, CIAA 2010, Winnipeg, MB, Canada, August 12-15,
2010. Revised Selected Papers, volume 6482 of Lecture Notes in Computer
Science, pages 290�299. Springer, 2010.

[153] M. Zanioli and A. Cortesi. Information leakage analysis by abstract interpre-
tation. In SOFSEM 2011: Theory and Practice of Computer Science - 37th
Conference on Current Trends in Theory and Practice of Computer Science,
Nový Smokovec, Slovakia, January 22-28, 2011. Proceedings, volume 6543 of
Lecture Notes in Computer Science, pages 545�557. Springer, 2011.

[154] M. Zanioli, P. Ferrara, and A. Cortesi. Sails: static analysis of information
leakage with sample. In Proceedings of the ACM Symposium on Applied Com-
puting, SAC 2012, Riva, Trento, Italy, March 26-30, 2012, pages 1308�1313.
ACM, 2012.

Bibliography 229

	Introduction
	Motivation
	Methodology
	Abstract Interpretation
	Static Analyzers

	Context
	Lexical Variables
	Numerical Variables
	Relationships Between Variables

	Objectives
	Contributions
	Thesis Overview

	Abstract Interpretation Background
	Sets and Sequences
	Interval Arithmetic
	Preorders, Partial and Total Orders
	Lattices
	Functions
	Fixpoints
	Traces
	Galois Connections
	Soundness and Completeness
	Fixpoint Approximation
	Product Operators
	Cartesian Product
	Reduced Product
	Reduced Cardinal Power
	Examples

	A Generic Framework for String Analysis
	Introduction
	Case Studies
	Notation
	Language Syntax
	Concrete Domain and Semantics
	Abstract Domains and Semantics
	Character Inclusion
	Prefix and Suffix
	Bricks
	String Graphs
	Discussion: Relations Between the Five Domains

	Experimental Results
	Related Work
	Discussion

	The Trapezoid Step Functions Abstract Domain
	Introduction
	Case Study
	Language Syntax
	Concrete Domain and Semantics
	Abstract Domain
	Normal Form and Equivalence Relation
	Validity Constraints
	Abstract Elements
	Partial Order
	Refine Operator
	Greatest Lower Bound
	Least Upper Bound
	Abstraction and Concretization Functions
	Compact Operator
	Widening
	The Lattice D

	Abstraction of a Continuous Function
	IVSF Abstraction Function, Fixed Step Width
	IVSF Abstraction Function, Arbitrary Step Width
	TSF Basic Abstraction Function, Arbitrary Step Width
	TSF Basic Abstraction Function, Fixed Step Width
	Dealing with Floating Point Precision Issues in TSF
	Dealing with Floating Point Precision Issues in IVSF

	Abstract Semantics
	Experimental Results
	Varying the Number of Steps
	The Integrator Case Study
	Combination of TSF with IVSF

	Related Work
	Discussion

	The Parametric Hypercubes Abstract Domain
	Introduction
	Case Study
	Language Syntax
	Concrete Domain and Semantics
	Abstract Domain
	Lattice Structure
	Abstraction and Concretization Functions
	Widening Operator
	Enhancing Precision: Offsets

	Abstract Semantics
	The Abstract Semantics of Arithmetic Expressions, I
	The Abstract Semantics of Boolean Conditions, B
	The Abstract Semantics of Statements, S

	Tuning the Analysis
	Initialization
	Tracking the Origins
	Width Choice

	Experimental Results
	Setting Up
	Varying the Minimum Width Allowed
	Finding Appropriate Starting Values
	Varying Other Parameters
	Discussion
	Extending the Case Study from 2D to 3D

	Related Work
	Abstract Domains
	Hybrid Systems

	Other Applications
	Discussion

	Conclusions
	Bibliography

