

Dottorato di ricerca
in Informatica
Scuola di dottorato in Scienze e Tecnologie
Ciclo XXIV
(A.A. 2010 - 2011)

Extending Abstract Interpretation to New
Applicative Scenarios

SETTORE SCIENTIFICO DISCIPLINARE DI AFFERENZA: INF/01
Tesi di dottorato di Raju Halder, matricola 955628

Coordinatore del Dottorato Tutore del dottorando

Prof. Antonino Salibra Prof. Agostino Cortesi

Extending Abstract Interpretation to
New Applicative Scenarios

Raju Halder

Dipartimento di Scienze Ambientali, Informatica e Statistica

Università Ca’ Foscari Venezia, Italy

Tutor: Prof. Agostino Cortesi

A thesis submitted for the degree of

Doctor of Philosophy (PhD)

2012 February

mailto:halder@unive.it
http://www.dsi.unive.it
http://www.unive.it
http://www.dsi.unive.it/~cortesi

Abstract

The aim of this thesis is to extend the Abstract Interpretation framework

to the broader context of Information Systems. In particular, we address

issues related to security properties. We formalize a complete denotational

semantics, both at concrete and abstract level, of data-intensive applica-

tions embedding data manipulation language operations such as SELECT,

UPDATE, INSERT and DELETE. This theoretical work serves as a formal

foundation of several interesting practical applications, including persis-

tent watermarking, fine grained access control, SQL injection prevention,

and cooperative query answering. We also address the issue of program

slicing refinement, leading to an abstract program slicing algorithm that

covers SQL data manipulation languages as well. A prototype of a tool

implementing our abstract program slicing is also presented.

Dedication

The thesis is dedicated to my beloved parents Mr. Subhash

Chandra Halder and Mrs. Sandhya Halder, who are a great

source of motivation and inspiration of my life, and who sacri-

ficed a lot for me to be what I am now. Without their loving

care, prayers and support, it would have been very difficult for

me to achieve my goals. I owe everything I have achieved or

will achieve to them. I hope that by obtaining my PhD I can put

smiles on their faces.

Acknowledgements

I am profoundly grateful to my advisor Prof. Agostino Cortesi who en-

lightens me through his wide knowledge on Program Analysis and Ab-

stract Interpretation Theory. During the period, he helps me to see life

and science in their full depth, and taught me how to appreciate the good

scientific work that helps other researchers to build on it. Looking back,

I am surprised and at the same time very grateful for all I have received

from him that certainly shaped me as a person and has led me where I am

now. All these years of PhD studies are full of such gifts.

I am heartily thankful to Dr. Francesco Logozzo and Prof. Letizia Tanca

for giving their time and expertise to review the thesis and for their useful

comments and suggestions.

My deep and sincere gratitude is devoted to Prof. Samar Sen Sarma, Prof.

Partha Sarathi Dasgupta, Prof. Nabendu Chaki, Mr. Saptarshi Naskar and

Mr. Krishnendu Basuli for their early inspiration and valuable guidance

during my master degree that helps me to show a right potential and make

a positive impact in the research works in subsequent periods of times.

I will always be indebted to all the people from “Technical Administrative

Department”, “Secretary office” and “International Relations Office” of our

University. Special thanks goes to Laura Cappellesso, Giovanna Zamara,

Fabrizio Romano, Gian-Luca Dei Rossi, Mery Sponchiado, Rossana Favaro

and Sonia Barizza for their continuous support during the period. It was

a pleasure to share doctoral studies and life with wonderful people like

Matteo, Luca, Stefano, Andrea and others who are very close friends now.

Last but not least, I thank my parents and other family members for their

unwavering love, support, and encouragement for my academic pursuits.

I finish with a final silence of gratitude for my life.

Contents

List of Figures ix

List of Tables xiii

1 Introduction 1

2 Background: Information Systems, Databases, Abstract Interpretation 9

3 Abstract Interpretation of Database Query Languages 17

3.1 Related Works . 19

3.2 Preliminaries . 21

3.3 Abstract Syntax . 23

3.4 Environment and State . 26

3.5 Formal Semantics of Expressions . 28

3.6 Formal Semantics of Statements . 29

3.6.1 SELECT statement . 30

3.6.2 UPDATE statement . 35

3.6.3 INSERT statement . 37

3.6.4 DELETE statement . 39

3.6.5 Non-SQL statements . 40

3.7 Inference Rules for Composite Statements 40

3.8 Soundness with respect to the Standard Semantics 41

3.9 Abstract Semantics of Programs embedding SQL Statements 42

3.10 Formal Semantics of SQL with Co-related and Non Co-related Subquery 68

3.10.1 SELECT with co-related subquery 69

3.10.2 SELECT with non co-related subquery 73

v

CONTENTS

3.10.3 Others with co-related subquery 74

3.10.4 Others with non co-related subquery 75

4 Persistent Watermarking of Relational Databases 77

4.1 Literature Survey . 80

4.1.1 Applications . 81

4.1.2 Attacks . 82

4.1.3 Issues . 84

4.1.4 Classification . 85

4.1.5 Watermarking Techniques . 86

4.1.6 Fingerprinting Techniques . 99

4.1.7 Comparison . 100

4.1.8 Probabilistic Issues . 100

4.2 Proposed Scheme . 104

4.2.1 Public Watermarking . 109

4.2.2 Private Watermarking . 115

4.2.3 Time Complexity . 118

4.2.4 Discussions . 118

5 Observation-based Fine Grained Access Control (OFGAC) 121

5.1 Related Works . 125

5.2 OFGAC for RDBMS . 128

5.2.1 Policy Specification . 128

5.2.2 Referential Integrity . 131

5.2.3 Query Evaluation . 132

5.2.4 Collusion Attacks . 135

5.3 OFGAC for XML . 139

5.3.1 Policy Specification . 139

5.3.2 Approaches . 142

6 SQL Injection Attacks 147

6.1 Related Works . 148

6.2 Secure and Vulnerable Terms and Formulas 151

6.3 Proposed Technique . 152

vi

CONTENTS

6.3.1 Obfuscation . 154

6.3.2 Deobfuscation . 158

6.3.3 Example . 160

6.3.4 Static Vs. Dynamic Issues . 161

7 Cooperative Query Answering 165

7.1 Related Work and Motivation . 166

7.2 Key Issues . 167

7.3 Proposed Scheme . 169

7.3.1 Transforming from Concrete to Abstract Domain 169

7.3.2 Cooperative Query Evaluation . 170

7.3.3 Concretization of the cooperative abstract result 171

7.3.4 Correctness of the Result . 172

7.4 Intensional Query Answering . 174

8 Refinement of Abstract Program Slicing techniques 175

8.1 Related Work . 179

8.2 Preliminaries . 181

8.3 Semantic Relevancy of Statements . 185

8.3.1 Semantic Relevancy of Blocks . 189

8.3.2 Treating Relevancy of Control Statements 189

8.4 Algorithm for Semantics-based Abstract PDG 193

8.5 Dependence Condition Graph (DCG) . 193

8.5.1 Refinement into Semantics-based Abstract DCG 205

8.6 Slicing Algorithm . 207

8.7 Illustration of the Proposal with an Example 209

8.8 Soundness and Complexity Analysis . 212

8.8.1 Semantic Relevancy: Soundness 212

8.8.2 Complexity Analysis . 216

8.8.2.1 Complexity in computing semantic relevancy 216

8.8.2.2 Complexity in computing semantic data dependences . 218

8.8.2.3 Complexity to generate semantics-based abstract DCG

and its slicing . 219

8.8.2.4 Overall complexity of the proposal 220

vii

CONTENTS

8.9 Discussions . 220

8.10 Slicing of Database Applications . 221

8.10.1 A Motivating Example . 222

8.10.2 Database-Oriented Program Dependence Graph (DOPDG) 225

8.10.2.1 Identifying DD-Dependences 226

8.10.2.2 Identifying PD-Dependences 232

8.10.2.3 Constructing Concrete DOPDG 233

8.10.3 Constructing Abstract DOPDG . 234

8.10.3.1 Abstract DD-Dependences 235

8.10.3.2 Abstract PD-Dependences 238

8.10.3.3 Semantics-based Dependences Computation 238

9 Tukra: A Semantics-based Abstract Program Slicing Tool 243

10 Conclusions 255

References 257

viii

List of Figures

2.1 Information Systems Vs. Database Systems (66) 10

2.2 A simplified database system environment (56) 12

3.1 Abstract Lattices for attributes ‘Age’, ‘Sal’ and ‘Child-no’ 45

4.1 Basic Database Watermarking Technique 78

4.2 Overall architecture of Public Watermarking Phase 110

4.3 Algorithm for Signature Embedding and Public Key Generation 111

4.4 Overall architecture of publicly Signature Verification phase 112

4.5 Algorithm to Verify Signature . 113

4.6 Algorithm to Extract Signature . 114

4.7 Private Watermarking Algorithm . 116

5.1 A Document Type Definition (DTD) and its instance 124

5.2 Policies and Observations . 136

5.3 Combination of policies . 137

5.4 Abstract Lattices of DOM, PAR and SIGN 138

5.5 Combination of lattices . 139

5.6 Pictorial Representation of FGAC Vs. OFGAC 142

5.7 View generated for the employees in bank’s customer-care section 143

6.1 Architecture of the proposed scheme for SQLIA 153

6.2 The parse-tree of φ . 155

6.3 The bit-assigned parse-tree of φ . 156

6.4 SQL Obfuscation Algorithm . 157

ix

LIST OF FIGURES

6.5 Algorithm to Detect possible SQLIA and deobfuscation of the SQL state-

ments . 159

6.6 The bit-assigned parse-tree of the example pre-condition φ 161

8.1 DOPDG-based slicing for programs embedding SQL statements 176

8.2 Abstract DOPDG-based slicing for programs embedding SQL statements 177

8.3 A program and its SSA form . 181

8.4 Gpdg: PDG of Pssa . 183

8.5 Gr
pdg : PDG after relevancy computation of Pssa w.r.t. PAR 188

8.6 Treating “while” block . 191

8.7 Treating “i f -else” block . 192

8.8 Algorithm to generate Semantics-based Abstract PDG 194

8.9 A program and its DCG annotations . 199

8.10 A program and satisfiability of its DCG after relevancy computation . . 205

8.11 Algorithm to generate Semantics-based Abstract DCG 206

8.12 Slicing Algorithm . 207

8.13 Refinement of sub-DCG during slicing . 208

8.14 A program and its traditional Program Dependence Graph (PDG) 210

8.15 Gr
pdg: PDG after relevancy computation of Pssa w.r.t. SIGN 211

8.16 Gr,d
pdg: PDG after computing statements relevancy first, and then semantic

data dependences of Pssa w.r.t. SIGN . 212

8.17 Semantics-based abstract DCG . 213

8.18 Slicing w.r.t. 〈13, y,SIGN〉 . 214

8.19 Slice w.r.t. 〈13, y,SIGN〉 by Mastroeni and Zanardini 215

8.20 Program P . 224

8.21 Slice and its relevant database part . 226

8.22 Part of database state used by Q = 〈A, φ〉 228

8.23 Ade f (Qupdate, t) when updated by Qupdate = 〈update(~vd,~e), φ〉 229

8.24 Various scenarios of DD-Dependences on Qupdate when updates table t . 230

8.25 DOPDG of the code P . 234

9.1 Interaction between various modules . 245

9.2 Designing Abstract Values and Abstract Operators 246

9.3 Designing Abstract Domains . 247

x

LIST OF FIGURES

9.4 Designing Abstract Environments . 248

9.5 Graphical Interface 1 (accepting inputs from users) 249

9.6 Graphical Interface 2a (syntactic slicing and semantic computation) . . . 249

9.7 Graphical Interface 2b (showing PDG) . 250

9.8 Graphical Interface 2c (accepting slicing criterion) 250

9.9 Graphical Interface 2d (showing slice w.r.t. criterion) 251

9.10 Graphical Interface 3a (semantics-based abstract program slicing) 251

9.11 Graphical Interface 3b (showing program’s SSA form and DCG annota-

tions) . 252

9.12 Graphical Interface 3c (showing list of DCG-based refinement) 252

9.13 Graphical Interface 3d (DCG-based slicing) 253

xi

LIST OF FIGURES

xii

List of Tables

2.1 Summary of SQL Syntax . 13

2.2 Abstract additions and multiplications operations 15

3.1 Abstract syntax of the application programs embedding SQL statements 24

3.2 Database dB1 . 26

3.3 Operations of Qselect . 34

3.3 Operations of Qselect . 35

3.4 Operations of Qupdate . 37

3.5 Operation of Qinsert . 39

3.6 Operation of Qdelete . 40

3.7 Abstract table t]emp . 44

3.8 ξ1: Result of Q1 (concrete) . 48

3.9 ξ]1: Result of Q]
1 (abstract) . 49

3.10 ξ2: Result of Q2 (concrete) . 55

3.11 ξ]2: Result of Q]
2 (abstract) . 56

3.12 ξ3: Result of Q3 (concrete) . 63

3.13 Abstract computation of Q]
3 . 64

3.14 ξ4: Result of Q4 (concrete) . 65

3.15 Abstract computation of Q]
4 . 66

3.16 ξ5: Result of Q5 (concrete) . 67

3.17 Abstract computation of Q]
5 . 67

3.18 A database dB2 . 70

3.19 Partitions of Table tdept . 71

3.20 Table ti = tout
i × temp for i = 1, 2, 3 . 72

3.21 Result ξi = S[[Q′]](ρti , ρa) for i=1, 2, 3 . 72

xiii

LIST OF TABLES

3.22 S[[Qi]](ρtout
i
, ρa): Evaluation of Qi for i = 1, 2, 3 73

3.23 S[[Q]](ρtout ∪ ρtin , ρa): Evaluation of Q . 73

3.24 Table ξ′ = S[[Q′]](ρtemp , ρa) . 74

3.25 S[[Q]](ρtdept , ρa): Evaluation of Q . 74

4.1 Comparison of Distortion-based Watermarking and Fingerprinting Schemes101

4.2 Comparison of Distortion-free Watermarking Schemes 102

4.3 A concrete and corresponding partial abstract employee database 108

5.1 Concrete Database . 129

5.2 Partial Abstract Database . 129

5.3 Preserving Referential Integrity Constraint by using Type-2 variable . . 132

5.4 ξ]1: Result of Q]
1 . 133

5.5 ξ]2: Result of Q]
2 . 134

5.6 Abstract Computation of Q]
3 . 134

5.7 Observation-based Access Control Policy Specification for XML code . . 141

5.8 The equivalent relational database representation of the XML code . . . 144

6.1 Inference rules for terms, atomic and well-formed formulas being secure

and vulnerable, where ϑ ∈ {∀,∃} and θ ∈ {∧,∨,→,↔} and x is a bound

variable . 152

7.1 A concrete and its corresponding Abstract Database 170

7.2 ξ]1: Result of Q]
1 . 171

7.3 R1: Concrete Result obtained by concretizing the abstract result ξ]1 172

7.4 R2: Cooperative result of Q1 while using more abstraction 174

8.1 DCG annotations 〈eR, eA
〉 for DDG edges e of Gr

pdg 195

8.2 Database dB . 223

8.3 Abstract Database dB] . 225

8.4 Sets of defined and used variables involved in SQL Statements 227

9.1 A test program and its various slicing . 254

xiv

Chapter 1

Introduction

Abstract Interpretation is a theory of sound approximation of mathematical struc-

tures, in particular those involved in the behavior of computer systems. It allows the

systematic derivation of sound methods and algorithms for approximating undecid-

able or highly complex problems in various areas of computer science, for instance, in

static program analysis, system verification, model checking, program transformation,

process calculi, security, watermarking, type inference, theorem proving, constraint

solving, parsing and comparative semantics, systems biology, etc. The era of Abstract

Interpretation started about 30 years ago, in January 1977, with the pioneering work by

Patrick Cousot and Radhia Cousot (47), and now it is widely applied to industrial soft-

ware development tools (59). For a comprehensive overview of the main application

scenarios of Abstract Interpretation, see (46).

Due to incessant growth of the amount of data, the information systems are facing

serious challenges while managing, processing, analyzing, or understanding large

volume of data in restricted environments. As a result of this, the performance of

the systems in terms of optimization issues are really under big threat. The gap

between the advances in information technology and the amount of data with which

systems are dealing is a major concern for scientists now-a-days. To cope with this

situation, in this thesis, we extend and integrate the well-established mathematical

framework “Abstract Interpretation” to the context of Information Systems in order to

achieve a sound approximation of the system. Interestingly, it supports a wide range

of applications areas, in particular the security properties of information.

1

1. INTRODUCTION

Although the Abstract Interpretation is routinely used to cope with infinite state

systems, this thesis shows a suitable application of it to Information System scenarios

that usually deal with finite systems. To the best of our knowledge, this thesis is the

first work to create a bridge between Abstract Interpretation and Information Systems.

In particular, we formalize concrete and abstract semantics of database applica-

tions accessing and manipulating databases, by introducing the notion of Abstract

Databases. Despite of the finiteness of the databases, the unpredictability in measuring

their dimension in advance and the dynamism of the database states mandate the use

of formal methods to work on safe approximations instead, in order to accomplish

efficiency and effectiveness of the systems. The Abstract Interpretation formulation of

database systems serves as a formal foundation of many interesting real-life applica-

tions, for instance, (i) to address the security properties, like watermarking and access

control; (ii) to provide a novel cooperative query answering schema; (iii) to perform

abstract slicing of applications accessing or manipulating databases, etc.

The main contributions of the thesis can be summarized as follows:

1. Abstract Interpretation of Database Query Languages.

In the context of Relational Database Management Systems (RDBMS), there exist

relational algebra and relational calculus as semantic descriptions for SQL. How-

ever, these semantic descriptions cover only a subset of SQL that are used for

pure retrieval with no side effects on the database states (28, 30, 154). In particu-

lar, problems arise when dealing with UPDATE, INSERT or DELETE statements

since operators originally proposed in relational algebra do not support them.

Moreover, they do not cover the aggregate operators since these are still within the

range of pure retrieval statements. This motivates our theoretical work aiming

at defining a complete denotational semantics of applications embedding SQL

statements, both at the concrete and at the abstract level, as a basis to develop

an Abstract Interpretation for sound approximation of the applications. In this

setting, we represent all the syntactic elements in SQL statements (for example,

GROUP BY, ORDER BY, DISTINCT clauses, etc) as functions and the semantics

is described as a partial functions on the states which specify how expressions

are evaluated and instructions are executed. In order to define abstract states,

2

we introduce the notion of Abstract Databases obtained by abstracting concrete

database information by suitable properties of interest in an abstract domain. We

provide suitable examples of real life applications where abstraction of database

systems plays important roles. As far as we know, the impact of abstract inter-

pretation for sound approximation of database query languages has not yet been

investigated. This is the aim of this work.

This content is explained in Chapter 3 and has already been published in (43, 79,

87).

2. Persistent Watermarking of Relational Databases.

Digital watermarking is the process of embedding a piece of information into

digital content which may be used later to verify its authenticity or the identity

of its owners. The embedding of watermarks in the existing watermarking

techniques (91) for relational databases are based on the database content itself.

Benign Updates or any other authorized processing of this content may damage

or distort the existing watermarks, leading the detection phase almost infeasible.

In this work, we address the notion of persistent watermarking of relational

databases that serves as a way to recognize the integrity and ownership proof

of the database while allowing the evaluation of its content by a set of SQL

statements Q associated with it. We propose a novel fragile and robust persistent

watermarking scheme that embeds both private and public watermarks where the

former allows the owner to prove his ownership, while the latter allows any end-

user to verify the correctness and originality of the data in the database without

loss of strength and security. The persistency of the watermark is preserved

by exploiting (i) the concrete data belonging to the static part of the database

states w.r.t.Q, (ii) the abstract representation of the database information in non-

static part of the database states w.r.t. Q, and (iii) the invariants of the database

information represented by its semantics-based properties.

This content is explained in Chapter 4 and has already been published in (82, 83,

91).

3. Observation-based Fine Grained Access Control (OFGAC).

3

1. INTRODUCTION

The granularity of the traditional access control mechanism is coarse-grained and

can be applied only at database/table level for RDBMS or file/document level for

XML. The use of Fine Grained Access Control (FGAC) mechanisms (54, 192),

on the other hand, provide the safety of the database information even at lower

level such as individual tuple/cell level for RDBMS or element/attribute level for

XML without changing their original structure. However, in case of traditional

FGAC, the notion of sensitivity of the information is too restrictive (either public

or private) and impractical in some real systems where intensional leakage of the

information to some extent is allowed with the assumption that the observational

power of the external observers is bounded. For instance, suppose, according to

the disclosure policy, that the employees of the customer-care section in a bank

are able to see the last four digits of the credit card numbers, keeping the other

digits completely hidden. The traditional FGAC policy is unable to implement

this type of security framework without changing the database structure. To cope

with this situation, we introduce the notion of Observation-based Fine Grained

Access Control (OFGAC) mechanism for RDBMS and XML documents based on

the Abstract Interpretation framework. In this setting, data are made accessible

at various levels of abstractions based on their sensitivity levels. Unauthorized

users are not able to infer the exact content of an attribute containing partial

sensitive information, while they are allowed to get a partial or relaxed view of

it, according to their access rights, represented by specific property.

This content is explained in Chapter 5 and has already been published in (81, 85,

86).

4. SQL Injection Attacks (SQLIA).

SQL injection is an attack in which malicious code is inserted into SQL statement

and pass through a web application for execution by the backend database. If

not prevented properly, web applications may result in SQL Injection attacks that

allow hackers to view information from the database and/or even wipe it out. We

address and propose a SQL injection prevention technique where we perform an

obfuscation based analysis to prevent it. The proposed scheme has three phases,

the first one is performed statically, while the latter two are performed dynami-

cally: (i) Obfuscating the legitimate SQL statement Q into Q′ at each hotspot of

4

the application, (ii) After merging the user input into the obfuscated statement

at run-time, the dynamic verifier checks it at atomic formula level in order to

detect the presence of possible SQLIA, and (iii) Reconstruction into the original

statement Q from the obfuscated one Q′ before submitting it to the database, if

no possible SQLIA was detected. The proposal has many advantages: it reduces

false-positiveness in case of structural inputs, it is application-independent, it

reduces run-time over-head by distinguishing secure and vulnerable atomic for-

mulas where verification is performed on vulnerable atomic formulas only, there

is no need to use any secret key, etc.

This content is explained in Chapter 6 and has already been published in (80).

5. Cooperative Query Answering.

The traditional query processing system requires the users to have precise infor-

mation about the problem domain, database schema, and database content. It

always provides limited and exact answers, or even no information at all when

the exact information is not available in the database. To remedy such short-

comings, the notion of cooperative query answering has been explored as an

effective mechanism that provides users an intelligent database interface to issue

approximate queries independent to the underlying database structure and its

content, and supplies additional useful information as well as the exact answers.

We propose a cooperative query answering system based on the Abstract Inter-

pretation framework. In this context, we address three key issues: soundness,

relevancy and optimality of the cooperative answers, which can be used as a

milestone to compare different cooperative schemes in the literature.

This content is explained in Chapter 7 and has already been published in (84).

6. Refinement of Abstract Program Slicing techniques.

Program slicing is a well-known decomposition technique that extracts from

programs the statements which are relevant to a given behavior. It is a funda-

mental operation for addressing many software-engineering problems, includ-

ing program understanding, debugging, maintenance, testing, parallelization,

integration, software measurement etc. Many slicing techniques for imperative

languages have been proposed based on the traditional Program Dependence

5

1. INTRODUCTION

Graph (PDG) representation (2, 68, 96, 160). In traditional PDGs, the notion of

dependences between statements is based on syntactic presence of a variable

in the definition of another variable or in a conditional expression. Therefore,

the semantic requirement of the slicing creates a gap between the slicing and

the dependences. Mastroeni and Zanardini (140) first introduced the notion of

semantic data dependences, both in concrete and abstract domains, that helps

in converting traditional syntactic PDGs into more refined semantics-based (ab-

stract) PDGs by disregarding some false dependences from them. As a result,

the slicing techniques based on these semantics-based (abstract) PDGs result

into more precise slices. In this work, we strictly improve this approach by (i)

introducing the notion of semantic relevancy of statements, and (ii) combining it

with conditional dependences (182). This allows us to transform syntactic PDGs

into semantics-based (abstract) Dependence Condition Graphs (DCGs) that en-

able to identify the conditions for dependences between program points. These

two contributions in combination with semantic data dependences lead to a re-

fined abstract program slicing algorithm. Finally, we extend this approach to the

slicing of data-intensive applications that interact with relational databases by

exploiting the notion of database abstraction as discussed before.

This content is explained in Chapter 8 and has already been published in (44, 88).

7. Tukra: A Semantics-based Abstract Program Slicing Tool.

We introduce Tukra, a semantics-based abstract program slicing tool, based

on our proposal. This tool is implemented in Java. Given a program and an

abstract slicing criterion from the user-end as input, Tukra is able to perform

both syntax- and semantics-based abstract program slicing of a program w.r.t.

the criterion. We provide its architecture, some snapshots to show how it works

and some preliminary experimental results giving evidence towards its accuracy

with respect to the literature.

This content is explained in Chapter 9.

All the scenarios above draw an initial encouraging direction towards the application

of Abstract Interpretation theory to the context of Information Systems, giving rise

to a formal support to sound management of abstraction of data. We show that this

6

approach is effective on a suite of non-trivial issues, like the ones concerning security

properties.

7

1. INTRODUCTION

8

Chapter 2

Background: Information Systems,
Databases, Abstract Interpretation

In this chapter, we recall from (47, 48, 49, 55, 56, 64, 65, 66, 176) some basic background

on Information Systems, Databases, and Abstract Interpretation theory that will be

useful in the rest of the thesis.

Information Systems (IS) (65, 66, 176) is a generic term referring to software and

hardware systems that support data-intensive applications and provide information-

based services. In the past, organizations recognized the importance of managing

resources such as labor, capital, and raw materials. Today, it is widely accepted that

managing the information resource is very often equally important. The notion of

information systems has been addressed from various perspectives like managerial,

technical, organizational etc.

Information systems for most organizations are currently supported by databases.

As a consequence, information system design addresses a number of database issues

like conceptual modeling of data elements, metadata management, etc. On the other

hand, any useful database system is actually an information system providing ad-

ditional services beyond simply storing data and running queries and updates. As

a result, the distinction between a database and an information system tends to be

blurred, and it is not clear that the principles underlining the study of information sys-

tems should be different than those for databases. The distinction between a database

that manages data and answers queries, versus an information system that provides

services, is schematically depicted in Figure 2.1. Figure 2.1(a) shows information sys-

9

2. BACKGROUND: INFORMATION SYSTEMS, DATABASES, ABSTRACT
INTERPRETATION

Figure 2.1: Information Systems Vs. Database Systems (66)

(a)

(b)

tems as wrappers above database systems, while Figure 2.1(b) shows issues of concern

from a database and from an information system perspective. For more detail, please

refer (65, 66).

Information systems that incorporate multiple technologies and processes must

be designed and developed according to rigorous engineering standards to ensure

that they support the requirements of their respective application domains and that

they operate rapidly, accurately, and efficiently. Today, an exponentially increasing

amount of data is available for processing and analysis, the number of decisions

that must be made based on analysis is growing, the number of analysts that can

make these decisions is decreasing, the time frame to make the decisions is becoming

smaller, the size of information systems that support decision systems is increasing,

and information systems are becoming more vulnerable to attack. As the volume

and heterogeneity of data play an increasingly prominent role in information systems,

and as they continue to proliferate among many disparate organizations, advanced

intelligent techniques must be exploited to simplify access to the data, accelerate data

integration, and extract higher-level meaning from their content (176).

Data sources and their respective data management systems store and maintain

information relevant to information systems. Data source representations are generally

categorized into three: (i) structured (e.g., relational databases), (ii) semi-structured

(e.g., XML documents), and (iii) unstructured (e.g., text documents). Information

systems incorporating new or legacy data sources of all three categories will use tools

10

that provide simplified access to them and enable them to be integrated with other

data sources and applications.

Database Terminologies

A database (55, 56) is a collection of related data. This definition of database is quite

general; however, it has the following implicit properties:

• A database represents some aspect of the real world, sometimes called the mini-

world or the universe of discourse (UoD). Changes to the miniworld are reflected

in the database.

• A database is a logically coherent collection of data with some inherent meaning.

A random assortment of data cannot correctly be referred to as a database.

• A database is designed, built, and populated with data for a specific purpose.

It has an intended group of users and some preconceived applications in which

these users are interested.

A database management system (DBMS) is a collection of programs that enables users

to create and maintain a database. The DBMS is hence a general-purpose software sys-

tem that facilitates the processes of defining, constructing, manipulating, and sharing

databases among various users and applications.

As a complete definitions, we call the database and DBMS software together a

database system, depicted in Figure 2.2.

One fundamental characteristic of the database approach is that it provides some

level of data abstraction by hiding details of data storage that are not needed by most

database users. A data model is a collection of concepts that can be used to describe

the structure (i.e., data types, relationships, and constraints that should hold for the

data) of a database that provides the necessary means to achieve this abstraction.

The DBMS provides a set of operations or a language called the data manipulation

language (DML) for retrieval, insertion, deletion, and modification of the data. In

current DBMSs, the preceding types of languages are usually not considered distinct

languages; rather, a comprehensive integrated language is used that includes con-

structs for conceptual schema definition, view definition, and data manipulation. A

typical example of a comprehensive database language is the SQL relational database

11

2. BACKGROUND: INFORMATION SYSTEMS, DATABASES, ABSTRACT
INTERPRETATION

Figure 2.2: A simplified database system environment (56)

language, which represents a combination of data definition language (DDL), view

definition language (VDL), and data manipulation language (DML), as well as state-

ments for constraint specification, schema evolution, and other features. The name

SQL is derived from Structured Query Language. Originally, SQL was called SEQUEL

(for Structured English QUEry Language) and was designed and implemented at IBM

Research as the interface for an experimental relational database system called SYS-

TEM R. SQL is now considered as the standard language and already implemented

as interfaces to many commercial relational DBMSs, including Oracle, IBM’s DB2 and

SQL/DS, Microsoft’s SQL Server and ACCESS, INGRES, INFORMIX, and SYBASE.

Table 2.1 summarizes the syntax of various SQL statements. This summary is not

meant to be comprehensive nor to describe every possible SQL construct; rather, it is

meant to serve as a quick reference to the major types of constructs available in SQL,

and it will be our references for the rest of our thesis.

Several techniques exist for including database interactions in application pro-

grams. The main approaches for database programming are the following:

1. Embedding database statements in a general-purpose programming language:

12

Table 2.1: Summary of SQL Syntax

SELECT [DISTINCT] < attribute list >
FROM (< table name > {< alias >} | < joined table >) {, (< table name > {< alias >} | < joined table >)}
[WHERE < condition >]
[GROUP BY < grouping attributes > [HAVING < group selection condition >]]
[ORDER BY < column name > [< order >] {, < columnname > | [< order >] }]

< attribute list > ::= (∗ | (< column name > | < f unction > (([DISTINCT] < column name >) | ∗))
{, (< column name > | < f unction > (([DISTINCT] < column name >) | ∗))})

< grouping attributes > ::= < column name > {, < column name >}
< order > ::= (ASC | DESC)

INSERT INTO < table name > [(< columnname > {, < column name >})]
(VALUES (< constant value > {, < constant value >}){, (< constantvalue > {, < constantvalue >})}| < select statement >)

DELETE FROM < table name >
[WHERE < selection condition >]

UPDATE < table name >
SET < column name >=< value expression > {, < column name >=< value expression >}
[WHERE < selection condition >]

In this approach, database statements are embedded into the host programming

language, but they are identified by a special prefix. For example, the prefix for

embedded SQL is the string EXEC SQL, which precedes all SQL statements in a

host language program.

2. Using a library of database functions: A library of functions is made available to

the host programming language for database calls. For example, the functions

to connect to a database, to execute SQL statements, and so on. This approach

provides an Application Programming Interface (API) for accessing a database

from application programs.

3. Designing a brand-new language: A database programming language is de-

signed from scratch to be compatible with the database model and query lan-

guage. Additional programming structures such as loops and conditional state-

ments are added to the database language to convert it into a full-fledged pro-

gramming language.

In practice, the first two approaches are more common, whereas the third approach is

more appropriate for applications that have intensive database interaction.

13

2. BACKGROUND: INFORMATION SYSTEMS, DATABASES, ABSTRACT
INTERPRETATION

Abstract Interpretation

Abstract interpretation (47, 48, 49, 64) formalizes the correspondence between the con-

crete semantics Sc[[P]] of syntactically correct program P ∈ P in a given programming

language P and its abstract semantics Sa[[P]] which is a safe approximation of the

concrete semantics Sc[[P]].

The concrete and abstract semantics domain Dc and Da respectively often enjoy

stronger properties, such as being complete partial orderings (CPO) or complete lat-

tices.

A CPO is a poset (D,v) where the set D is equipped with an ordering relation v

and satisfies the following property: every sequence of elements x0 v x1 v ... v xn

in D has a limit or least upper bound in D, that is, there is an element in x ∈ D

(written as
⊔

i xi) such that, (i) ∀xi, xi v x, (ii) if x′ is any other upper bound for

the xi, then x v x′.

A poset (D,v) is called a complete lattice (denoted 〈D,v,t,u,>,⊥〉) if every

subset S of D has a least upper bound (written tS) and a greatest lower bound

(written uS) in it, and it is bounded by a unique largest element > = tD and a

unique smallest element ⊥ = uD.

The correspondence between these two concrete and abstract semantics domains

Dc and Da form a Galois Connection (Dc, α, γ,Da), where the function α : Dc
−→ Da

and γ : Da
−→ Dc form an adjunction, namely ∀A ∈ Da,∀C ∈ Dc : α(C) va A ⇔ C vc

γ(A) where α(γ) is the left(right) adjoint of γ(α). α and γ are called abstraction and

concretization maps respectively.

An Upper Closure Operator (UCO) on C, or simply a Closure, is an operator

ρ : C→ C which is monotone, idempotent, and extensive. It maps the concrete values

with their abstract properties, namely with the best possible approximation of the

concrete value in the abstract domain. For example, the operator PAR : ℘(Z)→ ℘(Z)

associates each subset of integers with its parity, PAR(⊥) = ⊥, PAR(S) = EVEN = {n ∈

Z | n is even} if ∀n ∈ S. n is even, PAR(S) = ODD = {n ∈ Z | n is odd} if ∀n ∈ S. n is odd,

and PAR(S) = I don′t know = Z otherwise. We denote by UCO(C) the set of closures on

C. When C is a complete lattice then 〈UCO(C),v,u,t,λx.>,λx.x〉 is a complete lattice

as well, where ρ1 v ρ2 if and only if ρ1(C) ⊆ ρ2(C), meaning that the abstract domain

14

specified by ρ1 is more precise than the abstract domain specified by ρ2. Let us recall

that each closure ρ is uniquely determined by the set of its fixpoints, given by its image

ρ(C). A set X ⊆ ρ(C) is the set of fixpoints of a closure operator if and only if X is a

Moore family of C, i.e., X = M(X) = {uS|S ⊆ X}, where u∅ = > ∈M(X). Given a Galois

connection (C, α, γ,A), ρ = γ ◦α is the closure corresponding to the abstract domain A.

Let (C, α, γ,A) be a Galois connection, f : C → C be a concrete function and

f] : A → A be an abstract function. f] is a sound, i.e., correct approximation of f if

f ◦ γ v γ ◦ f]. When the soundness condition is strengthened to equality, i.e., when

f ◦γ = γ◦ f], the abstract function f] is a complete approximation of f in A. This means

that no loss of precision is accumulated in the abstract computation through f]. Given

A ∈ UCO(C) and a semantic function f : C→ C, the notation f A , α◦ f ◦γ denotes the

best correct approximation of f in A. It has been proved that, given an abstraction A,

there exists a complete approximation of f : C→ C in A if and only if the best correct

approximation f A is complete (64). This means that completeness of f A is an abstract

domain property, namely that it depends on the structure of the abstract domain only.

As a first approximation, abstract interpretation can be understood as a nonstan-

dard semantics, i.e., one in which the domain of values is replaced by a domain of

descriptions of values, and in which the operators are given a corresponding non-

standard interpretation. For example, rather than using integers as concrete values,

an abstract interpretation may uses four different abstract values “zero”, “pos”, “neg”,

and “num”, where “zero” indicates that the number is zero, “pos” that the number

is positive, “neg” that the number is negative, and “num” that we don’t know. We

will call the set of these values “Sign”. The rule-of-sign interpretation of addition

and multiplication can then be specified in two tables as depicted in Table 2.2. These

interpretations may be viewed as “abstract” additions and multiplications.

Table 2.2: Abstract additions and multiplications operations

15

2. BACKGROUND: INFORMATION SYSTEMS, DATABASES, ABSTRACT
INTERPRETATION

Examples of other abstract domains include the domain of parity, the domain

of intervals etc. Observe that the abstract domains just mentioned do not take into

account any relationships between variables, and is thus a non-relational abstract

domain. Non-relational abstract domains tend to be fast and simple to implement, but

imprecise. Some examples of relational numerical abstract domains are:

• congruence relations on integers

• convex polyhedra with some high computational costs

• octagons

• difference-bound matrices

• linear equalities

and combinations thereof.

16

Chapter 3

Abstract Interpretation of Database
Query Languages

[Part of this chapter is already published in (43, 79, 87)]

In the context of web-based services interacting with DBMS, there is a need of “sound

approximation” of database query languages, in order to minimize the weight of

database replicas on the web or in order to hide specific data values while giving them

public access with larger granularity. There are many application areas where process-

ing of database information at different level of abstraction plays important roles, like

the applications where users are interested only in the query answers based on some

properties of the database information rather than their exact values.

Given an exploratory nature of the applications, like decision support system,

experiment management system etc, many of the queries end up producing no result

of particular interest to the user. Wasted time can be saved if users are able to quickly see

an approximate answer to their query, and only proceed with the complete execution

if the approximate answer indicates something interesting. The sound approximation

of the database and its query languages may also serve as a formal foundation of

answering queries approximately as a way to reduce query response times, when the

precise answer is not necessary or early feedback is helpful (108).

When a database is being populated with tuples, all tuples must satisfy some

properties which are represented in terms of integrity constraints. For instance, the

ages of the employees must be positive and must lie between 18 and 62. Any transaction

17

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

over the database must satisfy all these integrity constraints as well. The dynamic

checking for any transaction to ensure whether it violates the integrity constraints

of the database can increase the run-time overhead significantly, while managing the

integrity constraint verification statically may have a significant impact in terms of

efficiency. An interesting solution to this problem can be provided by extending to the

database field the Abstract Interpretation framework (47, 48, 49, 64).

Relational databases enjoy mathematical formulations that yield to a semantic

description using formal language like relational algebra or relational calculus. To

handle the aggregate functions or NULL values, some extensions of existing relational

algebra and relational calculus have been introduced (28, 117, 153, 154). However,

this semantic description covers only a subset of SQL that are used for pure retrieval

with no side effects on the database states (28, 30, 154). In particular, problems arise

when dealing with UPDATE, INSERT or DELETE statements since operators originally

proposed in relational algebra do not support them. This motivates our theoretical

work aiming at defining a complete denotational semantics of programs embedding

SQL statements, both at concrete and abstract level, as a basis to develop an Abstract

Interpretation for sound approximation of relational database systems. This way, the

semantics of SQL can be tuned according to suitable abstractions of the concrete domain

of data. In this setting, we represent all the syntactic elements in SQL statements

(for example, GROUP BY, ORDER BY, DISTINCT clauses, etc.) as functions and the

semantics is described as a partial functions on states which specify how expressions

are evaluated and instructions are executed. The functional representation of syntactic

elements increases the power of expressibility of the semantics and facilitates us to

provide a complete functional control on the corresponding domains of data. As far

as we know, the impact of abstract interpretation for sound approximation of database

query languages, with a notable exception in case of graphical query languages like

G-Log (42), has not yet been investigated. This is the aim of this chapter.

The underlying concepts is that the applications embedding SQL code basically in-

teract with two worlds or environments: user world and database world. Corresponding

to these two worlds or environments we define two sets of variables: Vd and Va. The

set Vd is the set of database variables (i.e., the set of database attributes) and Va is a

distinct set of variables called application variables defined in the application. Vari-

ables from Vd are involved only in the SQL statements, whereas variables in Va may

18

3.1 Related Works

occur in all types of instructions of the application. We denote any SQL statement by

a tuple Qsql = 〈Asql, φ〉. We call the first component Asql the action part and the second

component φ the pre-condition part of Qsql. In an abstract sense, any SQL statement

Qsql first identifies an active data set from the database using the pre-condition φ and

then performs the appropriate operations on that data set using the SQL action Asql.

The pre-condition φ appears in Qsql as a well-formed formula in first-order logic. The

semantics defined this way can be lifted from the concrete domain of values to abstract

representation of them by providing suitable abstract operators corresponding to the

concrete ones.

The structure of this chapter is as follows: Section 3.1 discusses the related work

in the literature. Section 3.2 recalls some preliminary concepts. Section 3.3 defines

the abstract syntax of programs embedding SQL statements. In section 3.4, we define

environments and states associated with the application. Section 3.5 describes the

semantics of the arithmetic and boolean expressions, whereas section 3.6 and 3.7

describe the formal semantics of atomic and composite statements respectively. In

section 3.8, the correspondence of the proposed denotational semantic approach with

the relational algebra is discussed. In section 3.9, we lift the syntax and semantics of the

query languages from concrete domain to an abstract domain of interest by discussing

the soundness and completeness of the abstraction in details. In section 3.10, we

discuss the formal semantics of SQL statements with correlated and non-correlated

subquery.

3.1 Related Works

Most popular commercial and open source databases currently in use are based on the

relational data model which serves as a formal basis for relational database system.

The relational model of data was first proposed by E. F. Codd in 1970 (41). In (40), E.

F. Codd defined a collections of operations on relations which is defined as Relational

Algebra.

Relational Calculus is based on a branch of mathematical logic called predicate

calculus. In 1967, possibly, Kuhns first used the idea of predicate calculus as the basis

for query language in (125). The applied form of predicate calculus specifically tailored

19

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

to relational databases was proposed by E. F. Codd (40). A language explicitly based

on that calculus called “Data Sublanguage ALPHA” was also presented by Codd in (39).

The relational algebra and relational calculus provide a foundation for designing

relationally complete query languages. According to Codd’s theorem, the relational al-

gebra and the relational calculus are essentially logically equivalent: for any algebraic

expression, there is an equivalent expression in the calculus, and vice versa. Codd’s

reduction algorithm (40) demonstrates that the relational algebra has at least the selec-

tive power of the relational calculus. Relational calculus provides a declarative way to

specify database queries, whereas relational algebra provides a more procedural way

for specifying queries.

In (154), the authors described the formal semantics of SQL using a formal model,

called Extended Three Valued Predicate Calculus (E3PVC). This model is basically

based on a set of rules that determine a syntax-driven translation of SQL queries.

These rules allow the transformation of a general E3VPC expression to a canonical

form, which can be manipulated using traditional, two-valued predicate calculus and

solves the equivalence of SQL queries.

The Relational Algebra and Relational Calculus can be used as a model for de-

signing many approaches to query optimization. Many works (28, 30, 111, 153) on

semantics and optimization of SQL queries focused on the approach of translating

SQL to a formal language.

Bültzingwloewen (28) provided a precise definition of the semantics of SQL queries

having aggregate functions and identified some problems associated with optimization

along with their solutions. Here the semantics is defined by translating SQL queries

into extended relational calculus expressions based on the work in (117). Moreover,

the NULL values are considered in the extended version of relational algebra and

relational calculus. It has been proved that these extended relational calculus and

relational algebra are equivalent and have the same expressive power.

In (30), the authors proposed a syntax directed translator of SQL into relational

algebra. This is done in two steps: transforming SQL queries into equivalent SQL

queries accepted by restricted grammar, and then transforming the restricted one into

relational algebra expression. The translator can be in conjunction with an optimizer

which operates on the relational algebra expression. This translator defines the se-

mantics of the SQL language and can be used for the proof of equivalence of SQL

20

3.2 Preliminaries

queries with different syntactic form. Translation of SQL into equivalent relational

algebra via relational calculus is also presented in (111). However, this translation is

not optimized.

Fraternali and Tanca (60) defined the semantics of active databases. First, they

defined an extended event-condition-action (EECA) rule by encoding the whole variety

of behaviors of active databases into a unique formalism in user-readable format. A

rule from any existing system, such as Oracle, Sybase, SQL3, Postgres etc, can be

rewritten in this formalism making all the semantic choices apparent. Then, a syntax-

directed translation from EECA rules to a low-level logic-based core rules is performed.

The semantics of core rules is specified as the fixpoint of a transformation described by

a simple rule execution algorithm. Finally, the core rule execution model is embedded

into a more general framework for transactions and updates in active databases.

In (10, 11, 12), the authors introduced the way to optimize integrity constraints

checking for a transaction at compile-time to reduce the run-time overhead. They

considered only the object-oriented databases where the initial databases are repre-

sented in the form of first order logic formulas (treated as abstract form of databases).

They used predicate transformer as a way to provide the abstract interpretation of the

transactions so as to collect the run-time behavior of the transaction at compile-time.

3.2 Preliminaries

In this section, we recall some basic mathematical notation used in the literature and

some basic ideas about semantic interpretation of well-formed formulas in first-order

logic (67).

Basic Mathematical Notation

If S and T are sets, then ℘(S) denotes the powerset of S, |S| the cardinality of S, S\T the

set-difference between S and T, S × T the Cartesian product. A poset P with ordering

relation v is denoted as 〈P,v〉, while 〈C,v,t,u,>,⊥〉 denotes the complete lattice C

with ordering v, lub t, glb u, greatest element >, and least element ⊥.

Let e, t and f be an expression, a database table and a function respectively. We

use the following functions in the subsequent section:

21

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

- const(e) returns the constants appearing in e.
- var(e) returns the variables appearing in e.
- attr(t) returns the attributes associated with t.
- dom(f) returns the domain of f.
- target(f) returns a subset of dom(f) on which the application of f is restricted.

Semantic Interpretation of Well-Formed Formulas in First-Order Language

Let F, R and C be the set of function symbols, relation symbols and constant symbols

respectively in the first order language L. A semantic structure ς for L is a non-empty

set Dς, called the domain of the structure, along with the following:

1. For each function symbol fn,m ∈ F, there is a function f ςn,m : Dn
ς → Dς;

2. For each relation symbol Rn,m ∈ R, there is a subset Rςn,m of Dn
ς ;

3. For each constant symbol ck ∈ C, there is an element cςk .

The subscript n in the notation fn,m and Rn,m gives the number of arguments of the

corresponding function or relation, whereas subscript m says it is the mth of the symbols

requiring n arguments. In general, a subset of Dn
ς is called an n-place relation on Dς,

so that the subsets Rςn,m are just described as the relations on ς, and the cςks are called

constants of ς. The functions f ςn,m ∈ Fς, relations Rςn,m ∈ Rς and constants cςk ∈ Cς are

called the interpretations in the structure ς of the corresponding symbols of L.

We shall often write semantic structures using the notation, ς = {Dς, Cς, Fς, Rς}. Let

L be a language with equality. A structure for L is said to be normal if the interpretation

of = is equality on its domain.

Suppose that the variables x1, x2, ..., xn are interpreted respectively by elements

a1, a2, ..., an of Dς. We shall abbreviate this interpretation by ~a/~x. Then the interpreta-

tion in ς of each term τ ∈ T of the first-order language L under this interpretation of

the variables, which we write as τ[~a/~x]ς, is defined recursively as follows:

• For each variable xi, we define xi[~a/~x]ς = ai.

• For each constant symbol ck, we define ck[~a/~x]ς = cςk .

• If fn,m is a function symbol in first-order language L and τ1, τ2, . . . , τn ∈ T, then

fn,m(τ1, τ2, . . . , τn)[~a/~x]ς = f ςn,m(τ1[~a/~x]ς, . . . , τn[~a/~x]ς).

22

3.3 Abstract Syntax

Now letφbe a well-formed-formula of L. The relation ς |= φ[~a/~x] is read as “the formula

φ is true in, or is satisfied by, the structure ς when x1, x2, . . . , xn are interpreted by

a1, a2, . . . , an”. This is defined recursively on the construction of φ as follows:

• Atomic formulas:

(a) for each relation symbol Rn,m in L and terms τ1, τ2, . . . , τn: ς |= Rn,m(τ1, τ2,

. . . , τn)[~a/~x] if and only if (τ1[~a/~x]ς, . . . , τn[~a/~x]ς) ∈ Rςn,m

(b) if τ1 = τ2 are terms, then ς |= (τ1 = τ2)[~a/~x] if and only if τ1[~a/~x]ς = τ2[~a/~x]ς

• For any formula of one of the forms ¬φ, φ1 ∨ φ2, φ1 ∧ φ2, ∀xi φ, ∃xi φ truth

tables laws are followed, e.g.

(a) ς |= (¬φ)[~a/~x] if and only if it is not the case that ς |= φ[~a/~x]

(b) ς |= (φ1 ∨ φ2)[~a/~x] if and only if ς |= φ1[~a/~x] or ς |= φ2[~a/~x].

(c) ς |= (φ1 ∧ φ2)[~a/~x] if and only if ς |= φ1[~a/~x] and ς |= φ2[~a/~x].

(d) ς |= (∀xi φ)[~a/~x] if and only if for all b ∈ Dς, ς |= φ[~a/~x[b/xi]].

(e) ς |= (∃xi φ)[~a/~x] if and only if there is some b ∈ Dς, ς |= φ[~a/~x[b/xi]].

3.3 Abstract Syntax of Programs embedding SQL Statements

The abstract syntax of the application programs embedding SQL statements is de-

picted in Table 3.1. It is based on the following syntactic sets:

n : Z Integer
k : S String
c : C Constants
va : Va Application Variables
vd : Vd Database Variables (attributes) involved in SQL statements
v : V , Vd ∪Va Variables
e : E Arithmetic Expressions
b : B Boolean Expressions
Asql : Asql Action Part of SQL statements
τ : T Terms
a f : A f Atomic Formulas
φ : W Well-formed formulas (Pre-condition part of SQL statements)
Qsql : Qsql SQL statements
I : I Instructions

23

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

Table 3.1: Abstract syntax of the application programs embedding SQL statements

c ::= n | k

e ::= c | vd | va | opu e | e1 opb e2, where opu and opb represent unary and binary arithmetic operators respectively.

b ::= e1 = e2 | e1 ≥ e2 | e1 ≤ e2 | e1 > e2 | e1 < e2 | e1 , e2 | ¬b | b1 ∨ b2 | b1 ∧ b2 | true | f alse

τ ::= c | va | vd | fn(τ1, τ2, ..., τn), where fn is an n-ary function.

a f ::= Rn(τ1, τ2, ..., τn) | τ1 = τ2, where Rn is an n-ary relation: Rn(τ1, τ2, ..., τn) ∈ {true, f alse}

φ ::= a f | ¬φ1 | φ1 ∨ φ2 | φ1 ∧ φ2 | ∀xi φ | ∃xi φ

g(~e) ::= GROUP BY(~e) | id

r ::= DISTINCT | ALL

s ::= AVG | SUM | MAX | MIN | COUNT

h(e) ::= s ◦ r(e) | DISTINCT(e) | id

h(∗) ::= COUNT(*)

~h(~x) ::= 〈h1(x1), ..., hn(xn)〉, where ~h = 〈h1, ..., hn〉 and ~x = 〈x1, ..., xn〉

f (~e) ::= ORDER BY ASC(~e) | ORDER BY DESC(~e) | id

Asql ::= select(va, f (~e′), r(~h(~x)), φ, g(~e)) | update(~vd, ~e) | insert(~vd, ~e) | delete(~vd)

Qsql ::= 〈Asql, φ〉 | Q′sql UNION Q′′sql | Q
′

sql INTERSECT Q′′sql | Q
′

sql MINUS Q′′sql

I::= skip | va := e | va :=? | Qsql | i f b then I1 else I2 | while b do I | I1; I2

Any constant c ∈ C appearing in SQL statements Qsql is either an integer n ∈ Z

or a string k ∈ S. The pre-condition φ of Qsql is a well-formed formula in first order

logic. We deal with only Data Manipulation Language (DML) for the action part Asql,

that is, an SQL action is the application of either SELECT, or UPDATE, or INSERT, or

DELETE. Observe that the database variables from the set Vd can appear in Qsql only.

Since the variables from Vd represent the attributes of the database tables, we assume

that no two tables have the same attributes.

The function GROUP BY(~e)[t] where ~e represents an ordered sequence of arithmetic

24

3.3 Abstract Syntax

expressions, is applied on a table t and depending on the values of ~e over the tuples of

t, it results into maximal partition of the tuples of t. The functions ORDER BY ASC(~e)[t]

and ORDER BY DESC(~e)[t] sort the tuples of table t in ascending or descending order

based on the value of ~e over the tuples in t respectively. Observe that, Asql of SELECT

statement may or may not use GROUP BY and ORDER BY functions, and this fact is

reflected in the abstract syntax of g and f respectively in Table 3.1.

The aggregate functions in SELECT statement are represented by s. The clauses

DISTINCT and ALL are used to deal with duplicate values. We denote DISTINCT and

ALL by the function r. By ~h(~x), we denote an ordered sequence of functions operating

on an ordered sequence of arguments ~x, i.e., each function hi ∈
~h operates on the

corresponding argument xi ∈ ~x. The argument xi is an expression e or a sequence of all

attributes of the table denoted by ∗ in SQL.

It should be noted that, if SELECT statement uses GROUP BY(~e), then there must be

an ~h(~x) which is evaluated on each partition obtained by GROUP BY operation, yielding

to a single tuple. In such case, the ith element hi ∈
~h must be DISTINCT function if the

corresponding ith element of ~x (i.e. xi) belongs to ~x ∩ ~e, or hi must be COUNT if xi is ∗,

otherwise hi(xi) is s ◦ r(e) where e ∈ ~x ∧ e < (~x ∩ ~e). That is,

hi ,


COUNT if xi = ∗ or,
DISTINCT if xi ∈ ~x ∩ ~e or,
s ◦ r otherwise

When the SELECT statement does not use any GROUP BY(~e) function, we have two

situations: (i) if ~h , ~id, then the set of all tuples in the table for which φ satisfies is

considered as a single group and ~h(~x) is evaluated on that group. In that case, hi ∈
~h is

defined as follows:

hi ,

COUNT if xi = ∗ or,
s ◦ r otherwise

(ii) if ~h = ~id, then each tuple in the table for which φ satisfies is considered as an

individual group and ~h(~x) = ~x is evaluated on each of these groups.

Note that, the function r involved in hi ∈
~h deals with duplicate values of the

argument expression e, whereas the function r in r(~h(~x)) occurring in the action part

Asql of SELECT statement deals with duplicate results obtained after performing~h over

the group(s).

25

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

The formula φ and the variable va appearing in Asql of the SELECT statement rep-

resent the HAVING clause and a Record/ResultSet type application variable respectively.

va has an ordered sequence of fields ~w where the type of each field wi ∈ ~w is the same

as the return type of the corresponding function hi(xi) ∈ ~h(~x). By the vector notation ~vd,

we denote an ordered sequence of database variables. In case of DELETE statement,

observe that, in general, ~vd includes all attributes of the target table.

Finally, we introduce a particular assignment ”va :=?”, called random assignment,

in the instruction set, that models the insertion of input values at run time by an

external user.

3.4 Environment and State

In this section, we introduce different type of environments and states associated with

programs embedding SQL code. Consider a database instance dB1 consisting of two

tables temp and tdept, depicted in Table 3.2.

Table 3.2: Database dB1

(a) temp

eID Name Age Dno Pno Sal Child-no
1 Matteo 30 2 1 2000 4
2 Alice 22 1 2 1500 2
3 Joy 50 2 3 2300 3
4 luca 10 1 2 1700 1
5 Deba 40 3 4 3000 5
6 Andrea 70 1 2 1900 2
7 Alberto 18 3 4 800 1
8 Bob 14 2 3 4000 3

(b) tdept

Deptno Dname Loc MngrID
1 Math Turin 4
2 Computer Venice 1
3 Physics Mestre 5

Environment

The program P embedding SQL statements acts on a set of constants const(P) ∈ ℘(C)

and set of variables var(P) ∈ ℘(V), whereV = Vd∪Va. These variables take their values

from semantic domainD0, whereD0 = {D∪{0}} and0 represents the undefined value.

Now we define two environments Ed and Ea corresponding to the database and

application variable sets Vd and Va respectively.

26

3.4 Environment and State

Definition 1 (Application Environment) An application environment ρa is a partial func-
tion ρa : Va 7−→ D0. We denote by Ea the set of all application environments.

Definition 2 (Database Environment) A database is a set of tables {ti | i ∈ Ix} for a given set
of indexes Ix. We may define a function ρd whose domain is Ix, such that for i ∈ Ix, ρd(i) = ti.

In the example depicted in Table 3.2, the index set Ix is {emp, dept}, and the database d

is the set {temp, tdept}. So, ρd(emp) = temp, for example.

Definition 3 (Table Environment) Given a database environment ρd and a table t ∈ d. We
define attr(t) = {a1, a2, ..., ak}. So, t ⊆ D1×D2××Dk where, ai is the attribute corresponding
to the typed domain Di . A table environment ρt for a table t is defined as a function such that
for any attribute ai ∈ attr(t),

ρt(ai) = 〈πi(l j) | l j ∈ t〉

Where π is the projection operator, i.e. πi(l j) is the ith element of the l j-th row. In other words,
ρt maps ai to the ordered set of values over the rows of the table t.

In the example of Table 3.2, dom(ρtemp)={eID, Name, Age, Dno, Pno, Sal, Child-no}. So, for

example, ρtemp(Age)= 〈30, 22, 50, 10, 40, 70, 18, 14〉.

Relation between Database Environment and Table Environment. Given a database

d and a table ti ∈ d with ~a = attr(ti). Then, ρd(i) = ρti(~a).

State and State Transition

Given a program P embedding SQL code, we define a state σ ∈ S as a triplet 〈I, ρd, ρa〉

where I ∈ I is the instruction to be executed, ρd and ρa are the database environment

and application environment respectively on which I is executed. Thus,

S , I × Ed × Ea

where Ed denotes the set of all database environments, and Ea denotes the set of all

application environments. The set of states of a program P is defined as:

S[[P]] , P × E[[P]]

where E[[P]] is the set of environment of the program P whose domain is the set of

program variables.

27

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

The state transition relation is defined as Γ , S 7−→ ℘(S). The transitional seman-

tics of a program P is, thus, defined as Γ[[P]] , S[[P]] 7−→ ℘(S[[P]]).

In the next sections, we will describe in details the semantic functions E[[.]] and B[[.]]

for evaluating arithmetic and boolean expressions respectively, and S[[.]] for evaluating

SQL statements.

3.5 Formal Semantics of Expressions

The evaluation of arithmetic expressions is defined by distinguishing different basic

cases:

1. E[[c]](ρd, ρa) = c

2. E[[va]](ρd, ρa) = ρa(va)

3. E[[vd]](ρd, ρa)

Let ∃t ∈ dom(ρd) : vd = ai ∈ attr(t) in

= E[[vd]](ρt, ρa)

= ρt(ai)

4. E[[vd op c]](ρd, ρa) where op represents the arithmetic operation.

Let ∃t ∈ dom(ρd) : vd = ai ∈ attr(t) and op : Di ×D j → Dk in

= E[[vd op c]](ρt, ρa)

= 〈(m op c) ∈ Dk | m ∈ ρt(ai) ∧ ai ∈ Di ∧ c ∈ D j〉

5. E[[vd op va]](ρd, ρa)

Let ∃t ∈ dom(ρd) : vd = ai ∈ attr(t) and op : Di ×D j → Dk in

= E[[vd op va]](ρt, ρa)

= 〈(m op n) ∈ Dk | m ∈ ρt(ai) ∧ ρa(va) = n ∧ ai ∈ Di ∧ va ∈ D j〉

6. E[[vd1 op vd2]](ρd, ρa)

Let ∃t ∈ dom(ρd) : vd1 = ai, vd2 = a j, {ai, a j} ⊆ attr(t) and op : Di ×D j → Dk in

= E[[vd1 op vd2]](ρt, ρa)

= 〈mr ∈ Dk| mr = πi(lr) op π j(lr) where lr is the rth row of t〉

28

3.6 Formal Semantics of Statements

7. E[[e1 op e2]](ρd, ρa)=

Case 1 : ∃! t ∈ dom(ρd) : if vd occurs in e1 or e2 and vd = a ∈ attr(t),
= E[[e1 op e2]](ρt, ρa)
= E[[e1]](ρt, ρa) op E[[e2]](ρt, ρa)

Case 2 : Let T = {t ∈ dom(ρd) | ∃vd occurring in e1 or e2 s.t. vd = a ∈ attr(t)},
Let T = {t1, t2, ..., tn} and t′ = t1 × t2 × ... × tn,

= E[[e1 op e2]](ρt′ , ρa)

We generalize the arithmetic operation op on lists as follows: Suppose op is a binary

arithmetic operation over two lists S1 and S2. Also assume, S′ ⊆ S1, s1 ∈ S1 and S′′ ⊆ S2,

s2 ∈ S2 with |S′| = |S′′|, then the generalization of op is defined by:

op ,


S′ op s2 = 〈s op s2 | s ∈ S′〉
s1 op S′′ = 〈s1 op s | s ∈ S′′〉
S′ op S′′ = 〈s′i op s′′i | s

′

i and s′′i are the ith element of S′ and S′′ respectively〉

Finally, the evaluation of boolean expressions is defined by:

1. B[[true]](ρd, ρa) = true

2. B[[f alse]](ρd, ρa) = f alse

3. B[[e1 opr e2]](ρd, ρa) = E[[e1]](ρd, ρa) opr E[[e2]](ρd, ρa), where opr represents the

relational operator.

4. B[[¬b]](ρd, ρa) = ¬B[[b]](ρd, ρa)

5. B[[b1 ∨ b2]](ρd, ρa) = B[[b1]](ρd, ρa) ∨ B[[b2]](ρd, ρa)

6. B[[b1 ∧ b2]](ρd, ρa) = B[[b1]](ρd, ρa) ∧ B[[b2]](ρd, ρa)

3.6 Formal Semantics of Program Statements

Semantics S[[I]](ρd, ρa) of an instruction I in a program embedding SQL code defines

the effect of executing this instruction on the environment ρa or (ρd, ρa). There are two

types of instructions: one executed only on ρa and other executed on both database

and application environment (ρd, ρa) together. The SQL statements Qsql belong to the

second category, whereas all other instructions of the application belong to the first

category.

29

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

3.6.1 Semantics of SELECT Statement

In this section, we describe the semantics of SELECT statement and we illustrate it
with an example.

Consider the database of Table 3.2 and the following SELECT statement Qselect:

SELECT DISTINCT Dno, Pno, MAX(Sal), AVG(DISTINCT Age), COUNT(*) FROM temp INTO va WHERE Sal >1000
GROUP BY Dno, Pno HAVING MAX(Sal)<4000 ORDER BY AVG(DISTINCT Age), Dno

An equivalent formulation of Qselect is:

SELECT DISTINCT(〈DISTINCT(Dno), DISTINCT(Pno), MAX◦ALL(Sal), AVG◦DISTINCT(Age), COUNT(*)〉) FROM temp

INTO va WHERE Sal >1000GROUP BY 〈Dno, Pno〉HAVING (MAX◦ALL(Sal))<4000ORDER BY 〈AVG◦DISTINCT(Age),
Dno〉

According to the abstract syntax, we get:

• φ1 = Sal >1000

• ~e = 〈Dno, Pno〉

• g(~e) = GROUP BY(〈Dno, Pno〉)

• φ2 = (MAX◦ALL(Sal))<4000

• ~h = 〈DISTINCT, DISTINCT, MAX◦ALL, AVG◦DISTINCT, COUNT〉

~x = 〈Dno, Pno, Sal, Age, ∗〉
~h(~x) = 〈DISTINCT(Dno), DISTINCT(Pno), MAX◦ALL(Sal), AVG◦DISTINCT(Age), COUNT(*)〉

• ~e′ = 〈AVG◦DISTINCT(Age), Dno〉, whereAVG◦DISTINCT(Age) simply represents an expression after the application
of ~h(~x).

• f (~e′) = ORDER BY ASC(〈AVG◦DISTINCT(Age), Dno〉)

• va = Record or ResultSet type application variable with fields ~w=〈w1, w2, w3, w4, w5〉. The type of w1, w2,
w3, w4, w5 are same as the return type of DISTINCT(Dno), DISTINCT(Pno), MAX◦ALL(Sal), AVG◦DISTINCT(Age),
COUNT(*) respectively. For instance, in java as a host language, va represents the object of the type ResultSet.
Observe that, here we use the term INTO to understand the assignment into the application variable.

Thus, Qselect is of the form as follows:

SELECT r(~h(~x)) FROM temp INTO va(~w) WHERE φ1 GROUP BY ~e HAVING φ2 ORDER BY ASC ~e′

We now describe the semantics of SELECT statement step by step using the above

example.

Recall from Table 3.1 that the syntax of SELECT statement is defined as:

〈select(va, f (~e′), r(~h(~x)), φ2, g(~e)), φ1〉

30

3.6 Formal Semantics of Statements

The Semantics of SELECT statement is described below:

S[[〈select(va, f (~e′), r(~h(~x)), φ2, g(~e)), φ1〉]]ς(ρd, ρa)

=



S[[〈select(va, f (~e′), r(~h(~x)), φ2, g(~e)), φ1〉]]ς(ρt, ρa)
if ∃! t ∈ dom(ρd) : target(〈select(va, f (~e′), r(~h(~x)), φ2, g(~e)), φ1〉) = {t}

S[[〈select(va, f (~e′), r(~h(~x)), φ2, g(~e)), φ1〉]]ς(ρt′ , ρa) otherwise,
where T = {t1, . . . , tn ∈ dom(ρd) | ti occurs in Qselect} and t′ = t1 × t2 × · · · × tn.

Below the semantics of SELECT statement is unfolded step by step:

Step 1. Absorbing φ1:

S[[〈select(va, f (~e′), r(~h(~x)), φ2, g(~e)), φ1〉]]ς(ρt0 , ρa)

= S[[〈select(va, f (~e′), r(~h(~x)), φ2, g(~e)), true〉]]ς(ρt′ , ρa), where

t′ = 〈 li ∈ t0 | let var(φ1) = ~v′d ∪
~v′a with ~v′d = ~a ⊆ attr(t0) : ς |= φ1[π~a(li)/~v′d][ρa(~v′a)/~v′a] 〉

Example: Since in our example target(Qselect) = {temp}, we apply WHERE clause

φ1=Sal >1000 on temp. The result is depicted in Table 3.3(a). The row “eID:7;

Name:Alberto; Age:18; Dno:3; Pno:4; Sal:800; Child−no:1” is disregarded from the

result because, ς 6|= φ1[800/Sal]. In fact, the semantic structure ς does not satisfy

φ1 when the variable ‘Sal’ is substituted by the value ‘800’ of the corresponding

row.

Step 2. Grouping:

S[[〈select(va, f (~e′), r(~h(~x)), φ, g(~e)), true〉]]ς(ρt, ρa)

= S[[〈select(va, f (~e′), r(~h(~x)), φ, id), true〉]]ς(ρT, ρa), where

g(~e) = Group By(~e) and g(~e)[t] is the maximal partition T = {t1, t2, ..., tn} o f t, s.t.

∀ti ∈ T, ti ⊆ t and ∀e j ∈ ~e, ∀mk,ml ∈ E[[e j]](ρti , ρa) : mk = ml

31

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

Example: Applying the grouping function g(~e)=GROUP BY(〈Dno, Pno〉) on the

result of step 1 based on the argument 〈Dno, Pno〉, we get 4 different partitions

with 〈2, 1〉, 〈1, 2〉, 〈2, 3〉 and 〈3, 4〉 as the values of 〈Dno, Pno〉, depicted in Table

3.3(b).

Step 3. Absorbing φ:

S[[〈select(va, f (~e′), r(~h(~x)), φ, id), true〉]]ς(ρT, ρa)

= S[[〈select(va, f (~e′), r(~h(~x)), true, id), true〉]]ς(ρT′ , ρa), where

T′ is defined as follows: there is a sequence of functions ~h′ occuring in φ,

operating on groups, such that : ~h′(~x′) 3 h′i (x
′

i) ,


COUNT(*) or,
DISTINCT(e) or,
s ◦ r(e)

Let ~v′a be a sequence of application variables occurring in φ and,

∀ti ∈ T, ~h′(〈E[[~x′]](ρti , ρa)〉) = ~ci and T′ = {ti ∈ T | ς |= φ[~ci/~h′(~x′)][ρa(~v′a)/~v′a]}

Example: We apply theHAVING clauseφ2=MAX◦ALL(Sal)<4000 over all the groups

in step 2. One group with the value of 〈Dno, Pno〉 equal to 〈2, 3〉 has been disre-

garded, since the maximum salary of that group is not less than 4000. That is,

the semantic structure ς does not satisfy φ2 after interpreting MAX◦ALL(Sal) in φ2

with the value which is returned by the function MAX◦ALL(Sal) applying on that

group. The result is shown in Table 3.3(c).

Step 4. Applying r(~h(~x)) on each group in T:

= S[[〈select(va, f (~e′), r(~h(~x)), true, id), true〉]]ς(ρT, ρa)

= S[[〈select(va, f (~e′), id, true, id), true〉]]ς(ρt, ρa), where

t′ = 〈 ~h(E[[~x]](ρti , ρa)) | ti ∈ T 〉 and t = r[t′]

As we mentioned earlier that the generation of maximal partitions T of the tuples

depends on whether (i) the function g is present or not, and (ii) ~h is ~id or not.

32

3.6 Formal Semantics of Statements

Example: In the example, r(~h(~x)) = DISTINCT(〈DISTINCT(Dno), DISTINCT(Pno),

MAX◦ALL(Sal), AVG◦DISTINCT(Age), COUNT(*)〉). We perform r(~h(~x)) on each

group resulting from step 3. We have three steps:

(a) On each group, perform~h(~x) = 〈DISTINCT(Dno), DISTINCT(Pno), MAX◦ALL(Sal),

AVG◦DISTINCT(Age), COUNT(*)〉: After applying ~h(~x) on each group, we get

the result as in Table 3.3(d).

(b) Get the table t out of these results obtained in step (a): This is shown in

Table 3.3(e).

(c) Apply r=DISTINCT on the rows of table t obtained in step (b): We get Table

3.3(f) which is equal to the Table 3.3(e), since there is no duplicate rows.

Step 5. Possibly applying the ordering:

S[[〈select(va, f (~e′), id, true, id), true〉]]ς(ρt, ρa)

= S[[〈select(va, id, id, true, id), true〉]]ς(ρt′ , ρa), where t′ = f (~e)[t]

Example: Performing f (~e′)=ORDER BY ASC(〈AVG◦DISTINCT(Age), Dno〉) on Ta-

ble 3.3(f), we get Table 3.3(g).

Step 6. Set the resulting values to the Record/ResultSet type application variable va

with fields ~w:

S[[〈select(va, id, id, true, id), true〉]]ς(ρt, ρa)

= (ρt0 , ρa′), where

ρa′ = ρa[ρt(~a)/va(~w)] with ~a = attr(t) and t0 is the initial table of step 1.

Here, the ith field wi ∈ ~w o f va is substituted by ith attribute ai ∈ ~a of t.

Example: Finally, the result obtained in step 5 is assign to the application vari-

able va with fields ~w = 〈w1, w2, w3, w4, w5〉. The result is shown in Table 3.3(h).

33

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

Table 3.3: Operations of Qselect

(a) Absorbing WHERE Clause φ1

eID Name Age Dno Pno Sal Child − no
1 Matteo 30 2 1 2000 4
2 Alice 22 1 2 1500 2
3 Joy 50 2 3 2300 3
4 luca 10 1 2 1700 1
5 Deba 40 3 4 3000 5
6 Andrea 70 1 2 1900 2
7 Alberto 18 3 4 800 1
8 Bob 14 2 3 4000 3

(b) Grouping

eID Name Age Dno Pno Sal Child − no

1 Matteo 30 2 1 2000 4

2 Alice 22 1 2 1500 2
4 luca 10 1 2 1700 1
6 Andrea 70 1 2 1900 2

3 Joy 50 2 3 2300 3
8 Bob 14 2 3 4000 3

5 Deba 40 3 4 3000 5

(c) Absorbing HAVING clause φ2

eID Name Age Dno Pno Sal Child − no

1 Matteo 30 2 1 2000 4

2 Alice 22 1 2 1500 2
4 luca 10 1 2 1700 1
6 Andrea 70 1 2 1900 2

3 Joy 50 2 3 2300 3
8 Bob 14 2 3 4000 3

5 Deba 40 3 4 3000 5

(d) Performing ~h(~x)

Dno Pno MAX(Sal) AVG(DISTINCT Age) COUNT(∗)

2 1 2000 30 1

1 2 1900 34 3

3 4 3000 40 1

(e) Getting table out of the result from (d)

Dno Pno MAX(Sal) AVG(DISTINCT Age) COUNT(∗)
2 1 2000 30 1
1 2 1900 34 3
3 4 3000 40 1

34

3.6 Formal Semantics of Statements

Table 3.3: Operations of Qselect

(f) Elimination of duplicates

Dno Pno MAX(Sal) AVG(DISTINCT Age) COUNT(∗)
2 1 2000 30 1
1 2 1900 34 3
3 4 3000 40 1

(g) Ordering

Dno Pno MAX(Sal) AVG(DISTINCT Age) COUNT(∗)
2 1 2000 30 1
1 2 1900 34 3
3 4 3000 40 1

(h) Assign to ~va

w1 w2 w3 w4 w5

2 1 2000 30 1
1 2 1900 34 3
3 4 3000 40 1

3.6.2 Semantics of UPDATE Statement

Consider the database of Table 3.2 and the following UPDATE statement Qupdate:

UPDATE temp SET Age:=Age+2, Sal:=Sal+Sal×0.5 WHERE Sal >1500

According to the abstract syntax we get:

• φ1 = Sal >1500

• ~vd = 〈Age, Sal〉

• ~e = 〈Age+2, Sal+Sal×0.5〉

Thus, Qupdate is of the form as below:

UPDATE temp SET ~vd := ~e WHERE φ

Recall from Table 3.1 that the syntax of UPDATE statement is defined as:

〈 update(~vd, ~e), φ 〉

35

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

The semantics of UPDATE statement is described as follows: The update statement

always targets an individual table. Let

target(〈update(~vd, ~e), φ〉) = {t}

where, t ∈ dom(ρd). Therefore,

S[[〈update(~vd, ~e), φ〉]]ς(ρd, ρa) = S[[〈update(~vd, ~e), φ〉]]ς(ρt, ρa)

Below the semantics of UPDATE statement is unfolded step by step:

Step 1: Absorbing φ:

S[[〈update(~vd, ~e), φ〉]]ς(ρt, ρa)

= S[[〈update(~vd, ~e), true〉]]ς(ρt′ , ρa), where

t′ = 〈 li ∈ t | let var(φ) = ~v′d ∪
~v′a with ~v′d = ~a ⊆ attr(t) : ς |= φ[π~a(li)/~v′d][ρa(~v′a)/~v′a] 〉

Example: In the example, target(Qupdate) = {temp}. Applying the WHERE clause

φ=sal >1500 on temp, we get the result t′emp depicted in Table 3.4(a). Observe that

two rows are disregarded as they don’t satisfy the semantic structure ς of φ. That

is, ς 6|= φ[1500/Sal] and ς 6|= φ[800/Sal].

Step 2: Update:

S[[〈update(~vd, ~e), true〉]]ς(ρt, ρa)

= (ρt′ , ρa), where

let ~vd = ~a ⊆ attr(t) and ~e = 〈e1, e2, ..., eh〉 and E[[~e]](ρt, ρa) = 〈 ~mi | i = 1, ..., h〉,

and let m j
i be the jth element of the sequence ~mi and ai be the ith element of

the sequence ~a, and t′ = 〈 l j[m
j
i/ai] | l j ∈ t 〉

Example: Performing the update operation (~vd := ~e)=(〈Age := Age+2, Sal := Sal

+ Sal×0.5〉) on table t′emp of step 1, we get the updated table t′′emp as shown in

3.4(b). Here, two expressions (Age+2) and (Sal+Sal×0.5) are evaluated over the

environment (ρt′emp
, ρa) first, and then for each rows of the table, two attributes

‘Age’ and ‘Sal’ are updated with the corresponding evaluated results respectively.

36

3.6 Formal Semantics of Statements

Table 3.4: Operations of Qupdate

(a) Table t′emp: After absorbing WHERE clause φ

eID Name Age Dno Pno Sal Child − no
1 Matteo 30 2 1 2000 4
2 Alice 22 1 2 1500 2
3 Joy 50 2 3 2300 3
4 luca 10 1 2 1700 1
5 Deba 40 3 4 3000 5
6 Andrea 70 1 2 1900 2
7 Alberto 18 3 4 800 1
8 Bob 14 2 3 4000 3

(b) Table t′′emp: after update

eID Name Age Dno Pno Sal Child − no
1 Matteo 32 2 1 3000 4
3 Joy 52 2 3 3450 3
4 luca 12 1 2 2550 1
5 Deba 42 3 4 4500 5
6 Andrea 72 1 2 2850 2
8 Bob 16 2 3 6000 3

Evaluation of the expression (Age+2) over the environment (ρt′emp
, ρa) gives the

following results:

E[[Age + 2]](ρt′emp
, ρa) = 〈32, 52, 12, 42, 72, 16〉

E[[Sal + Sal × 0.5]](ρt′emp
, ρa) = 〈3000, 3450, 2550, 4500, 2850, 6000〉

Now the updation of the attribute ‘Age’ is done for all rows as follows:

〈l1(32/Age), l2(52/Age), l3(12/Age), l4(42/Age), l5(72/Age), l6(16/Age)〉

We do the same for Sal:=Sal+Sal×0.5.

3.6.3 Semantics of INSERT Statement

Consider the database of Table 3.2 and the following INSERT statement Qinsert:

INSERT INTO tdept VALUES (4, ‘Electronins’, ‘Trieste’, 2)

According to the abstract syntax we get:

37

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

• ~vd = 〈Deptno, Dname, Loc, MngrID〉

• ~e = 〈4, ‘Electronins’, ‘Trieste’, 2〉

Thus, Qinsert is of the following form:

INSERT INTO ~vd VALUES ~e

Recall from Table 3.1 that the Syntax of INSERT statement is defined as:

〈 insert(~vd, ~e), φ 〉

The Semantics of INSERT Statement is described as follows: The insert statement

always targets an individual table. Let

t ∈ dom(ρd) : target(〈insert(~vd, ~e), Ω〉) = {t}

Therefore,

S[[〈insert(~vd, ~e), φ〉]]ς(ρd, ρa)

= S[[〈insert(~vd, ~e), φ〉]]ς(ρt, ρa)

= S[[〈insert(~vd, ~e), true〉]]ς(ρt, ρa)

= (ρt′ , ρa), where

let ~vd = ~a = 〈a1, a2, ..., an〉 ⊆ attr(t) and E[[~e]](ρa) = ~x = 〈x1, x2, ..., xn〉,

lnew = 〈x1/a1, x2/a2, ..., xn/an〉 in t′ = t ∪ {lnew}

Observe that we suppose ~vd includes all attributes of the target table t. Although there

exists alternative syntax where we can insert the values for selective attributes only,

we can easily convert the alternative syntax into the one mentioned above by inserting

undefined value 0 in ~e for the unspecified attributes.

Example: In the example, target(Qinsert) = {tdept}. Since, E[[~e]](ρa) = 〈4, ′Electronics′,
′Trieste′, 2〉 and ~vd=~a = 〈Deptno, Dname, Loc, MngrID〉, we get lnew = 〈4/Deptno,
′Electronics′/Dname, ′Trieste′/Loc, 2/MngrID〉. After inserting the new row lnew, we

get the resulting table t′dept as shown in Table 3.5 while the application environment ρa

keeps unchanged.

38

3.6 Formal Semantics of Statements

Table 3.5: Operation of Qinsert

Deptno Dname Loc MngrID
1 Math Turin 4
2 Computer Venice 1
3 Physics Mestre 5
4 Electronins Trieste 2

3.6.4 Semantics of DELETE Statement

Consider the database of Table 3.2 and the following DELETE statement Qdelete:

DELETE FROM temp WHERE Sal ≥1800

According to the abstract syntax we get:

DELETE FROM temp WHERE φ

where, φ represents the first-order formula “Sal ≥1800”.

Recall from Table 3.1 that the syntax of DELETE statement is defined as:

〈 delete(~vd), φ 〉

where ~vd includes all attributes of the target table. The semantics of DELETE Statement

is described as follows: The DELETE statement always targets an individual table. Let

t ∈ dom(ρd) : target(〈delete(~vd), φ〉) = {t}

Therefore,

S[[〈delete(~vd), φ〉]]ς(ρd, ρa)

= S[[〈delete(~vd), φ〉]]ς(ρt, ρa)

= (ρt′ , ρa), where

td = 〈 li ∈ t | let var(φ) = ~v′d ∪
~v′a with ~v′d = ~a ⊆ attr(t) : ς |= φ[π~a(li)/~v′d][ρa(~v′a)/~v′a] 〉

t′ = t\td

Example: In the example, target(Qdelete) = {temp}. Applying φ=Sal ≥1800 and deleting

the rows which satisfy φ, we get t′emp as shown in Table 3.6. Here, five rows are deleted

from the table as they satisfy φ.

39

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

Table 3.6: Operation of Qdelete

eID Name Age Dno Pno Sal Child − no
1 Matteo 30 2 1 2000 4
2 Alice 22 1 2 1500 2
3 Joy 50 2 3 2300 3
4 luca 10 1 2 1700 1
5 Deba 40 3 4 3000 5
6 Andrea 70 1 2 1900 2
7 Alberto 18 3 4 800 1
8 Bob 14 2 3 4000 3

3.6.5 Formal Semantics of Non-SQL Statements

S[[skip]]ς(ρd, ρa) , (ρd, ρa)

S[[va := e]]ς(ρd, ρa) , (ρd, ρa[E[[e]](ρa)/va])

S[[va :=?]]ς(ρd, ρa) , ((ρd, ρa′) where, b is any value in dom(va) in ρa′ = ρa[b/va]

3.7 Some Inference Rules for Composite Statements

The inference rules for composite instructions are obtained by induction:

S[[Q1]](ρd, ρa) = t1 S[[Q2]](ρd, ρa) = t2

S[[Q1 UNION Q2]](ρd, ρa) = t1 ∪ t2

S[[Q1]](ρd, ρa) = t1 S[[Q2]](ρd, ρa) = t2

S[[Q1 INTERSECT Q2]](ρd, ρa) = t1 ∩ t2

S[[Q1]](ρd, ρa) = t1 S[[Q2]](ρd, ρa) = t2

S[[Q1 MINUS Q2]](ρd, ρa) = t1\t2

S[[I1]](ρd, ρa) = (ρd′ , ρa′) S[[I2]](ρd′ , ρa′) = (ρd′′ , ρa′′)
S[[I1; I2]](ρd, ρa) = (ρd′′ , ρa′′)

Consider the auxiliary conditional statement cond:

cond(B[[b]],S[[I1]],S[[I2]])(ρd, ρa) = (ρd′ , ρa′)

where, either B[[b]](ρd, ρa) = true and S[[I1]](ρd, ρa) = (ρd′ , ρa′), or B[[b]](ρd, ρa) = f alse

and S[[I2]](ρd, ρa) = (ρd′ , ρa′)

40

3.8 Soundness with respect to the Standard Semantics

The semantics of “i f b then I1 else I2” statement is expressed using the conditional

statement cond as follows:

S[[i f b then I1 else I2]](ρd, ρa) = cond(B[[b]],S[[I1]],S[[I2]])(ρd, ρa)

The semantics of the “while b do I” statement is expressed as follows: Since “while b do I”

≡ “i f b then (I; while b do I) else skip”, we can write:

S[[while b do I]](ρd, ρa) = S[[i f b then (I; while b do I) else skip]](ρd, ρa) = FIX F

where, F(g) = cond(B[[b]], g ◦ S[[I]], id)(ρd, ρa) and FIX is a fix-point operator.

Definition 4 (Equivalence of Instructions) Let the environments (ρd, ρa) and (ρd′ , ρa′) be
denoted by ρx and ρx′ respectively. Two instructions I1 and I2 are said to be equivalent if,
{(ρx, ρx′) | S[[I1]](ρx) = ρx′} = {(ρx, ρx′) | S[[I2]](ρx) = ρx′}. In other words, I1 ≡ I2 if I1 and I2

determine the same partial function on states.

3.8 Soundness of the Denotational Semantics of SQL with re-
spect to the Standard Semantics

The abstract syntax and the denotational semantics of SQL introduced in the previous

sections correspond to the standard syntax and semantics of SQL as defined by ANSI

(107) and the Relational Algebra. In particular, we can prove a correspondence between

our denotational approach to the standard relational model approach to each SQL

statement. For instance, consider the following basic SQL statements embedded in

Java:

Statement stmt = conn.createStatement();
String Q=“SELECT a1, a2, . . . , an FROM t WHERE C”;
ResultSet rs = stmt.executeQuery(Q);

Where a1, a2, . . . , an represents the attributes of the table t and C is a condition. An

equivalent representation of the above SQL statement in Relational Algebra is:

t′= σC(t)
t′′ = π~a(t′) where, ~a = 〈a1, a2, . . . , an〉

rs = t′′

41

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

In our proposed denotational approach, an equivalent formulation is:

〈select(va, f (~e′), r(~h(~x)), φ2, g(~e)), φ1〉

= 〈select(rs, id, ALL(~id(~a)), true, id), C〉, where ~id(~a) = 〈id(a1), id(a2), . . . , id(an)〉

Given an environment (ρd, ρa), the semantics of Q is described as follows:

S[[〈select(rs, id, ALL(~id(~a)), true, id), C〉]]ς(ρd, ρa)

= S[[〈select(rs, id, ALL(~id(~a)), true, id), C〉]]ς(ρt, ρa), where target(Q) = t ∈ d

= S[[〈select(rs, id, ALL(~id(~a)), true, id), true〉]]ς(ρt′ , ρa), where

t′ = 〈 li ∈ t | let var(C) = ~v′d ∪
~v′a with ~v′d = ~x ⊆ attr(t) : ς |= C[π~x(li)/~v′d][ρa(~v′a)/~v′a] 〉

= σC(t) (3.1)

= S[[〈select(rs, id, id, true, id), true〉]]ς(ρt′′ , ρa), where

t′′ = ALL[〈 ~id(E[[~a]](ρt′ , ρa)) 〉]

= E[[~a]](ρt′ , ρa), since ALL does not remove or modify any element.

= π~a(t′), according to the semantics of expressions. (3.2)

= (ρt, ρa′), where

ρa′(rs) = t′′ (3.3)

Observe that the equations 3.1, 3.2 and 3.3 shows the correspondence between the

Relational Algebra and Denotational semantic approaches.

3.9 Abstract Semantics of Programs embedding SQL State-
ments

In this section, we lift the semantics of SQL operations defined so far to an abstract

setting, where instead of working on the concrete databases, SQL statements are

applied to abstract databases, in which some information are disregarded and concrete

values are possibly represented by suitable abstractions.

42

3.9 Abstract Semantics of Programs embedding SQL Statements

Abstract Databases

Generally, traditional databases are concrete databases as they contain data from con-

crete domains, whereas abstract databases are obtained by replacing concrete values by

the elements from abstract domains representing specific properties of interest. We

may distinguish “partial abstract databases” in contrast to “ f ull abstract databases”, as in

the former case only a subset of the data in the databases is abstracted. The values of

the data cells belonging to an attribute x are abstracted by using the Galois Connec-

tion (℘(Dcon
x), αx, γx,Dabs

x), where ℘(Dcon
x) and Dabs

x represent the powerset of concrete

domain of x and an abstract domain of x respectively, whereas αx and γx represent the

corresponding abstraction and concretization functions (denoted αx : ℘(Dcon
x) → Dabs

x

and γx : Dabs
x → ℘(Dcon

x)) respectively. In particular, partial abstract databases are

special case of fully abstract databases where abstraction and concretization functions

for some attributes x are identity function id, and thus, use the Galois Connection

(℘(Dcon
x), id, id, ℘(Dcon

x)). Let us illustrate it by an example.

Example 1 The database in Table 3.2 consists of a concrete table temp that provides infor-
mation about the employees of a company. We assume that the ages, salaries, and num-
ber of children of the employees lie between 5 to 100, between 500 to 10000 and between
0 to 10 respectively. Considering an abstraction where ages and salaries of the employ-
ees are abstracted by the elements from the domain of intervals, and the number of chil-
dren in the attribute ‘Child-no’ are abstracted by the abstract values from the abstract do-
main Dabs

Child−no={⊥,Zero,Few,Medium,Many,>}where> represents “any” and⊥ represents

“unde f ined”. The abstract table t]emp corresponding to temp w.r.t. these abstractions is shown in
Table 3.7. Observe that the number of abstract tuples in an abstract database may be less than
the number of tuples in the corresponding concrete database if the primary key is abstracted. The
correspondence between concrete and abstract values of the attribute, for instance, ‘Child-no’
can be formally expressed by the abstraction and concretization functions αchild−no and γchild−no

respectively as follows:

αchild−no(X) ,



⊥ if X = ∅

Zero if X = {0}

Few if ∀x ∈ X : 1 ≤ x ≤ 2

Medium if ∀x ∈ X : 3 ≤ x ≤ 4

many if ∀x ∈ X : 5 ≤ x ≤ 10

> otherwise

43

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

γchild−no(y) ,



∅ if y=⊥

{0} if y=Zero

{x : 1 ≤ x ≤ 2} if y=Few

{x : 3 ≤ x ≤ 4} if y=Medium

{x : 5 ≤ x ≤ 10} if y=Many

{x : 0 ≤ x ≤ 10} if y=>

We can similarly define the abstraction-concretization functions for other attributes as well.
The corresponding abstract lattices for the attributes ‘Age’, ‘Sal’ and ‘Child-no’ are shown in
figure 3.1(a), 3.1(b) and 3.1(c) respectively.

Table 3.7: Abstract table t]emp

eID] Name] Age] Dno] Pno] Sal] Child − no]

1 Matteo [25,59] 2 1 [1500,2499] Medium
2 Alice [12,24] 1 2 [1500,2499] Few
3 Joy [25,59] 2 3 [1500,2499] Medium
4 luca [5,11] 1 2 [1500,2499] Few
5 Deba [25,59] 3 4 [2500,10000] Many
6 Andrea [60,100] 1 2 [1500,2499] Few
7 Alberto [12,24] 3 4 [500,1499] Few
8 Bob [12,24] 2 3 [2500,10000] Medium

Definition 5 (Abstract Database) Let dB be a database. The database dB] = α(dB) where α
is an abstraction function, is said to be an abstract version of dB if there exists a representation
function γ, called concretization function, such that for all tuple 〈x1, x2, . . . , xn〉 ∈ dB there
exists a tuple 〈y1, y2, . . . , yn〉 ∈ dB] such that ∀i ∈ [1 . . . n], xi ∈ id(yi) ∨ xi ∈ γ(yi).

Syntax and Semantics of Statements in Abstract Domain

We now define the syntax and semantics of the applications embedding SQL state-

ments in an abstract domain. We denote by the apex], the syntactic elements of the

abstract semantics. For each concrete element z, whenever we use the syntax z], this

means that there is a monotonic representation function γ from an abstract to the con-

crete domain such that z v γ(z]).

The syntax of SQL statement Q] and SQL action A] over an abstract domain corre-

sponding to the concrete SQL statement Qsql and action Asql represented as below:

44

3.9 Abstract Semantics of Programs embedding SQL Statements

Figure 3.1: Abstract Lattices for attributes ‘Age’, ‘Sal’ and ‘Child-no’

(a) Abstract lattice for attribute ‘Age’



 {5 } { 6} {7} {99} {100}

age

age

{5, 6} {6, 7} . . . {7 , 99} . . .{ 99 , 100}

{5 , , 99} {6, , 100}

{5 , , 100}



 [5,100]

 [12,100] [5,59]

[5,24] [12,59] [25,100]

[60,100] [25,59] [12,24] [5,11]

(b) Abstract lattice for attribute ‘Sal’



{500 } { 501} {502} {9999} {10000}

sal

sal

{500 ,501} {501,502} . . . {502,9999} . . . {9999,10000}

{500 , , 9999} {501, , 10000}

{500 , , 10000}

[500,1499] [1500,2499]



[2500,10000]

[1500,10000] [500,2499]

 [500,10000]

(c) Abstract lattice for attribute ‘Child − no’

Few Medium Many



child no 

child no 



 {0} {1} {2} {9} {10}

 {0, 1} {1, 2} {2, 9} {9, 10}

{0 , , 9} {1, , 10}

{0 , , 10}

Zero

45

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

Q]::=〈A], φ]〉 | Q]
1 UNION

] Q]
2 | Q

]
1 INTERSECT

] Q]
2 | Q

]
1 MINUS

] Q]
2

A]::=select](v]a, f](~e′]), r](~h](~x])), φ], g](~e])) | update](
~
v]d , ~e]) | insert](

~
v]d , ~e]) | delete](

~
v]d)

Arithmetic expressions over abstract domain are defined as expected, whereas boolean

expressions are evaluated into a 3-valued logics {true, f alse, >}, where >means “either

true or false”.

c] ::= n] | k]

e] ::= c] | v]d | v
]
a | op] e] | e]1 op] e]2, where op] represents abstract arithmetic operator.

b] ::= e]1 op]r e]2 | ¬b] | b]1 ∨ b]2 | b
]
1 ∧ b]2 | true | f alse | >, where op]r represents abstract

relational operator.

Abstract elements in abstract pre-condition φ] are defined as follows:

τ] ::= c] | v]a | v
]
d | f]n(τ]1, τ

]
2, ..., τ

]
n), where f]n is an abstract n-ary function.

a]f ::= R]n(τ]1, τ
]
2, ..., τ

]
n) | τ]1 = τ]2, where R]n is an abstract n-ary relation: R]n(τ]1, τ

]
2, ..., τ

]
n) ∈

{true, f alse,>}.

φ] := a]f | ¬φ
]
1 | φ

]
1 ∨ φ

]
2 | φ

]
1 ∧ φ

]
2 | ∀x]i φ

]
1 | ∃x]i φ

]
1

Different abstract functions involved in A] are shown below:

g] ::= GROUP BY] | id

r] ::= DISTINCT] | ALL]

s] ::= AVG] | SUM] | MAX] | MIN] | COUNT]

h](e]) ::= s] ◦ r](e]) | DISTINCT](e]) | id

h](∗) ::= COUNT](∗)

f] ::= ORDER BY ASC] | ORDER BY DESC] | id

Instructions over an abstract domain are defined as follows:

I] ::= skip | v]a := e] | v]a :=? | Q]
| i f b] then I]1 else I]2 | while b] do I] | I]1; I]2

46

3.9 Abstract Semantics of Programs embedding SQL Statements

In the subsequent sections, we define abstract syntactic functions appearing in vari-

ous abstract SQL statements so as to preserve the soundness in an abstract domain of

interest. This way, we prove the soundness of abstract SQL statements with respect to

their concrete counter-part. The soundness and completeness of an abstract function

f] w.r.t. its concrete version f is defined in Definition 6.

Definition 6 (Soundness & Completeness) Let γ be a concretization function from an
abstract domain to a concrete one. The soundness and completeness conditions for an abstract
functions f] with respect to the corresponding concrete function f are,

f] is sound if γ ◦ f] w f ◦ γ

f] is complete if γ ◦ f] = f ◦ γ

Abstract Pre-conditions

The pre-condition φ in Qsql follows first order logic, and are defined by the n-ary

function fn on constants and variables. Soundness (and completeness eventually) of

its abstract version f]n rely on the local correctness of the operations in the abstract

domain. For example, consider an abstract domain for parity represented by PAR =

{>, even, odd,⊥}. The ‘×’ operation over the concrete domain is mapped to its abstract

version as follows: odd(×])odd = odd, even(×])odd = even, and even(×])even = even.

Similarly, in case of abstract domain of sign represented by SIGN = {>,+,−,⊥}, the

corresponding operation would be −(×])− = +, +(×])− = −, and +(×])+ = +.

Given a set of terms {τ1, · · · , τn}, the relation Rn(τ1, · · · , τn) appearing in φ results

into either true or f alse. However, an abstract relation R]n(τ]1, · · · , τ
]
n) corresponding to

Rn follows three valued logic {true, f alse,>}, where> represents either true or f alse. The

correspondence between the relation Rn and its abstract version R]n should guarantee

that, if R]n(τ]1, · · · , τ
]
n) is true, then ∀τ1 ∈ γ(τ]1), · · · , τn ∈ γ(τ]n) : Rn(τ1, · · · , τn) is true and

if R]n(τ]1, · · · , τ
]
n) is false, then ∀τ1 ∈ γ(τ]1), · · · , τn ∈ γ(τ]n) : Rn(τ1, · · · , τn) is false. For

instance, if we consider the binary relation ‘ >′ among integers, its abstract version ‘>]’

on the domain of intervals is defined as follows:

[li, hi] >] [l j, h j] ,


true if li > h j

false if l j ≥ hi

> otherwise

47

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

Similarly, ‘≥]’ is defined as:

[li, hi] ≥] [l j, h j] ,


true if li ≥ h j

false if hi < l j

> otherwise

Thus, abstract pre-condition φ] appearing in Q] identifies the set of active data from

abstract database for which it evaluates to either true or >.

Example 2 Consider the database of Figure 3.2 containing a concrete table temp and consider
the following SELECT statement:

Q1 = SELECT Age, Dno, Sal FROM temp WHERE Sal > 1600

If we execute Q1 on temp, we get the result ξ1 shown in Table 3.8.

Table 3.8: ξ1: Result of Q1 (concrete)

Age Dno Sal
30 2 2000
50 2 2300
10 1 1700
40 3 3000
70 1 1900
14 2 4000

The abstract version of Q1 (denoted Q]
1), using the abstract mapping α defined in Example 1,

is shown below:

Q]
1 = SELECT] Age], Dno], Sal] FROM t]emp WHERE Sal] >] [1500, 2499]

The result of Q]
1 on the abstract table t]emp (Table 3.7) is depicted in Table 3.9. Observe that one

row corresponding to eID] = 7 has been disregarded because the abstract well formed formula
[500, 1499] ≥] [1500, 2499] does not satisfy the semantic structure ς], as 1500 ≥ 1499 is true.
Soundness is preserved, i.e. ξ1 ∈ γ(ξ]1), as we include the rows (in this example, the row cor-
responding to eID] = 2) where the evaluation of the relation ≥] yields >; this might introduce
inaccuracies, of course, in the abstract calculus, that results into a sound overapproximation of
the concrete one.

48

3.9 Abstract Semantics of Programs embedding SQL Statements

Table 3.9: ξ]1: Result of Q]
1 (abstract)

Age] Dno] Sal]

[25,59] 2 [1500,2499]
[12,24] 1 [1500,2499]
[25,59] 2 [1500,2499]
[5,11] 1 [1500,2499]
[25,59] 3 [2500,10000]

[60,100] 1 [1500,2499]
[12,24] 2 [2500,10000]

Abstract Syntactic Functions in Abstract SELECT Statements

We now describe the correspondence between concrete and abstract functions involved

in SELECT statement. Observe that many of these abstract functions differ from the

corresponding concrete ones only on the domain and range, while their functionality

are the same.

Abstract GROUP BY Function: We denote by g the GROUP BY function in SELECT

statement. The function g(~e)[t] where ~e represents an ordered sequence of arithmetic

expressions, is applied on a table t and depending on the values of ~e over the tuples of

the table t, it results into maximal partitions of the tuples in t. The tuples in the same

partition will have the same values for ~e, whereas the tuples in different partitions

will have different values for ~e. The GROUP BY function g is identity function id when

no GROUP BY clause is present in SELECT statement. The function g and its abstract

version g] are shown below:

g ::= GROUP BY | id
g] ::= GROUP BY] | id

Abstract GROUP BY function g] works in the similar way, but it is applied on abstract

tables t], instead of concrete ones. It partitions the abstract tuples of t] based on the

abstract values of ~e] over the tuples.

Lemma 1 Let γ be a concretization function. The abstract GROUP BY function g] is sound
with respect to γ, i.e. γ ◦ g] w g ◦ γ, where g is the concrete counter-part of g].

Proof Let t] be an abstract table and ~e] be an ordered sequence of abstract expressions.

Let t ∈ γ(t]) and ~e ∈ γ(~e]), where γ is the concretization function.

49

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

Suppose {l1, l2, . . . , ln} is a set of concrete partitions obtained from g(~e)[t], whereas

{s1, s2, . . . , sm} is the set of abstract partitions obtained from g](~e])[t]].

To prove the soundness of g], we have to show that

∀li, ∃s j : li ⊆ γ(s j) and m ≤ n

Consider a concrete partition li ⊆ t. From the Definition 5, we know that ∀x ∈

t, ∃y ∈ t] : x ∈ γ(y). Thus, we have

∀xi1, xi2 ∈ li, ∃y]j1, y
]
j2 ∈ t] : xi1 ∈ γ(y]j1) ∧ xi2 ∈ γ(y]j2) (3.4)

We know that the values of ~e for all tuples in a partition are same, i.e.,

∀xi1, xi2 ∈ li, π~e(xi1) = π~e(xi2)

By the def. of abstraction, we get

α(π~e(xi1)) = α(π~e(xi2)) where α is abstraction function. (3.5)

From equation 3.4 and 3.5, we can write

π~e](y]j1) = π~e](y]j2) (3.6)

Equation 3.6 says that y]j1 and y]j2 belongs to the same partition s j ⊆ t], as the properties

of ~e] in y]j1 and y]j2 are same. Therefore,

∀xi1, xi2 ∈ li ⊆ t, ∃y]j1, y
]
j2 ∈ s j ⊆ t] : xi1 ∈ γ(y]j1), xi2 ∈ γ(y]j2)

or,

∀li, ∃s j : li ⊆ γ(s j)

Since an abstraction functionαmight be surjective, two different concrete partitions

li and l j (i , j) might be mapped into the same abstract partition sk, if

xi ∈ li, x j ∈ l j, i , j : α(π~e(xi)) = α(π~e(x j))

Thus, the number of abstract partitions is less than or equal to the number of concrete

partitions, i.e., m ≤ n.

50

3.9 Abstract Semantics of Programs embedding SQL Statements

Abstract ALL and Abstract DISTINCT: SELECT statement sometimes usesDISTINCT

or ALL clause denoted by the function r which deals with duplicate tuples or duplicate

values of expressions. Its abstract version r] also works similarly, i.e., deals with the

duplicate elements in the list of abstract tuples or abstract values of expressions. The

concrete function r and its abstract version are shown below:

r ::= DISTINCT | ALL
r] ::= DISTINCT] | ALL]

Lemma 2 Let γ be a concretization function. ALL] is complete, i.e. γ ◦ ALL] = ALL ◦ γ.

Proof When applying ALL] to a list of abstract tuples 〈l]i : i ∈ I〉, none of the tuple is

removed or modified, and the same holds for ALL. Therefore,

γ ◦ ALL](〈l]i : i ∈ I〉)

=γ(ALL](〈l]i : i ∈ I〉))

=γ(〈l]i : i ∈ I〉)

=〈γ(l]i) : i ∈ I〉

=ALL(〈γ(l]i) : i ∈ I〉)

=ALL(γ(〈l]i : i ∈ I〉))

=ALL ◦ γ(〈l]i : i ∈ I〉)

Lemma 3 If γ is injective, then DISTINCT] is complete, i.e. γ◦DISTINCT] = DISTINCT◦γ.

Proof Suppose, after applying DISTINCT] function on an abstract table t], we get the

abstract table t]u containing only unique rows. That means,

∀l]1, l
]
2 ∈ t]u, ∃a] ∈ attr(t]u) : πa](l

]
1) , πa](l

]
2)

In other words, any two rows in t]u differ by the property in at least one attribute

position. Thus, concretization of t]u results into a concrete table tu containing unique

rows only, as γ is injective.

If we first apply γ on t] before applying DISTINCT], it results into a concrete table t

containing duplicate rows if t] has duplicate abstract rows. But after applyingDISTINCT

on t, we always get the same concrete table tu. Therefore, the function DISTINCT] is

complete if γ is injective.

51

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

Abstract ORDER BY Function: We denote by f the ORDER BY function appearing in

SELECT statement. The operation f (~e)[t] sorts the tuples of the table t in ascending or

descending order based on the values of ~e over those tuples. An abstract version f]

also works in similar way, but it is applied on abstract tables t] and sorts the abstract

tuples in ascending or descending order based on the abstract values of ~e] over the

tuples in t]. The concrete functions f and their abstract versions are defined as:

f ::= ORDER BY ASC | ORDER BY DESC | id
f] ::= ORDER BY ASC] | ORDER BY DESC] | id

Lemma 4 If the representation function γ is monotone and injective, the functions f] above
are complete, i.e. γ ◦ f] = f ◦ γ

Proof Given an abstract table t] and an ordered sequence of abstract expressions ~e].

Suppose for two tuples l]i , l
]
j ∈ t], we have

π~e](l
]
i) > π~e](l

]
j) (3.7)

Suppose f]::= ORDER BY ASC]. Therefore, application of f] sorts them in ascending

order denoted by the ordered list 〈l]j , l
]
i 〉. Since γ is injective, the concretization of this

ordered list of abstract tuples always yield to an ordered list of concrete tuples denoted

by 〈l j, li〉, where li ∈ γ(l]i) and l j ∈ γ(l]j).

Since concretization function γ is monotone, it preserves the ordering while map-

ping from abstract domain to concrete co-domain. Thus, from equation 3.7 we get

γ(π~e](l
]
i)) > γ(π~e](l

]
j))

or,

π~e(li) > π~e(l j) (3.8)

where, ~e ∈ γ(~e]) and li ∈ γ(l]i) and l j ∈ γ(l]j).

From equation 3.8, we get that the application of f (::= ORDER BY ASC) on li and l j

also yield to the same ordered list of concrete tuples i.e. 〈l j, li〉.

Thus, γ ◦ f] will result into the same order of the elements as obtained by function

f ◦ γ. Hence, f] is complete if γ is monotone and injective.

52

3.9 Abstract Semantics of Programs embedding SQL Statements

Abstract Aggregate Functions: In section 3.3, we mentioned that the ordered se-

quence of functions ~h(~e) where ~h , ~id, are applied on each partition obtained by GROUP

BY function g, or on a single partition containing tuples for which pre-condition φ

evaluates to true when no GROUP BY function is used. After performing ~h(~e) on each

partition, it results into a single concrete tuple.

The aggregate functions MAX, MIN, AVG, SUM, COUNT appear as hi ∈
~h, and are denoted

by s. Aggregate functions return a single value when applied on a group of values.

Similarly, abstract aggregate functions s] are applied on a set of abstract values,

resulting into a single abstract value. The concrete aggregate functions s and its

abstract version s] are defined below:

s ::= AVG | SUM | MAX | MIN | COUNT

s] ::= AVG] | SUM] | MAX] | MIN] | COUNT]

We now define the abstract aggregate functions aiming at preserving the soundness of

them w.r.t. their corresponding concrete aggregate functions.
Given a set of concrete numerical values X = {a1, a2, . . . , an}, the concrete aggregate

functions s are defined as follows:

AVG(X) ,
Σn

1 ai

n

SUM(X) , Σn
1ai

MAX(X) , ai ∈ X, where ∀ j ∈ [1..n], i , j : ai ≥ a j

MIN(X) , ai ∈ X, where ∀ j ∈ [1..n], i , j : ai ≤ a j

COUNT(X) , #X, where # denotes the cardinality of the set.

Corresponding to each s, we consider a concrete function f n equivalent to s, that

is, f n(X) ≡ s(X). The function f n and its abstract versions f n] corresponding to the

aggregate functions are defined as follows:

f n ::= average | summation | maximum | minimum | count

f n] ::= average] | summation] | maximum] | minimum] | count]

For instance, let X] be a set of abstract values from the domain of intervals, i.e.,
X] = { [li, hi] | i ∈ [1...n], li, hi ∈ Z; li ≤ hi }. Let us denote L = {li | [li, hi] ∈ X]

} and
H = {hi | [li, hi] ∈ X]

}. The abstract functions f n] on X] are defined as follows:

average](X]) , [average(L), average(H)]

summation](X]) , [summation(L), summation(H)]

53

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

maximum](X]) , [maximum(L), maximum(H)]

minimum](X]) , [minimum(L), minimum(H)]

count](X]) , [count(L), count(H)]

Formally, f n](X]) = [f n(L), f n(H)]

We already know that in abstract domain we select only those tuples for which the

abstract pre-condition φ] evaluates to either true or >. Thus, unlike concrete domain,

the abstract groups on which abstract aggregate functions are applied contain a set of

tuples that yieldφ] to either true or>. Let us denote by G] an abstract group containing

a set of abstract tuples. We can partition G] into two parts: G]
yes for which φ] evaluates

to true, and G]
may for which φ] evaluates to >. Thus, we can write G] = G]

yes ∪ G]
may.

Observe that G]
yes ∩ G]

may = ∅.

To ensure the soundness, the computation of abstract aggregate functions s] on G]

are defined as follows: the result of s](e]) on G] is denoted by an interval as below:

s](e])[G]] = [min](a]), max](b])]

where

a] = f n](e])[G]
yes] and b] = f n](e])[G]]

By f n](e])[G]
yes], we mean that function f n] is applied on the set of abstract values

obtained by evaluating e] over the tuples in G]
yes, yielding a single abstract value as

result. Similarly in f n](e])[G]], f n] is applied on the set of abstract values obtained by

evaluating e] over the tuples in G] = G]
yes ∪ G]

may. The computation of f n] is defined

differently by considering two different situations that can arise: (i) when the primary

key is abstracted, yielding two or more tuples mapped into a single abstract tuple,

and (ii) when the primary key is not abstracted and the identity of each tuples are

preserved in abstract domain.

Both the functions min] and max] takes as parameter a single abstract value a] and

b] respectively obtained from f n], and returns a concrete numerical value as output.

min](a]) returns the minimum concrete value from γ(a]), whereas max](b]) returns the

maximum concrete value from γ(b]), where γ is the concretization function.

54

3.9 Abstract Semantics of Programs embedding SQL Statements

Example 3 Consider the database of Table 3.2 containing the concrete table temp and the
following SELECT statement:

Q2 = SELECT AVG(Age), Dno, MAX(Sal), COUNT(∗) FROM temp WHERE Sal ≥ 1500 GROUP BY Dno

If we execute Q2 on temp, we get result ξ2 shown in Table 3.10.

Table 3.10: ξ2: Result of Q2 (concrete)

AVG(Age) Dno MAX(Sal) COUNT(∗)
34 1 1900 3

31.33 2 4000 3
40 3 3000 1

The abstract version of Q2 i.e. Q]
2, using the abstract mapping α defined in Example 1, is

defined as below:

Q]
2 = SELECT] AVG](Age]), Dno], MAX](Sal]), COUNT](∗) FROM t]emp

WHERE Sal] ≥] [1500, 2499] GROUP BY] Dno]

The result of Q]
2 on t]emp is shown in Table 3.11. Observe that, G]

yes = ∅ because φ] evaluates to
> for all abstract tuples in the group with Dno]=1. Thus, AVG](Age]) is computed as follows:

a] = average](∅) = NULL

b] = average]([12, 24], [5, 11], [60, 100]) = [25.66, 45]

Since min](a]) and max](b]) return minimum value from γ(a]) and maximum value from γ(b])
respectively, we get min](a])=min](NULL)=0 and max](b])=max]([25.66, 45])=45. Thus, for
group with Dno]=1, AVG](Age])=[min](a]), max](b])]=[0, 45].

Similarly, for the group with Dno]=2, first two tuples belong to G]
may, whereas last tuple

belongs to G]
yes. Thus, MAX](Sal]) is computed as follows:

a] = maximum]([2500, 10000]) = [2500, 10000]

b] = maximum]([1500,2499], [1500,2499], [2500, 10000]) = [2500, 10000]

Thus, for group with Dno]=2, MAX](Sal])=[min](a]), max](b])]=[2500,10000]. Observe that
abstraction is sound i.e. ξ2 ∈ γ(ξ]2).

55

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

Table 3.11: ξ]2: Result of Q]
2 (abstract)

AVG](Age]) Dno] MAX](Sal]) COUNT](∗)
[0, 45] 1 [0,2499] [0, 3]

[12, 47.33] 2 [2500, 10000] [1, 3]
[25, 59] 3 [2500, 10000] [1, 1]

Lemma 5 Let γ be a concretization function from the domain of intervals to a concrete nu-
merical domain. The abstract functions f n] are sound w.r.t. f n if they satisfy

γ(f n](X])) ⊇ { f n(X) | X ∈ γ(X])}

Proof Let X] be a set of abstract values from the domain of intervals, i.e.,

X] = { [li, hi] | i ∈ [1..n]; li, hi ∈ Z; li ≤ hi }

Consider two sets L and H, where L = {li | [li, hi] ∈ X]
} and H = {hi | [li, hi] ∈ X]

}. The
abstract functions f n] are defined on X] as follows:

average](X]) , [average(L), average(H)]

summation](X]) , [summation(L), summation(H)]

maximum](X]) , [maximum(L), maximum(H)]

minimum](X]) , [minimum(L), minimum(H)]

count](X]) , [count(L), count(H)]

Formally, we can write

f n](X]) = [f n(L), f n(H)] (3.9)

= [s(L), s(H)] Since, f n ≡ s (3.10)

For a given set of concrete numerical values X = {a1, a2, . . . , an}, the functions f n ≡ s
are defined as:

average(X) ≡ AVG(X) ,
Σn

1 ai

n

summation(X) ≡ SUM(X) , Σn
1ai

maximum(X) ≡ MAX(X) , ai ∈ X, where ∀ j ∈ [1..n], i , j : ai ≥ a j

minimum(X) ≡ MIN(X) , ai ∈ X, where ∀ j ∈ [1..n], i , j : ai ≤ a j

count(X) ≡ COUNT(X) , #X, where # denotes the cardinality of the set.

56

3.9 Abstract Semantics of Programs embedding SQL Statements

Given two sets of numerical values X = {a1, a2, . . . , an} and X′ = {a′1, a
′

2, . . . , a
′
n}. We say

X is less than or equal to X′ (denoted X v X′) which is defined component-wise, i.e. if

∀i ∈ [1..n], ai ≤ a′i , then X v X′.

Since the functions f n are monotone, we get

if X v X′, then f n(X) ≤ f n(X′) (3.11)

Let X = {bi | [li, hi] ∈ X], li ≤ bi ≤ hi} ∈ γ(X]). Since, ∀bi ∈ X and ∀[li, hi] ∈ X]: li ≤ bi ≤ hi,

we can write:

∀X ∈ γ(X]) : L v X v H

According to equation 3.11,

∀X ∈ γ(X]) : f n(L) ≤ f n(X) ≤ f n(H) (3.12)

From equation 3.9 and 3.12, we get

∀X ∈ γ(X]) : f n(X) ∈ γ(f n](X]))

or,

f n(γ(X])) ⊆ γ(f n](X]))

This implies that the abstract functions f n] are sound w.r.t. f n.

Lemma 6 Let γ be a concretization function from the domain of intervals to a concrete nu-
merical domain. Abstract aggregate functions s] are sound w.r.t. s, i.e.

∀X ∈ X] : s(X) ∈ γ(s](X]))

Proof The computation of abstract aggregate functions s] over a group of abstract

tuples G] = Gyes ∪ Gmay are defined as follows: s](e])[G]] is denoted by an interval

s](e])[G]] = [min](a]), max](b])]

where,

a] = f n](e])[G]
yes] and b] = f n](e])[G]]

57

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

From Lemma 5, we have that f n] is sound w.r.t. f n, and therefore,

∀Gy ∈ γ(G]
yes) : a ∈ γ(a])

or, a ≥ min](a])

where, a = f n(e)[Gy] and

∀G ∈ γ(G]) : b ∈ γ(b])

or, b ≤ max](b])

where, b = f n(e)[G].

We know that G] = Gyes ∪ Gmay contains the abstract tuples for which φ] evaluates

to either true and >. Given an abstract tuple t] ∈ G] and abstract pre-condition φ],

for any concrete tuple t ∈ γ(t]) the corresponding concrete pre-condition φ ∈ γ(φ])

evaluated to either true or f alse, since we loose precision when moving from concrete

to a domain of abstraction. Thus, ∀G ∈ γ(G]) where G] = Gyes ∪ Gmay, we can write:

G = Gy ∪ G′y ∪ G f , where Gy ∈ γ(Gyes) and G′y ∪ G f ∈ γ(Gmay)

where Gy and G′y are the set of concrete tuples for which φ evaluates to true, and G f is

the set of concrete tuples for which φ evaluates to f alse.

Since the concrete aggregate functions s are always applied on (Gy ∪G′y) for which

φ evaluates to true, we get

Gy ⊆ (Gy ∪ G′y) ⊆ G

From the monotonicity property of f n, we get

f n(e)[Gy] ≤ f n(e)[Gy ∪ G′y] ≤ f n(e)[G]

or,

f n(e)[Gy] ≤ s(e)[Gy ∪ G′y] ≤ f n(e)[G], Since f n ≡ s

or,

a ≤ s(X) ≤ b

where, X is obtained by evaluating e over the tuples of (Gy ∪ G′y).

or,

min](a]) ≤ s(X) ≤ max](b])

58

3.9 Abstract Semantics of Programs embedding SQL Statements

or,

s(X) ∈ γ([min](a]), max](b])])

or,

s(X) ∈ γ(s](X]))

Thus, the abstract aggregate functions s] are sound w.r.t. s.

Abstract UPDATE, INSERT, and DELETE Statements

The abstract semantics of UPDATE, INSERT and DELETE statements in an abstract

domain of interest are defined below:

Abstract UPDATE Statement Let Qupdate = 〈update(~vd,~e), φ〉 be an UPDATE state-

ment with target(Qupdate) = t. Let Q]
update = 〈update](

~
v]d,
~e]), φ]〉 and t] be their abstract

versions in an abstract domain corresponding to Qupdate and t respectively, such that

target(Q]
update) = t]. According to the abstract semantics of Q]

update, we get

S][[Q]
update]](ρt] , ρa]) = S][[〈update](

~
v]d,
~e]), φ]〉]](ρt] , ρa]) = (ρ

t]1
, ρa])

where,

ρ
t]1

(x]) =


ρt] ↓T φ]

(x]) ∪ ρt] ↓U φ](x]) ∪ ρt] ↓F φ]
(x]) if x] <

~
v]d

E][[e]i]](ρt] ↓T φ]
, ρa]) ∪ (t(E][[e]i]](ρt] ↓U φ] , ρa]),E

][[x]]](ρt] ↓U φ]))) ∪ ρt] ↓F φ]
(x])

if x] is the ith component of
~
v]d and e]i is the ith component of ~e]

By the notations t] ↓T φ], t] ↓U φ] and t] ↓F φ] we denote the set of abstract tuples in t]

for which φ] evaluates to true, unknown and f alse respectively. The operator t stands

for computing least upper bound component-wise, i.e. t(X],Y]) = {lub(x]i , y
]
i) | x]i ∈

X]
∧ y]i ∈ Y]}.

Abstract INSERT Statement Let Q]
insert = 〈insert](

~
v]d,
~e]), φ]〉 and t] be an abstract

INSERT statement and an abstract table corresponding to their concrete versions Qinsert

and t respectively, such that target(Q]
insert) = t]. According to the abstract semantics of

Q]
insert, we get

S][[Q]
insert]](ρt] , ρa]) = S][[〈insert](

~
v]d,
~e]), φ]〉]](ρt] , ρa]) = (ρ

t]1
, ρa])

59

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

where,

let
~
v]d = 〈a]1, a

]
2, . . . , a

]
n〉 = attr(t]), and E][[~e]]](ρa]) = ~r] = 〈r]1, r

]
2, . . . , r

]
n〉,

and l]new = 〈r]1/a
]
1, r

]
2/a

]
2, . . . , r

]
n/a

]
n〉, and ρ

t]1
(~x]) = ρ

t]∪l]new
(~x])

Abstract DELETE Statement Given an abstract delete statement Q]
delete = 〈delete](

~
v]d), φ]〉

with target(Q]
delete) = t] corresponding to the concrete statement Qdelete and concrete ta-

ble t respectively. According to the abstract semantics of Q]
delete, we get

S][[Q]
delete]](ρt] , ρa]) = S][[〈delete](

~
v]d), φ]〉]](ρt] , ρa]) = (ρ

t]1
, ρa])

where, ρ
t]1

(x]) = ρt] ↓U φ](
~x]) ∪ ρt] ↓F φ]

(~x])

Soundness of Abstract SQL Statements

Given an abstraction, let T and T] be a concrete and abstract table respectively. The

correspondence between T and T] are described using the concretization and abstrac-

tion maps γ and α respectively. If Qsql and Q] are representing the SQL statements on

concrete and abstract domain respectively, let Tres and T]res are the results of applying

Qsql and Q] on the T and T] respectively. The following fact illustrate the soundness

condition of abstraction:

T
Qsql// Tres v γ(T]res)

T]
Q]

//

γ

OO

T]res

γ

OO

Lemma 7 Let T] be an abstract table and Q] be an abstract SQL statement. Q] is sound if
∀T ∈ γ(T]). ∀Qsql ∈ γ(Q]) : Qsql(T) ⊆ γ(Q](T])).

Proof The computation of an Q] on T] can be defined as the computation of the

composite function formed from its syntactic functional components. Consider the

following abstract SELECT statement

Q]
select = 〈select](f](~e′]), r](~h](~x])), φ]1, g](~e])), φ]〉

60

3.9 Abstract Semantics of Programs embedding SQL Statements

and an abstract table T] where target(Q]
select) = T]. We get the abstract result as follows:

ξ] = func]sel[T
]] = (f](~e′]) ◦ r](~h](~x])) ◦ φ]1 ◦ g](~e]) ◦ φ])[T]]

where func]sel= f](~e′]) ◦ r](~h](~x])) ◦ φ]1 ◦ g](~e]) ◦ φ].

Let Qselect ∈ γ(Q]
select) and T ∈ γ(T]). The computation of Qselect on T is defined as

ξ = funcsel[T] = (f (~e′) ◦ r(~h(~x)) ◦ φ1 ◦ g(~e)) ◦ φ)[T]

where funcsel = f (~e′) ◦ r(~h(~x)) ◦ φ1 ◦ g(~e)) ◦ φ.

We already proved that all syntactic abstract functional components in Q]
select are sound

with respect to their corresponding concrete counter-part. As the composition of

sound abstract functions always yield to another sound abstract function, we get the

abstract function func]sel is sound w.r.t. funcsel. Thus, Q]
select is sound, i.e., ξ ∈ γ(ξ]).

Similarly, we can prove the soundness for other SQL statements as well. Therefore,

∀T ∈ γ(T]). ∀Qsql ∈ γ(Q]) : Qsql(T) ⊆ γ(Q](T])).

Abstract UNION, INTERSECTION, MINUS Operations

Given an abstract query Q], the result of it over an abstract database can be denoted

by the tuple

ξ] = 〈ξ]yes, ξ
]
may〉

where ξ]yes is the part of the result for which semantic structure of φ] evaluates to true

and ξ]may represents the remaining part for which φ] evaluates to >1.

Now we describe how to treat UNION, INTERSECTION and MINUS operation over an

abstract domain so as to preserve the soundness.

Abstract UNION Operation: Let, Q = Ql UNION Qr be a concrete query and dB be a

concrete database. Let ξl = S[[Ql]](ρdB, ρa) and ξr = S[[Qr]](ρdB, ρa) be the result of the

evaluation of Ql and Qr on dB respectively. Clearly, ξ = S[[Q]](ρdB, ρa) = ξl ∪ ξr.

When we move from a concrete to an abstract domain of interest, let Q]
l and Q]

r be

the corresponding abstract versions of Ql and Qr respectively. Let dB] be an abstract

1When a query uses aggregate functions s], application of s] over a group G] yields a single row in
ξ]. This row belongs to ξ]may only if all rows of that group belong to G]

may, otherwise it belongs to ξ]yes

61

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

database corresponding to dB w.r.t. this abstraction. We can denote the result of the

execution of Q]
l and Q]

r on dB] as follows:

ξ]l = S][[Q]
l]](ρdB] , ρa]) = 〈ξ]yesl

, ξ]mayl
〉

ξ]r = S][[Q]
r]](ρdB] , ρa]) = 〈ξ]yesr

, ξ]mayr
〉

The abstract version of Q is defined as Q] = Q]
l UNION

] Q]
r, where the abstract union

operation UNION] is defined as:

ξ] = S][[Q]]](ρdB] , ρa])

= S][[Q]
l UNION

] Q]
r]](ρdB] , ρa])

= S][[Q]
l]](ρdB] , ρa]) UNION

] S][[Q]
r]](ρdB] , ρa])

= ξ]l UNION
] ξ]r

= 〈ξ]yesl
, ξ]mayl

〉 UNION] 〈ξ]yesr
, ξ]mayr

〉

= 〈(ξ]yesl
∪ ξ]yesr

), ((ξ]mayl
∪ ξ]mayr

)\(ξ]yesl
∪ ξ]yesr

))〉

Observe that the first component of ξ], i.e., (ξ]yesl
∪ ξ]yesr

) represents the yes-part of the

result for which abstract pre-condition evaluates to true, whereas the second compo-

nent ((ξ]mayl
∪ ξ]mayr

)\(ξ]yesl
∪ ξ]yesr

)) represents the may-part of the result for which the

abstract pre-condition evaluates to >.

Example 4 Consider the database of Table 3.2 that contains the concrete table temp and consider
the following SELECT statement Q3:

Q3 = Ql UNION Qr

= SELECT * FROM temp WHERE Age > 15 UNION SELECT * FROM temp WHERE Age > 42

where,
Ql = SELECT * FROM temp WHERE Age > 15

Qr = SELECT * FROM temp WHERE Age > 42

If we execute Q3 on temp, we get the result ξ3 shown in Table 3.12. By following the same
abstraction and concretization mapping of Example 1, we get the abstract version of Q3 i.e. Q]

3
as follows:

Q]
3 = Q]

l UNION
] Q]

r

= SELECT] * FROM t]emp WHERE Age] >] [12, 24] UNION] SELECT] * FROM t]emp

WHERE Age] >] [25, 59]

62

3.9 Abstract Semantics of Programs embedding SQL Statements

Table 3.12: ξ3: Result of Q3 (concrete)

eID Name Age Dno Pno Sal Child − no
1 Matteo 30 2 1 2000 4
2 Alice 22 1 2 1500 2
3 Joy 50 2 3 2300 3
5 Deba 40 3 4 3000 5
6 Andrea 70 1 2 1900 2
7 Alberto 18 3 4 800 1

The execution of Q]
l on Table 3.7 yields to the result shown in Table 3.13(a), where the tuples

with eID] equal to 2, 7, 8 belong to ξmayl and the tuples with eID] equal to 1, 3, 5, 6 belong to
ξyesl . Similarly, the execution of the query Q]

r yield to the result shown in Table 3.13(b), where
the tuples with eID] equal to 1, 3, 5 belong to ξmayr and one tuple with eID] equal to 6 belongs
to ξyesr . Thus, the result of abstract computation of Q]

3 involving UNION] is depicted in Table
3.13(c). Observe that in the result ξ]3, the yes-part ξ]yes3

= (ξ]yesl
∪ ξ]yesr

) contains the tuples

with eID] equal to 1, 3, 5, 6 and the may-part ξ]may3
= ((ξ]mayl

∪ξ]mayr
)\(ξ]yesl

∪ξ]yesr
)) contains

the tuples with eID] equal to 2, 7, 8. Here the abstraction is sound i.e. ξ3 ∈ γ(ξ]3).

Abstract INTERSECTION Operation: Let, ξ = S[[Q]](ρdB, ρa) be the result of execut-

ing a concrete query Q on a database dB, where Q = Ql INTERSECT Qr. It is clear that

ξ = ξl ∩ ξr, where ξl = S[[Ql]](ρdB, ρa) and ξr = S[[Qr]](ρdB, ρa), according to the concrete

intersection operation INTERSECT.

Let Q]
l , Q]

r and dB] be abstract queries and abstract database corresponding to Ql,

Qr and dB respectively w.r.t. an abstract domain of interest. Let ξ]l = S][[Q]
l]](ρdB] , ρa])

= 〈ξ]yesl
, ξ]mayl

〉 and ξ]r = S][[Q]
r]](ρdB] , ρa]) = 〈ξ]yesr

, ξ]mayr
〉.

The abstract version of Q is, thus, defined as Q] = Q]
l INTERSECT

] Q]
r, where abstract

intersection operation INTERSECT] is defined as follows:

ξ] = S][[Q]]](ρdB] , ρa])

= S][[Q]
l INTERSECT

] Q]
r]](ρdB] , ρa])

= S][[Q]
l]](ρdB] , ρa]) INTERSECT

] S][[Q]
r]](ρdB] , ρa])

= ξ]l INTERSECT
] ξ]r

= 〈ξ]yesl
, ξ]mayl

〉 INTERSECT] 〈ξ]yesr
, ξ]mayr

〉

= 〈(ξ]yesl
∩ ξ]yesr

), ((ξ]mayl
∩ ξ]r) ∪ (ξ]mayr

∩ ξ]l))〉

63

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

Table 3.13: Abstract computation of Q]
3

(a) ξ]l : Result of Q]
l

eID] Name] Age] Dno] Pno] Sal] Child − no]

1 Matteo [25,59] 2 1 [1500,2499] Medium
2 Alice [12,24] 1 2 [1500,2499] Few
3 Joy [25,59] 2 3 [1500,2499] Medium
5 Deba [25,59] 3 4 [2500,10000] Many
6 Andrea [60,100] 1 2 [1500,2499] Few
7 Alberto [12,24] 3 4 [500,1499] Few
8 Bob [12,24] 2 3 [2500,10000] Medium

(b) ξ]r : Result of Q]
r

eID] Name] Age] Dno] Pno] Sal] Child − no]

1 Matteo [25,59] 2 1 [1500,2499] Medium
3 Joy [25,59] 2 3 [1500,2499] Medium
5 Deba [25,59] 3 4 [2500,10000] Many
6 Andrea [60,100] 1 2 [1500,2499] Few

(c) ξ]3: Performing UNION] between ξ]l & ξ]r

eID] Name] Age] Dno] Pno] Sal] Child − no]

1 Matteo [25,59] 2 1 [1500,2499] Medium
2 Alice [12,24] 1 2 [1500,2499] Few
3 Joy [25,59] 2 3 [1500,2499] Medium
5 Deba [25,59] 3 4 [2500,10000] Many
6 Andrea [60,100] 1 2 [1500,2499] Few
7 Alberto [12,24] 3 4 [500,1499] Few
8 Bob [12,24] 2 3 [2500,10000] Medium

where the first component (ξ]yesl
∩ ξ]yesr

) represents the yes-part of the result, whereas

the second component ((ξ]mayl
∩ ξ]r)∪ (ξ]mayr

∩ ξ]l)) represents the may-part of the result.

Example 5 Consider the concrete table temp in Table 3.2 and the following SELECT statement:

Q4 = Ql INTERSECT Qr

= SELECT * FROM temp WHERE Age > 15 INTERSECT SELECT * FROM temp WHERE Age > 42

where,
Ql = SELECT * FROM temp WHERE Age > 15

Qr = SELECT * FROM temp WHERE Age > 42

If we execute Q4 on temp, we get the result ξ4 shown in Table 3.14. The corresponding abstract
query Q]

4, by following the same abstraction and concretization mapping of Example 1, is as

64

3.9 Abstract Semantics of Programs embedding SQL Statements

Table 3.14: ξ4: Result of Q4 (concrete)

eID Name Age Dno Pno Sal Child − no
3 Joy 50 2 3 2300 3
6 Andrea 70 1 2 1900 2

follows:

Q]
4 = Q]

l INTERSECT
] Q]

r

= SELECT] * FROM t]emp WHERE Age] >] [12, 24] INTERSECT] SELECT] * FROM t]emp

WHERE Age] >] [25, 59]

The execution of Q]
l and Q]

r on Table 3.7 yield to the result shown in Table 3.15(a) and 3.15(b)

respectively. The result of abstract computation of Q]
4 involving INTERSECT] is depicted in

Table 3.15(c), where the yes-part ξ]yes4
= (ξ]yesl

∩ ξ]yesr
) contains only one tuple with eID] equal

to 6 and the may-part ξ]may4
= ((ξ]mayl

∩ ξ]r)∪ (ξ]mayr
∩ ξ]l)) contains the tuples with eID] equal

to 1, 3, 5. Here the abstraction is sound i.e. ξ4 ∈ γ(ξ]4).

Abstract MINUS Operation: If we treat an abstract minus operation MINUS] in a

similar manner as of concrete MINUS, we can not preserve the soundness. This happens

due to the overapproximated results of the query on right side of MINUS] operation

that removes more information from the result of the query on the left side of MINUS].

So in order to preserve the soundness, we have to treat MINUS] differently.

Consider an abstract query of the form Q] = Q]
l MINUS] Q]

r. Let the result for Q]
l

and Q]
r be ξ]l = 〈ξ]yesl

, ξ]mayl
〉 and ξ]r = 〈ξ]yesr

, ξ]mayr
〉 respectively.

The difference operation MINUS] over an abstract domain is defined as follows:

ξ] = ξ]l MINUS
] ξ]r

= 〈ξ]yesl
, ξ]mayl

〉 MINUS] 〈ξ]yesr
, ξ]mayr

〉

= 〈(ξ]yesl
\(ξ]yesl

∩ ξ]yesr
)), (ξ]mayl

\(ξ]mayl
∩ ξ]yesr

))〉

Observe that the first component (ξ]yesl
\(ξ]yesl

∩ ξ]yesr
)) represents the yes-part for which

the abstract pre-condition strictly evaluates to true, whereas the second component

(ξ]mayl
\(ξ]mayl

∩ξ]yesr
)) represents the may-part for which the abstract pre-condition eval-

uates to >.

65

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

Table 3.15: Abstract computation of Q]
4

(a) ξ]l : Result of Q]
l

eID] Name] Age] Dno] Pno] Sal] Child − no]

1 Matteo [25,59] 2 1 [1500,2499] Medium
2 Alice [12,24] 1 2 [1500,2499] Few
3 Joy [25,59] 2 3 [1500,2499] Medium
5 Deba [25,59] 3 4 [2500,10000] Many
6 Andrea [60,100] 1 2 [1500,2499] Few
7 Alberto [12,24] 3 4 [500,1499] Few
8 Bob [12,24] 2 3 [2500,10000] Medium

(b) ξ]r : Result of Q]
r

eID] Name] Age] Dno] Pno] Sal] Child − no]

1 Matteo [25,59] 2 1 [1500,2499] Medium
3 Joy [25,59] 2 3 [1500,2499] Medium
5 Deba [25,59] 3 4 [2500,10000] Many
6 Andrea [60,100] 1 2 [1500,2499] Few

(c) ξ]4: Performing INTERSECT] between ξ]l & ξ]r

eID] Name] Age] Dno] Pno] Sal] Child − no]

1 Matteo [25,59] 2 1 [1500,2499] Medium
3 Joy [25,59] 2 3 [1500,2499] Medium
5 Deba [25,59] 3 4 [2500,10000] Many
6 Andrea [60,100] 1 2 [1500,2499] Few

Example 6 Consider the database of Table 3.2 that contains concrete table temp and consider
the following SELECT statement:

Q5 = Ql MINUS Qr

= SELECT * FROM temp WHERE Age > 15 MINUS SELECT * FROM temp WHERE Age > 42

where,
Ql = SELECT * FROM temp WHERE Age > 15

Qr = SELECT * FROM temp WHERE Age > 42

If we execute Q5 on temp, we get the result ξ5 shown in Table 3.16. By following the same
abstraction and concretization mapping as of Example 1, we get the abstract version of Q5 as
follows:

Q]
5 = Q]

l MINUS
] Q]

r

= SELECT] * FROM t]emp WHERE Age] >] [12, 24] MINUS] SELECT] * FROM t]emp

WHERE Age] >] [25, 59]

66

3.9 Abstract Semantics of Programs embedding SQL Statements

Table 3.16: ξ5: Result of Q5 (concrete)

eID Name Age Dno Pno Sal Child − no
1 Matteo 30 2 1 2000 4
2 Alice 22 1 2 1500 2
5 Deba 40 3 4 3000 5
7 Alberto 18 3 4 800 1

The execution of Q]
l and Q]

r on Table 3.7 yields to the results shown in Table 3.17(a) and Table

3.17(b) respectively. In Table 3.17(a), the tuples with eID] equal to 2, 7, 8 belongs to ξ]mayl
,

whereas the remaining four tuples belong to ξ]yesl
. Similarly, in Table 3.17(b), the tuple with

eID] equal to 6 belongs to ξ]yesr
, whereas the remaining three tuples belong to ξ]mayr

. Thus,

(ξ]yesl
\(ξ]yesl

∩ξ]yesr
)) contains the tuples with eID] equal to 1, 3, 5, whereas (ξ]mayl

\(ξ]mayl
∩ξ]yesr

)

contains the tuples with eID] equal to 2, 7, 8. The result of Q]
5 involving MINUS] is depicted in

Table 3.17(c). Observe that the abstraction is sound i.e. ξ5 ∈ γ(ξ]5).

Table 3.17: Abstract computation of Q]
5

(a) ξ]l : Result of Q]
l

eID] Name] Age] Dno] Pno] Sal] Child − no]

1 Matteo [25,59] 2 1 [1500,2499] Medium
2 Alice [12,24] 1 2 [1500,2499] Few
3 Joy [25,59] 2 3 [1500,2499] Medium
5 Deba [25,59] 3 4 [2500,10000] Many
6 Andrea [60,100] 1 2 [1500,2499] Few
7 Alberto [12,24] 3 4 [500,1499] Few
8 Bob [12,24] 2 3 [2500,10000] Medium

(b) ξ]r : Result of Q]
r

eID] Name] Age] Dno] Pno] Sal] Child − no]

1 Matteo [25,59] 2 1 [1500,2499] Medium
3 Joy [25,59] 2 3 [1500,2499] Medium
5 Deba [25,59] 3 4 [2500,10000] Many
6 Andrea [60,100] 1 2 [1500,2499] Few

(c) ξ]5: Performing MINUS] between ξ]l & ξ]r

eID] Name] Age] Dno] Pno] Sal] Child − no]

1 Matteo [25,59] 2 1 [1500,2499] Medium
2 Alice [12,24] 1 2 [1500,2499] Few
3 Joy [25,59] 2 3 [1500,2499] Medium
5 Deba [25,59] 3 4 [2500,10000] Many
7 Alberto [12,24] 3 4 [500,1499] Few
8 Bob [12,24] 2 3 [2500,10000] Medium

67

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

Abstract Control Statements

Given an abstraction, the correspondence between the instructions I and its abstract

versions I] for the conditional and while statements are:

• ”i f b then I1 else I2” is abstracted by

i f (b] = true) then I]1 elsei f (b] = f alse) then I]2 else I]1 t I]2

• ”while b do I” is abstracted by FIX F] where F] is the functional corresponding to

the concrete while statement.

3.10 Formal Semantics of SQL with Co-related and Non Co-
related Subquery

A subquery is a query that is nested inside a SELECT, UPDATE, INSERT, or DELETE

statement, or inside another subquery. Subquery can be nested inside a WHERE

or HAVING clause of an outer statement, or inside another subquery. A subquery

can appear anywhere where an expression can be used, if it returns a single value.

However, in practice, there is a limit on the levels of nesting based on the available

memory and the complexity of the other expressions in the query.

In the SQL statements that include a co-related subquery (also known as a repeating

subquery), the subquery depends on the outer statement for its values. That means

that the subquery is executed repeatedly, once for each row that might be selected by

outer statement.

The following example illustrates the co-related subquery which finds the name

and location of those department under which the average salary of all employees is

greater than or equal to 1000:

SELECTDname, LocFROM tdept WHERE1000 ≤ (SELECT AVG(Sal) FROM temp WHERE temp.Dno = tdept.Deptno)

Here the subquery is co-related because the value of the subquery depends on the value

of the attribute (tdept.Deptno) which is the part of a table in the outer statement.

But the following subquery is non co-related:

SELECT Dname, Loc FROM tdept WHERE Deptno = SOME(SELECTDno FROM temp WHERE Sal ≥ 1500)

68

3.10 Formal Semantics of SQL with Co-related and Non Co-related Subquery

Let Qsql be a SQL statement having Q′sql as a subquery. Suppose, Tout = {t1, t2, ..., tn} and

Tin = {t′1, t
′

2, ..., t
′
m} are the set of tables explicitly appears in Qsql and Q′sql respectively,

where tout = t1 × t2 × ... × tn and tin = t′1 × t′2 × · · · × t′m.

Definition 7 (Co-related Subquery) Q′sql is co-related if ∃x ∈ attr(tout) such that x is used in
Q′sql.

The syntax of the Qsql = 〈Asql, φ〉with one level nested subquery is:

1. 〈select(va, f (~e′), r(~h(~x)), φ2(Q′′select), ~g(~e)), φ1(Q′select)〉

2. 〈update(~vd, ~e), φ(Qselect)〉

3. 〈insert(~vd, ~e), φ(Qselect)〉

4. 〈delete, φ(Qselect)〉

where Qselect, Q′select and Q′′select don’t have any nested subquery.

We use the following idea to describe the semantics of SQL statement with co-related

nested subquery:

Suppose tout is partitioned into a set of mutual exclusive tables tout
i , i ranges over

the number of rows of tout. Each table tout
i contains a distinct row of tout. So, if there are

k rows in tout, after partitioning we get k tables tout
1 , tout

2 , . . . , tout
k .

Now the following steps are executed k times for i = 1, . . . , k:

1. ti = tout
i × tin.

2. Execute the subquery Q′sql on the environment (ρti , ρa) with target(Q′sql) = ti

3. Substitute the result obtained in step (2) at the place of the subquery Q′sql

and execute the outer SQL statement Qsql on the environment (ρtout
i
, ρa) with

target(Qsql) = tout
i

4. Get the final result by taking union of all the results for all i obtained in step 3.

3.10.1 SELECT statement with co-related subquery

In this section, we describe the semantics of SELECT statements nested with co-related

subqueries with an example.

69

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

Table 3.18: A database dB2

(a) temp

eID Name Age Dno Pno Sal
1 Matteo 28 2 1 2000
2 Stefano 30 1 2 1500
3 luca 25 1 2 1700
4 Alberto 35 3 4 800

(b) tdept

Deptno Dname Loc MngrID
1 Math Turin 4
2 Computer Venice 1
3 Physics Mestre 5

Formal semantics of SELECT statement with co-related subqueries:

S[[〈select(va, f (~e′), r(~h(~x)), φ2(Q′′select), ~g(~e)), φ1(Q′select)〉]]ς(ρd, ρa)

= S[[〈select(va, r(~h(~x)), f (~e′), φ2(Q′′select), ~g(~x,~e)), φ1(Q′select)〉]]ς(ρtout ∪ ρtin
1
∪ ρtin

2
, ρa)

where target(Q′select) = {tin
1 } and target(Q′′select) = {tin

2 }.

=
⋃

i S[[〈select(va, r(~h(~x)), f (~e′), φi
2, ~g(~x,~e)), φi

1〉]]ς(ρtout
i
, ρa), where

Let t1
i = tout

i × tin
1 and t2

i = tout
i × tin

2 and S[[Q′select]](ρt1
i
, ρa) = ξ′i and S[[Q′′select]](ρt2

i
, ρa) = ξ′′i

Let φi
1 = φ1[ξ′i/Q

′

select] and φi
2 = φ2[ξ′′i /Q

′′

select]

Illustration of the semantics of SQL statement with co-related subquery using an
example:

Consider the database instance dB2 depicted in Table 3.18 and the following SELECT

statement with a co-related subquery:

SELECT Dname, Loc FROM tdept WHERE 1000 ≤ (SELECT AVG(Sal) FROM temp WHEREDno = Deptno)

From the above query we get the following information:

• tout = tdept

• tin = temp

• Q = SELECT Dname, Loc FROM tdept WHERE 1000≤(Q′)

where Q′= SELECT AVG(Sal) FROM temp WHERE Dno = Deptno.

Now we illustrate the operations step by step:

Step 1: Partition the table tout into a set of table tout
i each containing one distinct row:

70

3.10 Formal Semantics of SQL with Co-related and Non Co-related Subquery

In the example, tout = tdept with three rows. So, after partitioning we have

three distinct table tout
1 , tout

2 and tout
3 depicted in Tables 3.19(a), 3.19(b) and 3.19(c)

respectively.

Table 3.19: Partitions of Table tdept

(a) tout
1

Deptno Dname Loc MngrID
1 Math Turin 4

(b) tout
2

Deptno Dname Loc MngrID
2 Computer Venice 1

(c) tout
3

Deptno Dname Loc MngrID
3 Physics Mestre 5

Step 2: Execute the following steps for i=1, 2, 3:

Step (2a): Perform ti = tout
i × tin for i=1, 2, 3:

In the example, tin = temp. Thus, performing the above operation for three

partition tout
1 , tout

2 and tout
3 , we get t1, t2 and t3 depicted in Tables 3.20(a),

3.20(b) and 3.20(c) respectively.

Step (2b): Execute the inner query Q′ on the environment (ρti , ρa) with target(Q′) =

{ti} and get the results ξi for i=1, 2, 3:

In the example, the execution of the inner query Q′ on (ρti , ρa) yields to

the results ξi for i=1, 2, 3, depicted in Tables 3.21(a), 3.21(b) and 3.21(c)

respectively.

Step (2c): Substitute the results ξi in place of the subquery Q′ and get the corre-

sponding outer SQL statements Qi with target(Qi) = {tout
i } for i=1, 2, 3:

In the example, we have ξ1, ξ2 and ξ3 equals to 1600, 2000 and 800 re-

spectively. After substituting them in place of the subquery Q′, we get the

following three:

(i) Q1 = SELECT Dname, Loc FROM tout
1 WHERE 1000 ≤ (1600)

(ii) Q2 = SELECT Dname, Loc FROM tout
2 WHERE 1000 ≤ (2000)

(iii) Q3 = SELECT Dname, Loc FROM tout
3 WHERE 1000 ≤ (800)

71

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

Table 3.20: Table ti = tout
i × temp for i = 1, 2, 3

(a) t1 = tout
1 × temp

Deptno Dname Loc MngrID eID Name Age Dno Pno Sal
1 Math Turin 4 1 Matteo 28 2 1 2000
1 Math Turin 4 2 Stefano 30 1 2 1500
1 Math Turin 4 3 luca 25 1 2 1700
1 Math Turin 4 4 Alberto 35 3 4 800

(b) t2 = tout
2 × temp

Deptno Dname Loc MngrID eID Name Age Dno Pno Sal
2 Computer Venice 1 1 Matteo 28 2 1 2000
2 Computer Venice 1 2 Stefano 30 1 2 1500
2 Computer Venice 1 3 luca 25 1 2 1700
2 Computer Venice 1 4 Alberto 35 3 4 800

(c) t3 = tout
3 × temp

Deptno Dname Loc MngrID eID Name Age Dno Pno Sal
3 Physics Mestre 5 1 Matteo 28 2 1 2000
3 Physics Mestre 5 2 Stefano 30 1 2 1500
3 Physics Mestre 5 3 luca 25 1 2 1700
3 Physics Mestre 5 4 Alberto 35 3 4 800

Table 3.21: Result ξi = S[[Q′]](ρti , ρa) for i=1, 2, 3

(a) ξ1

AVG(Sal)
1600

(b) ξ2

AVG(Sal)
2000

(c) ξ3

AVG(Sal)
800

Step (2d): Execute Qi over the environment (ρtout
i
, ρa) for i=1, 2, 3:

The execution of Q1, Q2 and Q3 over (ρtout
1
, ρa), (ρtout

2
, ρa) and (ρtout

3
, ρa) gives

the results shown in Tables 3.22(a), 3.22(b) and 3.22(c) respectively. Observe

that the execution in the third case results into an empty table.

Step (2e): Get the final result of the SQL statement Q =
⋃

i S[[Qi]](ρtout
i
, ρa) for i=1,

2, 3:

In the example, S[[Q]](ρtout ∪ρtin , ρa) = S[[Q]](ρtdept ∪ρtemp , ρa) = S[[Q1]](ρtout
1
, ρa)

∪ S[[Q2]](ρtout
2
, ρa) ∪ S[[Q3]](ρtout

3
, ρa). The result is shown in Table 3.23.

72

3.10 Formal Semantics of SQL with Co-related and Non Co-related Subquery

Table 3.22: S[[Qi]](ρtout
i
, ρa): Evaluation of Qi for i = 1, 2, 3

(a)

Dname Loc
Math Turin

(b)

Dname Loc
Computer Venice

(c)

Dname Loc
empty

Table 3.23: S[[Q]](ρtout ∪ ρtin , ρa): Evaluation of Q

Dname Loc
Math Turin

Computer Venice

3.10.2 SELECT statement with non co-related subquery

In this section, we describe the semantics of SELECT statements nested with non

co-related subqueries with an example.

Formal semantics of SELECT statement with non co-related subqueries:

S[[〈select(va, f (~e′), r(~h(~x)), φ2(Qselect2), ~g(~e)), φ1(Qselect1)〉]]ς(ρd, ρa)

= S[[〈select(va, f (~e′), r(~h(~x)), φ2(Qselect2), ~g(~e)), φ1(Qselect1)〉]]ς(ρtout ∪ ρtin
1
∪ ρtin

2
, ρa)

where target(Qselect1) = {tin
1 } and target(Qselect2) = {tin

2 }.

= S[[〈select(va, f (~e′), r(~h(~x)), φ′2, ~g(~e)), φ′1〉]]ς(ρtout , ρa), where

S[[Qselect1]](ρtin
1
, ρa) = ξ1 and S[[Qselect2]](ρtin

2
, ρa) = ξ2 and φ′1 = φ1[ξ1/Qselect1] and

φ′2 = φ2[ξ2/Qselect2]

Illustration of the semantics of SELECT statement with non co-related subquery
using an example:

Consider the following SELECT statement with non co-related subquery and the

database instance dB2 depicted in Table 3.18:

SELECT Dname, Loc FROM tdept WHERE Deptno = SOME(SELECTDno FROM temp WHERE Sal ≥ 1500)

From the above query, we get the following information:

• tout = tdept

• tin = temp

73

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

• Q = SELECT Dname, Loc FROM tdept WHERE Deptno=SOME (Q′)

where, Q′ = SELECT Dno FROM temp WHERE Sal ≥ 1500

Now we illustrate the operations step by step:

Step 1: Execute the inner query Q′ on the environment (ρtin , ρa) and get the result ξ′:

In the example, tin = temp and the semantic execution of Q′ on (ρtemp , ρa) yields to

the result ξ′, depicted in Table 3.24.

Table 3.24: Table ξ′ = S[[Q′]](ρtemp , ρa)

Dno
2
1
1

Step 2: Substitute the result ξ′ in place of the subquery Q′, and get the corresponding

outer SQL statement Q:

As ξ′ is 〈2, 1, 1〉, by substituting it in place of Q′, we get:

Q = SELECT Dname, Loc FROM tdept WHERE Deptno = SOME(2, 1, 1)

Step 3: Execute Q over the environment (ρtout , ρa):

The execution of Q over (ρtout , ρa), i.e., S[[Q]](ρtdept , ρa) yields to the result shown

in Table 3.25.

Table 3.25: S[[Q]](ρtdept , ρa): Evaluation of Q

Dname Loc
Math Turin

Computer Venice

3.10.3 Formal semantics of UPDATE/INSERT/DELETE statement with co-
related subquery

S[[〈Asql, φ(Qselect)〉]]ς(ρd, ρa)

= S[[〈Asql, φ(Qselect)〉]]ς(ρtout ∪ ρtin , ρa) where target(Qselect) = {tin
}.

74

3.10 Formal Semantics of SQL with Co-related and Non Co-related Subquery

=
⋃

i S[[〈Asql, φi〉]]ς(ρtout
i
, ρa) where,

Let ti = tout
i × tin and S[[Qselect]](ρti , ρa) = ξi and φi = φ[ξi/Qselect]

3.10.4 Formal semantics of UPDATE/INSERT/DELETE statement with non
co-related subquery

S[[〈Asql, φ(Qselect)〉]](ρd, ρa)

= S[[〈Asql, φ(Qselect)〉]](ρtout ∪ ρtin , ρa)

= S[[〈Asql, φ
′
〉]](ρtout , ρa), where S[[Qselect]](ρtin , ρa) = ξ and φ′ = φ[ξ/Qselect]

75

3. ABSTRACT INTERPRETATION OF DATABASE QUERY LANGUAGES

76

Chapter 4

Persistent Watermarking of
Relational Databases

[Part of this chapter is already published in (82, 83, 91)]

The recent surge in the growth of the Internet technology and Information Sys-

tems results in offering of a wide range of web-based services, such as database as

a service, digital repositories and libraries, e-commerce, online decision support sys-

tem etc. These applications make the digital assets, such as digital images, video,

audio, database content etc, easily accessible by the ordinary people around the world

for sharing, purchasing, distributing, or many other purposes. As the information

usage proliferates among more and more users, the database content faces serious

challenges like illegal redistribution, ownership claims, forgery, theft, etc. Although

the encryption is one way to prevent attacks to the database content, this approach is

too restrictive and does not constitute a general solution to the challenges mentioned

above. A more effective approach is using digital watermarking technologies where a

watermark is some kind of information that is embedded into the underlying data for

tamper detection, localization, ownership proof, traitor tracing etc.

Initially, most of the work on watermarking was concentrated on watermarking of

still images, video, audio, VLSI design etc (1, 129, 161). However, in the recent years

watermarking of database systems started to receive attention because of the increas-

ing use of it in many real-life applications. Examples where database watermarking

might be of a crucial importance include protecting rights and ensuring the integrity

77

4. PERSISTENT WATERMARKING OF RELATIONAL DATABASES

Figure 4.1: Basic Database Watermarking Technique

Watermark

Embedding

Watermark

Verification

Original

Database

Key (K)

Watermark Information (W)

Watermarked

Database

Key (K)

Original Watermark

Information (W)

Suspicious

Database

Claim as true

or false
Compare

Extracted

Watermark

 Information (W’)

of outsourced relational databases in service provider model (77), in data mining tech-

nology where data are sold in pieces to parties specialized in mining it (7), online B2B

interactions (98) etc. The idea to secure a database of map information (represented

as a graph) by digital watermarking technique was first coined by Khanna and Zane

in 2000 (116). In 2002, Agrawal et al. proposed the idea of digital watermarking for

relational database (6).

In general, the database watermarking techniques consist of two phases: Watermark

Embedding and Watermark Verification. During watermark embedding phase, a private

key K (known only to the owner) is used to embed the watermark W into the original

database. The watermarked database is then made publicly available. To verify the

ownership of a suspicious database, the verification process is performed where the

suspicious database is taken as input and by using the private key K (the same which is

used during the embedding phase) the embedded watermark (if present) is extracted

and compared with the original watermark information. Figure 4.1 depicts the basic

database watermarking technique.

The relational data defers from multimedia data in many respects: (i) Few Redun-

dant Data: Multimedia objects consists of large number of bits providing large cover

to hide watermark, whereas the database object is a collection of independent objects,

78

called tuples. The watermark has to be embedded into these tuples, (ii) Out-of-Order

Relational Data: The relative spatial/temporal positions of different parts or compo-

nents in multimedia objects do not change, whereas there is no ordering among the

tuples in database relations as the collection of tuples is considered as set, (iii) Frequent

Updating: Any portion of multimedia objects is not dropped or replaced normally,

whereas tuples may be inserted, deleted, or updated during normal database opera-

tions, (iv) There are many psycho-physical phenomena based on human visual system

and human auditory system which can be exploited for mark embedding. However,

one can not exploit such phenomena in case of relational databases. Due to these

differences between relational and multimedia data, there exist no image or audio wa-

termarking method which is suitable for watermarking of relational databases. These

differences give rise to many technical challenges in database watermarking as well.

Most of the existing watermarking techniques (5, 20, 73, 133, 202) in the literature

are private, meaning that they are based on some private parameters (e.g. secret key).

Only the authorized people (e.g. database owners) who know these private parameters

are able to verify the watermark to prove their ownership of the database in case of

illegal redistribution, false ownership claim, theft etc. However, private watermark-

ing techniques suffer from disclosure of the private parameters to dishonest people

once the watermark is verified in presence of the public. With access to the private

parameters, attackers can easily invalidate watermark detection by either removing

watermarks from protected data or adding a false watermark to non-watermarked

data. In contrast, in public watermarking techniques (132, 187), any end-user can

verify the embedded watermark as many times as necessary without having any prior

knowledge about any of the private information to ensure that they are using the

correct (not tampered) data coming from the original source. For instance, when

customers are using sensitive information such as currency exchange rates and stock

prices, it is very important for them to ensure that data is correct and coming from the

original sources. Observe that since the location of the public watermark in the host

data is public, the robustness (57) of it is a prime concern. In addition, fragileness (57)

of the public watermark must be maintained when any end-user wishes to verify the

correctness of the data through it.

The watermark verification phase in the existing techniques (73, 133, 187, 202)

completely relies on the content of the database. In other words, the success of the

79

4. PERSISTENT WATERMARKING OF RELATIONAL DATABASES

watermark detection is content dependent. Benign Updates or any other authorized

processing of the database content may damage or distort the embedded watermark,

resulting the watermark verification unsuccessful. For instance, suppose a publisher

is offering 20% discount to the price of all articles. The modification of the price

information may yield to the watermark detection phase almost infeasible, if the price

values are marked at bit-level or if any information (viz, hash value) is extracted based

on this price information and is used in the embedding phase. Therefore, most of the

previous techniques are designed to face Value Modi f ication Attacks, but are unable to

resolve the persistency of the watermark under intentional operations.

All the issues above motivate us to propose a novel fragile and robust persistent

watermarking scheme that embeds both private and public watermarks where the

former allows owners to prove their ownership, while the latter allows end-users to

verify the correctness and originality of the data in the database without loosing its

strength and security. In this setting, the public watermark is based on a part of

the database state which remains invariant under processing by the SQL statements

associated with the database, whereas private watermarking is based on an appropriate

form of the original database state, called abstract database, and the semantics-based

properties of the data which remain invariant under processing by the associated SQL

statements.

The structure of this chapter is as follows: in section 4.1, we survey the current

state-of-the-art of relational database watermarking schemes in the literature. In the

survey, we discuss different types of possible attacks on watermarked databases, and

we classify and compare all the existing techniques along various dimensions. In

section 4.2, we discuss our proposal on fragile and robust persistent watermarking, by

illustrating with suitable example.

4.1 Literature Survey

In this section, we survey the current state-of-the-art of relational database watermark-

ing schemes in the literature, and we classify them according to their intent, the way

they express the watermark, the cover type, the granularity level, and their verifiability.

80

4.1 Literature Survey

4.1.1 Applications of Digital Watermark for Relational Databases

Digital Watermarks for relational databases are potentially useful in many applications,

including:

1. Ownership Assertion: Watermarks can be used for ownership assertion. To

assert ownership of a relational database, Alice can embed a watermark into her

database R using some private parameters (e.g. secret key) which is known only

to her. Then she can make the watermarked database publicly available. Later,

suppose Alice suspects that the relation S published by Mallory1 has been pirated

from her relation R. The set of tuples and attributes in S can be a subset of R. To

defeat Mallory’s ownership claiming, Alice can demonstrate the presence of her

watermark in Mallory’s relation. For such a scheme to work, the watermark has

to survive intentional or unintentional data processing operations which may

remove or distort the watermark.

2. Fingerprinting: Fingerprinting aims to identify a traitor. In the applications

where database content is publicly available over a network, the content owner

would like to discourage unauthorized duplication and distribution by embed-

ding a distinct watermark (or fingerprint) in each copy of the database content.

If, at a later point in time, unauthorized copies of the database are found, then

the origin of the copy can be determined by retrieving the fingerprint.

3. Fraud and Tamper Detection: When database content is used for very critical

applications such as commercial transactions or medical applications, it is im-

portant to ensure that the content was originated from a specific source and

that it had not been changed, manipulated or falsified. This can be achieved by

embedding a watermark in the underlying data of the database. Subsequently,

when the database is checked, the watermark is extracted using a unique key

associated with the source, and the integrity of the data is verified through the

integrity of the extracted watermark.

1Conventionally, in cryptography literature, Mallory represents the malicious active attacker.

81

4. PERSISTENT WATERMARKING OF RELATIONAL DATABASES

4.1.2 Different Types of Attacks

Generally, the digital watermarking for integrity verification is called fragile water-

marking as compared to robust watermarking for copyright protection. In a robust

watermarking scheme, the embedded watermark should be robust against various

attacks which aim at removing or distorting the watermark. While in a fragile water-

marking scheme, the embedded watermark should be fragile to modifications so as to

detect and localize any modification in presence of different attacks.

The watermarked database may suffer from various types of intentional and unin-

tentional attacks which may damage or erase the watermark, as described below:

1. Benign Update: In this case, the tuples or data of any watermarked relation

are processed as usual. As a result, the marked tuples may be added, deleted

or updated which may remove the embedded watermark or may cause the

embedded watermark undetectable (for instance, during update operation some

marked bits of marked data can be erroneously flipped). This type of processing

are performed unintensionally.

2. Value Modification Attack:

• Bit Attack: This attack attempts to destroy the watermark by altering one

or more bits in the watermarked data. More information about the marked

bit position makes attack more successful. However, in this case usefulness

of data is crucial: more alternation may result the data completely useless.

Bit attack may be performed randomly which is known as Randomization

Attack by assigning random values to certain bit positions; or by Zero Out

Attack where the values in the bit positions are set to zero; or may be

performed by inverting the values of the bit positions, known as Bit Flipping

Attack.

• Rounding Attack: Mallory may try to lose the marks contained in a numeric

attribute by rounding all the values of the attribute. Success of this attack

depends on the estimation of how many bit positions are involved in the

watermarking. Underestimation of it may cause the attack unsuccessful,

whereas overestimation may cause the data useless.

82

4.1 Literature Survey

• Transformation: An attack related to the rounding attack is one in which the

numeric values are linearly transformed. For example, Mallory may convert

the data to a different unit of measurement (e.g., Fahrenheit to Celsius). The

unnecessary conversion by Mallory would raise suspicion among users.

3. Subset Attack: Mallory may consider a subset of the tuples or attributes of a

watermarked relation and by attacking (deleting or updating) on them he may

hope that the watermark has been lost.

4. Superset Attack: Some new tuples or attributes are added to a watermarked

database which can affect the correct detection of the watermark.

5. Collusion Attack: This attack requires the attacker to have access to multiple

fingerprinted copies of the same relation.

• Mix-and-Match Attack: Mallory may create his relation by taking disjoint

tuples from multiple relations containing similar information.

• Majority Attack: This attack creates a new relation with the same schema

as the copies but with each bit value computed as the majority function of

the corresponding bit values in all copies so that the owner can not detect

the watermark.

6. False Claim of Ownership: This type of attack seeks to provide a traitor or pirate

with evidence that raises doubts about merchant’s claim.

• Additive Attack: Mallory may simply add his watermark to Alice’s water-

marked relation and try to claim his ownership.

• Invertibility Attack: Mallory may launch an invertibility attack to claim his

ownership if he can successfully discover a fictitious watermark which is in

fact a random occurrence from a watermarked database.

7. Subset Reverse Order Attack: Attacker enjoys this attack by exchanging the order

or positions of the tuples or attributes in relation which may erase or disturb the

watermark.

83

4. PERSISTENT WATERMARKING OF RELATIONAL DATABASES

8. Brute Force Attack: In this case, Mallory tries to guess about the private param-

eters (e.g. secret key) by traversing the possible search spaces of the parameters.

This attack can be thwarted by assuming that the private parameters are long

enough in size.

4.1.3 Watermarking Issues

The important issues that arise in the study of digital watermarking techniques for

relational databases are:

• Capacity: It determines the optimum amount of data that can be embedded in a

cover and the optimum way to embed and extract this information.

• Usability: The changes in the data of the database during watermarking process

should not degrade the usability of the data. The amount of allowable change

differs from one database to another, depending on the nature of stored records.

• Robustness: Watermarks embedded in databases should be robust against ma-

licious or accidental attempts at removal without destroying the usability of the

database.

• Security: The security of the watermarking process relies on some private pa-

rameters (e.g. secret key) which should be kept completely secret. Owner of the

database should be the only one who has knowledge about them.

• Blindness: Watermark extraction should require neither the knowledge of the

original unwatermarked database nor the watermark information. This property

is critical as it allows the watermark to be detected in a copy of the database

relation, irrespective of later updates to the original relation.

• Incremental Watermarking: After a database has been watermarked, the water-

marking algorithm should compute the watermark values only for the added or

modified tuples, keeping the unaltered watermarked tuples untouched.

• Non-interference: If multiple marks are inserted into a single relational data-

base, then they should not interfere with each other.

84

4.1 Literature Survey

• Public System: Following Kerckhoffs (114), the watermarking system should

assume that the method used for inserting a watermark is public. Defense must

lie only in the choice of the private parameters (e.g. secret key).

• False Positiveness and False Negativeness: The false hit is the probability of a

valid watermark being detected from unwatermark data, whereas false miss is

the probability of not detecting a valid watermark from watermarked data that

has been modified in typical attacks. The false hit and false miss should be

negligible.

4.1.4 Classification of Watermarking Techniques

The watermarking techniques proposed so far can be classified along various dimen-

sions as follows:

• Watermark Information: Different watermarking schemes embed different types

of watermark information (e.g. image, text etc.) into the underlying data of the

database.

• Distortion: Watermarking schemes may be distortion-based or distortion-free

depending on whether the marking introduces any distortion to the underlying

data.

• Cover Type: Watermarking schemes can be classified based on the type of the

cover (e.g. type of attributes) into which marks are embedded.

• Granularity Level: The watermarking can be performed by modifying or insert-

ing information at bit level or higher level (e.g. character level or attribute level

or tuple level).

• Verifiability/Detectability: The detection/verification process may be determin-

istic or probabilistic in nature, it can be performed blindly or non-blindly, it can

be performed publicly (by anyone) or privately (by the owner only).

• Intent of Marking: Different watermarking schemes are designed to serve dif-

ferent purposes, namely, integrity and tamper detection, localization, ownership

proof, traitor detection etc.

85

4. PERSISTENT WATERMARKING OF RELATIONAL DATABASES

4.1.5 Watermarking Techniques

In this Section, we try to cover the details of various watermarking techniques pro-

posed so far. We categorize the proposed techniques based on (i) whether marking

introduces any distortion, (ii) the type of the underlying data (cover) in which water-

mark information is embedded, and (iii) the type of the watermark information to be

embedded.

Based on whether the marking introduces any changes in the underlying data of the

database, the watermarking techniques can be categorized into two: Distortion-based

and Distortion-free.

(1) Distortion-based Watermarking

The watermarking techniques in this category introduce small changes in the underly-

ing data of the database during the embedding phase. The degree of changes should

be such that any changes made in the data are tolerable and should not make the data

useless. The watermarking can be performed at bit level, or character level, or higher

such as attribute or tuple level, over the attribute values of types numeric, string,

categorical, or any.

(a) Watermarking Based on Numerical Data Type Attribute:

Different types of information are embedded into the numeric data type attributes of

the database as watermark information. Below we categorize the existing schemes

based on the watermark information they are embedding into the numeric data type

attributes of the database.

Arbitrary meaningless bit pattern as watermark information. The watermarking

schemes proposed by Agrawal et al. (4, 5, 6) (also known as AHK algorithm) is based

on numeric data type attribute and marking is done at bit-level. The basic idea of

these schemes is to ensure that some bit positions for some of the attributes of some

of the tuples in the relation contain specific values. This bit pattern constitutes the

watermark. The tuples, attributes within a tuple, bit positions in an attribute, and

specific bit values at those positions are algorithmically determined under the control

of the private parameters γ, ν, ξ and K known only to the owner of the relation. The

86

4.1 Literature Survey

parameters γ, ν, ξ and K represent number of tuples to mark, number of attributes

available to mark, number of least significant bits available for marking in an attribute,

and secret key respectively. In (6), the cryptographic MAC function H(K||H(K||r.P))

where r.P is the primary key of the tuple r and || represents concatenation operation, is

used to determine the candidate bit positions. The HASH function H(K||r.P) is used to

determine the bit values to be embedded at those positions. The choice of MAC and

HASH is due to the one-way functional characteristics and less collision probability. In

(4, 5), the authors used pseudorandom sequence generator (e.g., Linear Feedback Shift

Register (89, 90)) instead of HASH and MAC to identify the marking bits and mark

positions. The security and robustness of this scheme relies on these parameters which

are completely private to the owner. The watermark detection algorithm is blind and

probabilistic in nature. A relation is considered as pirated if the matching pattern is

present in at least τ tuples, where τ depends on the actual number of tuples marked

and a preselected value α, called the significance level of the test. Observe that the

success of watermark detection phase depends on the fixed order of attributes. Re-sort

of attributes’ order may yield to the detection phase almost infeasible. Although the

main assumption of this scheme is that the relation has primary key whose value does

not change, they suggested an alternative to treat a relation without primary key. Li

et al. (134) also suggested three different schemes to obtain virtual primary key for a

relation without primary key.

Lafaye (126) described the security properties for the AHK algorithm by analyz-

ing the security and robustness in two situations: (i) Multiple Keys Single Database

(MKSD): When a single database is watermarked several times using different secret

keys and sold to different users, and (ii) Single Key Multiple Databases (SKMD): When

several different databases are watermarked using a single secret key. An attempt of

random attack on a watermarked content obtained by the AHK algorithm, may be

successful when randomize the ξth least significant bits of all tuples of the relation.

However, this attack is highly invasive since most values of the relation are impacted

by the attack. The locations guessed based on MKSD and SKMD can be used to build

a better focussed attack.

Qin et al. (164) suggested an improvement over the Agrawal and Kiernan’s scheme

(6). Instead of using hash function, they use chaotic random series based on the Logistic

chaos equation which has two properties: the non-repetitive iterative operation and

87

4. PERSISTENT WATERMARKING OF RELATIONAL DATABASES

the sensitiveness to initial value. It avoids the inherent weakness of collision of Hash

function. The selection of bits of LSB for embedding watermark meets the requirements

of both data range and data precision of each attribute, rather than simply to use a

same ξ for all attributes. So the error caused by watermark is decreased significantly,

hardly affects the availability of the database.

Among the most recent works, Gupta et al. (74) proposed a reversible water-

marking scheme which is the modified version of Agrawal and Kiernan’s one (6). In

this scheme, during the detection phase, the original unwatermarked version of the

database can be recovered along with the ownership proof. The operation involved

in the embedding phase extracts a bit OldBit from the integer portion of the attribute

value before replacing it by the watermark bit and inserts it in the fraction portion of

the attribute value. Thus, the watermark bit can be recovered during detection and

the attribute can be restored to its unmarked value by replacing the watermark bit

with the original bit OldBit extracted from the fraction part. They also proposed an

another algorithm to defeat any attempt of additive or secondary attack which relies on

the obvious fact that the database relation must be watermarked by the actual owner

before Mallory.

The watermarking method in (197) embeds random digits (between 0 to 9) at LSB

positions of the candidate attributes for some algorithmically chosen tuples. During

the embedding phase, the tuples are securely partitioned into groups using the crypto-

graphic hash function and only the first m (which is equal to the length of the owner’s

watermark) groups are considered. The decision whether to mark ith (1 ≤ i ≤ m) group

depends on the ith bit of the owner’s watermark, whereas the selection of the tuples

in a group is based on a secret key (which is different from that used during parti-

tioning) as well as the information at second LSB positions of the numeric candidate

attributes. Finally, random numbers (between 0 and 9) are embedded at LSB positions

in the attribute values of the selected tuples. Observe that although the owner has

a watermark of length m, it is not actually embedded. Rather, it is used to identify

some valid groups to embed the random values which acts as embedded watermark

information. The detection phase determines the presence of mark in a group if the

maximum occurrence frequency for a value between 0 and 9 for that group exceeds a

threshold.

88

4.1 Literature Survey

Image as watermark information. Wang et al. (190) described an image-based wa-

termarking scheme where instead of embedding original image as watermark, an

scrambled image based on Arnold transform with scrambling number d is used. Since

Arnold transform of an image has the periodicity P, the result which is obtained in

the extraction phase can be recovered from the scrambled form to the original after

(P− d) iterations. In the embedding phase, the original image of size N×N is first con-

verted into scrambled image which is then represented by a binary string bs of length

L = N × N. Secondly, all tuples in the relation are grouped into L groups. The hash

value which is computed using tuple’s primary key, secret key and order of the image,

determines the group in which each tuple belongs. Finally, the ith bit of bs is embedded

into the algorithmically chosen bit position of the attribute value for those tuples in ith

group that satisfy a particular criterion. The detection phase follows majority voting

technique. However, the security of this scheme improves as it relies not only on the

secret key but also the scrambling number d and the order of the image N.

Rather than embedding scrambled image, the watermarking technique in (100)

embeds the original image by first converting it into a bit flow (EMC, Encrypted Mark

Code) of certain length, and then by following similar algorithmic steps as in (190). The

only two differences are that (i) the watermark insertion technique in (190) assumes

single fixed attribute to mark for all tuples whereas (100) does not, and (ii) during

selection of bit positions, the order of the image is not considered in (100). Finally,

after marking, (100) checks the usability of the data with respect to the intended use.

If acceptable, the change is committed, otherwise rolled back.

Another watermarking scheme to embed image in BMP format is presented in

(203). In watermark insertion phase, the BMP image is divided into two parts: header

and image data. An error correction approach of BCH (Bose-Chaudhuri-Hocquenhem)

coding is used to encode the image data part into watermark. Based on the tuple’s

ID value which is computed by performing hashing function parameterized with

tuple’s primary key and BMP header, all the tuples are assigned to k distinct subsets,

where k is the length of the watermark. Finally, each of the k bits of the watermark

is used to mark each of the k subsets of tuples. During the marking, the selected

least significant bit positions of selected attributes of some specific tuples satisfying

a particular criterion are altered. The selection of bit positions depends on HASH

or MAC function parameterized with BMP header, tuple’s primary key and other

89

4. PERSISTENT WATERMARKING OF RELATIONAL DATABASES

parameters like number of least significant bits in the attribute value. Observe that

the selected bit positions are not set to the watermark bits directly, but rather, are set

to mask bits which are computed from both the hash value and the watermark bit

together.

The image-based fragile watermarking scheme in (186) aims at maintaining in-

tegrity of the database and uses support vector regression (SVR) to train high corre-

lation attributes to generate the SVR predicting function for embedding watermark

into particular numeric attributes. This scheme consists of three phases: (i) Training

Phase: select training tuples and obtain trained SVR predicting function; (ii) Embed-

ding Phase: all tuples in the relation are used to embed image watermark where the

number of watermark bits is designed to be equal to the number of tuples. Each nu-

meric attribute value Ci of ith tuple ti is predicted using the SVR prediction function

f resulting C̄i = f (ti). Based on the ith watermark bit bi (obtained after converting the

image into bit flow), the value of Ci is modified by C̄i +1 or C̄i−1; (iii) Tamper Detection:

the trained SVR predicting function is used to generate the predicted value for each

tuple and compared with the value contained in the database. The difference of these

two values determines the watermark information and can ensure whether database

is tampered or not. However, the limitation of this scheme is that it can identify the

modification which takes place in the objective attribute set only. This scheme works

good in the case where the tuples in the table are independent but highly correlated

between the attributes.

Speech as watermark information. Wang et al. (191) proposed the use the owner’s

speech to generate unique watermark. The preparation of watermark from the speech

consists of several stages: compression of speech signal to shorten the watermark,

speech signal enhancement to remove noise in frequency domain, speech signal con-

version into bit stream, and finally, watermark generation by using the copyright

message of the holder and the result of the converted speech signal. The bit-level

marking is performed during watermark embedding phase by following the same

algorithmic steps as in image-based technique of (100).

Genetic Algorithm based watermark signal. The authors in (144) proposed a Genetic

Algorithm-based technique to generate watermark signal, focusing on the optimization

90

4.1 Literature Survey

issue. They follow the same algorithmic framework as of (100).

Content characteristics as watermark information. The watermarking schemes in

(73, 202) are performed based on the content of the database itself.

In (73), the authors proposed a fragile watermarking scheme that can verify the

integrity of database relation. In the proposed scheme, all tuples in a database relation

are first securely divided into groups and sorted. In each group, there are two kinds of

watermarks to be embedded: attribute watermark W1 which consists of γwatermarks

of length ν and tuple watermark W2 which consists of ν watermarks of length γ,

where γ and ν are the number of attributes in a tuple and average number of tuples

in each group respectively. W1 and W2 are created by extracting bit sequence from the

hash value. For attribute watermark W1, the hash value is generated according to the

message authentication code and the same attribute of all tuples in the same group,

while for tuple watermark W2, it is formed from the same message authentication

code and all attributes of the same tuple. Observe that, in both the embedding and

detection phases, they ignore the least two significant bits of all attributes of numeric

type except the primary key when computing hash values. The attribute watermark

is embedded in LSB level, whereas tuple watermark is embedded at next to the LSB

level. In this way, the embedded watermarks actually form a watermark grid, which

helps to detect, localize and characterize modifications.

In (202), the watermark insertion phase extracts some bits, called local character-

istic, from the characteristic attribute A1 of tuple t and embeds those bits into the

watermark attribute A2 of the same tuple. The selection of tuples depends on whether

the generated random value (between 0 and 1) is less than the embedded proportion

α of the relational databases and the non-NULL requirement of characteristic attribute

value. In the watermark detection phase, by following similar procedure, the local

characteristic of the characteristic attribute are extracted and compared against the last

bits of watermark attribute.

Cloud model as watermark information. The cloud watermarking scheme in (201)

is based on the Cloud Model with three digital characteristics: Expected value (Ex),

Entropy (En) and Hyper Entropy (He). In watermark creation phase, it uses the forward

cloud generation algorithm to generate cloud drops from cloud and embed those

91

4. PERSISTENT WATERMARKING OF RELATIONAL DATABASES

cloud drops into the relation as watermark. The detection algorithm uses backward

cloud generation algorithm to extract the cloud with parameters Ex, En and He from

the embedded cloud drops, and finally, a similar cloud algorithm is used to verify

whether both clouds (one used during watermark embedding and other extracted

during watermark verification phase) are similar or not. This scheme is not blind as it

requires original relational database during verification phase.

Other meaningful watermark information. The watermarking scheme in (102) em-

beds a meaningful watermark information by first converting it into a bit flow. The

scheme computes unique ID for all tuples in the relation and sort them in ascending

order according to their ID values. The tuples are then partitioned into p groups each

containing m tuples. The ith bit of the bit flow is embedded into the selected tuples in ith

group by following same selection criterion as in AHK algorithm with exception that

it considers only single attribute to mark. Before committing the change, a constraint

function is used to check whether the change exceeds the data usability bounds. The

constraint function includes the basic data statistical measurement constraints, seman-

tics constraints and structural constraints. Mean and standard deviation of the data set

are very common aspects in basic data statistical measurement constraints. Semantics

constraints and structural constraints are defined by user’s input as SQL statements

according to relational table. If during embedding phase, any tuple is selected but

rolled back, it is recorded and avoided during extraction phase to reduce false posi-

tive. Watermark extraction phase is blind, probabilistic and follows the majority voting

technique.

The partitioning of tuples in most of the techniques is based on hashing. Huang et

al. (101), instead, proposed the use of well-known techniques (e.g. k-means algorithm)

to cluster the tuples into some equivalent classes. The embedding of the watermark

bit is based on the comparison of the parity of watermark bit and the LSB of candi-

date attribute. The k-means method assures the location of the embedded watermark

irregular.

The watermark insertion phase in (99) works in three phases: (i) select a group

of candidates in all attributes of the relation, and record it as the watermark schema;

(ii) append the error correction code (ECC Code) to the watermark; (iii) executes the

92

4.1 Literature Survey

watermark insertion algorithm. The insertion algorithm creates a pseudo random se-

quence using primary key and secret key. This sequence is used to identify the attribute

to mark based on the significance of the attributes and the watermark bit to be em-

bedded. During marking, the local constraint and a bidirectional mapping (to reduce

watermarking data of various types into numeric data) are used. The local constraints

can be defined as the upper bounds of “the distance” of attributes after/before water-

marking. Finally global constraints which is a series of SQL statements are evaluated

to decide whether to commit the changes. Observe that watermark schema selection

in embedding phase and watermark schema detection in verification phase exploit the

non-blindness property.

The schemes in (50, 51, 72) adopt watermarking scheme which follows same algo-

rithmic steps as of (100) but embeds other meaningful watermark information rather

than image by first converting it into a bit flow of certain length. In (50), the selection of

the candidate attribute is based on the weights of all numeric attributes with a different

hashing function. Observe that in watermark insertion phase of (72) the mark position

is determined using the mark bit itself.

(b) Watermarking Based on Categorical Data Type Attribute:

Unlike the aforementioned watermarking schemes where the marking is based on

numeric attribute, the right protection scheme in (178, 179) proposed by Sion et al.

is based on categorical type data. The watermark embedding process starts with a

relation with at least a categorical type attribute A (to be watermarked), a watermark

wm and a set of secret keys (k1, k2), and other parameters (e.g., e which determines the

percentage of tuples to mark). Using the primary key K and secret key k1 and parameter

e, it discovers a set of “fit” tuples, used to encode the mark. The fit tuple selection

process is same as AHK algorithm. Suppose the database relation has η tuples, then

fit tuples set contains roughly η/e tuples. The shorter watermark wm is converted

into wm data of length equal to η/e by deploying Error Correcting Code (ECC). The

marking algorithm generates a secret value of required number of bits to represents all

possible categorical values for attribute A depending on the primary key and k1, and

then, forcing its least significant bit to a value according to a corresponding (random,

depending on the primary key and k2) position in wm data data. The pseudorandom

nature of hash function H(Ti(K), k2)) guarantees, on average, that a large majority of

93

4. PERSISTENT WATERMARKING OF RELATIONAL DATABASES

the bits in wm data data are going to be embedded at least once. The use of different

key k1 and k2 ensures that there is no correlation between the selected tuples for

embedding (selected by k1) and the corresponding bit value positions in wm data

(selected by k2). Moreover, they suggested to perform embedding based on multiple

categorical attributes by considering not only the association between the primary

key and single categorical attribute A but all association between primary key and

categorical attributes to increase robustness of the scheme. Although this scheme

is claimed to be robust against serious attacks (e.g. random attacks), however, the

scheme is not suitable for database relations that need frequent updates, since it is

very expensive to re-watermark the updated database relations. Though only a small

part of selected tuples are affected by watermark embedding, the modifications of

categorical attributes (e.g. change from “red” to “blue”) in certain applications may

be too significant to be acceptable. This watermarking technique is applied to binned

medical data in a hierarchical manner (17).

(c) Watermarking Based on Non-Numeric Multi-Word Attributes:

Ali and Ashraf (8) proposed a watermarking scheme which is based on hiding binary

image in spaces of non-numeric multi-word attributes of subsets of tuples, instead of

numeric attribute at bit-level. The watermark is divided into m string each containing

n bits. On the other hand, the database is also divided into non-intersecting subsets

each containing m tuples. The m short strings of the watermark image are embedded

into each m-tuple subset. The embedding is done as follows: suppose the integer

representation of the ith, i ∈ [1 . . .m], short string is di. A double space is created after di

words of the pre-selected nonnumeric, multi-word attribute of ith tuple in the subset.

The extraction phase counts the number single spaces appearing before double space

which indicates the decimal equivalent of the embedded short binary string. Since

the proposed algorithm embeds the same watermark for all non-intersecting subsets

of the database, it is robust against subset deletion, subset addition, subset alteration

and subset selection attacks. Another advantage for space-based watermarking is

that large bit-capacity available for hiding the watermark which may also facilitate

embedding of multiple small watermarks. However, it may suffer from watermark

removal attack if Mallory replaces all double spaces between two words (if exist) by

single space for all tuples in the relation.

94

4.1 Literature Survey

(d) Watermarking Based on Tuple or Attribute Insertion:

All the techniques discussed so far introduce distortion at attribute level. We now

discuss two techniques where distortion is introduced at table level by inserting some

fake tuples or additional attributes as watermarks.

Fake tuples as watermark information. The approach in (162) aims to generate fake

tuples and insert them erroneously into the database. The fake tuple creation algorithm

take care of candidate key attributes and sensitivity level of non candidate attributes.

He uses Bernoulli sampling probability pi for the ith non-candidate attribute Ai to decide

its fake value which may be chosen uniformly or as the value with higher occurrence

frequency in the existing set of values of Ai in the relation. Unlike other algorithms, the

detection algorithm is not an inverse algorithm to the watermark generating algorithm

and insertion algorithm is probabilistic in nature. Detection algorithm checks to see

whether the fake tuples inserted during watermark insertion phase, exist or has been

changed. It checks it via primary key. As soon as it finds one match (i.e. identical or

similar tuples), detection is done. The detection will fail for the watermarked database

when all of the fake tuples are deleted by benign deletions. The number of fake tuples

to be inserted is decided by the database owner. However, the watermark insertion

phase must take into account the fact that the values of the fake tuples marks should

not by any means degrade the quality of the data in the database and should not impact

the query results. One advantage of this scheme is that the ownership can be publicly

verified more than once until all the fake tuples are revealed and the scheme does not

suffer from incremental updatability.

Virtual attribute as watermark information. Rather than inserting fake tuples, the

author in (163) proposed another watermarking technique by inserting a virtual at-

tribute in the relation which will serve as watermark containing parity checksum of all

other attributes and an aggregate value obtained from any one of the numeric attribute

of all tuples. The process of virtual attribute insertion is performed independently for

each non-overlapping partitions obtained from the original relation. This scheme is

designed to authenticate the tamper-proof receipt of the database over an insecure

communication channel. Although this approach is fragile and can easily detect any

95

4. PERSISTENT WATERMARKING OF RELATIONAL DATABASES

of the deletion or insertion or alter attacks, it suffers from the watermark removal

attack.

(2) Distortion-free Watermarking

Most of the distortion free watermarking techniques are fragile in the sense that in

addition to the ownership claiming, they aim at maintaining the integrity of the in-

formation in the database. The watermark insertion phase does not depend on any

specific type of attribute and does not introduce any distortion in the underlying data

of the database.

(a) Extracting Hash Value as Watermark Information:

In order to achieve the purpose of fragile watermark, authors in (19, 133) proposed

watermarking schemes which are able to detect any modifications made to a database

relation. These schemes are designed for categorical data that cannot tolerate distor-

tion, hence, the watermark embedding is distortion free. In (133), partitioning of tuples

is based on the hash value parameterized with primary key and secret key, whereas in

(19), partitioning is based on categorical attribute values. After partitioning, the tuple

level and group level hash values for each group are computed. In (133), a watermark

of length equal to the number of tuple pairs in the group, is extracted from the group

level hash value and for each tuple pair, the order of the two tuples are changed or

unchanged according to their tuple hash values and the corresponding watermark

bit. Moreover, Li (131) suggests to perform the exchange of tuples’ positions based on

Myrvold and Ruskeys linear permutation unranking algorithm to increase the embed-

ding capacity. In these schemes, any modification of an attribute value will affect the

watermarks in two groups as the modified tuple may be removed from one group and

be added to the other group.

(b) Combining Owner’s Mark and Database Features as Watermark Information:

The scheme proposed by Tsai et al. (187) aims at maintaining the integrity of the

information in the database and is based on public authentication mechanism. The

idea behind this scheme is that, first an watermark W is created which is a
√

n ×
√

n

white image, where n is the no. of tuples in the relation, besides four corners having

96

4.1 Literature Survey

mark of the owner. It creates a value Ci (0 ≤ Ci ≤ 255) for each tuple ti in the database

using hash function MD5 and XOR operation. If there are n tuples in the database, it

produces a feature C of length n by combining all Ci in order. Finally, a certification

code R is produced by XOR-ing C and W. The encrypted form of R using private key is

made available publicly. During verification the integrity of the relation T′, in similar

way, it generates feature C′ from T′. After decryption using public key the certification

code R is XOR-ed with C′ that yield the watermark W′. The integrity of this extracted

watermark proves the integrity of the database.

(c) Converting Database Relation into Binary Form used as Watermark Information:

The public watermarking scheme by Li and Deng (132) is applicable for marking

any type of data including integer numeric, real numeric, character, and Boolean,

without fear of any error constraints. The interesting features of this scheme is that it

does not use any secret key and can be verified publicly as many times as necessary.

The unique watermark key, used in both creation and verification phase, is public

and obtained by one-way hashing from various information like the Identity of the

owner(s) and characteristics of the database (e.g.DB Name, Version etc.). Observe that

the public watermark key is different from the public-private key pair of asymmetric

cryptography. This watermark key is used to generate a watermark W from the relation

R. The watermark W is a database relation whose schema is W(P,W0, ...,Wγ−1), where

W0, . . . ,Wγ−1 ∈ {0, 1}. Compared to database relation R, the watermark W has the same

number η of tuples and the same primary key attribute P . The number γ of binary

attributes in W is a control parameter that determines the number ω of bits in W ,

where ω = η × γ and γ < number o f attributes in R. In the algorithm, a cryptographic

pseudorandom sequence generator (e.g., Linear Feedback Shift Register (89, 90)) to

randomize the order of the attributes and the MSBs of the attribute values are used

for generating the watermark W. The use of MSBs is for thwarting potential attacks

that modify the data. Since the watermark key K, the watermark W, and the algorithm

are publicly known, anyone can locate those MSBs. Any modification to these MSBs

introduces intolerable errors to the underlying data and can easily be captured during

verification phase. However, alteration of other bits in the data can not be detected by

this scheme.

97

4. PERSISTENT WATERMARKING OF RELATIONAL DATABASES

The watermarking techniques in (20, 21) follow the same algorithmic steps as of

(132). The basic difference is that the former considers a private key instead of public,

and thus, can not be publicly verifiable. In addition, the former is partition-based

and considers the extracted binary watermark as an image which is used to prove the

ownership. This image is treated as the abstract counterpart of the concrete relation

R, and the abstraction is sound in the sense that concretization of the abstract image

must cover R. However, the disadvantage of this scheme is that the extracted image

may not have any meaningful pattern. As the alteration of other bits except MSB can

not be captured during the detection phase, the soundness conditions holds for only

those alteration functions that modify MSB. Therefore, the scheme fails to detect any

tamper made to the bits except MSB.

(d) R-tree Based Permutation as Watermark:

In contrast to the traditional watermarking schemes, an R-tree data structure-based

watermarking technique has been proposed in (113). The proposed technique takes

advantage of the fact that R-trees do not put conditions on the order of entries inside

the node. In the proposed scheme, entries inside R-tree nodes are rearranged, relative

to a secret initial order (a secret key), in a way that corresponds to the value of the

watermark. To achieve that, they proposed a one-to-one mapping between all possible

permutations of entries in the R-tree node and all possible values of the watermark.

Without loss of generality, watermarks are assumed to be numeric values. The pro-

posed mapping employs a numbering system that uses variable base with factorial

value. The detection rate of the malicious attacks depends on the nature of the attack,

distribution of the data, and the size of the R-tree node. The proposed watermarking

technique has the following desirable features: (i) It does not change the values of the

data in the R-tree node but rather hides the watermark in the relative order of entries

inside the R-tree node; (ii) It does not increase the size of the R-tree; (iii) The proposed

technique does not interfere with R-tree operations; (iv) The performance overhead is

minimal; (v) The integrity check does not require the knowledge of unwatermarked

data (blind watermark).

98

4.1 Literature Survey

4.1.6 Fingerprinting Techniques

The fingerprinting techniques proposed in the literature are based on numerical data

type attributes.

Li et al. (134, 135) proposed an extension of agrawal and Kiernan’s scheme (6) to

embed fingerprint into the database. The basic difference is that instead of embedding

meaningless bit pattern, they embed meaningful fingerprint where the fingerprint of

length L (where L > logN, N=number of buyers) is computed from cryptographic hash

function whose input is the concatenation of a secret key K (known by the merchant

only) and user identifier n. The index of the fingerprint bit to be embedded is computed

using hash function which is different from the hash used to select the bit positions, to

ensure that the fingerprint bits are not correlated with the locations in which they are

embedded. However, since the method is applicable for the relations with primary

key only, (134) mentioned three different approaches to perform fingerprinting for a

relation which has no primary key: (i) S-Scheme: the bits other than the least significant

bits available for marking in the single numeric attribute of each selected tuples are

considered as virtual primary key. But it suffers from both duplicate and deletion

problem; (ii) E-Scheme: all numeric attributes of each selected tuples are examined

independently by computing a virtual primary key from the attribute values. However,

E-Scheme suffers from duplicate problem; (iii) M-Scheme: dynamically selects the bit

positions used to construct a virtual primary key.

Liu et al. (137) proposed a block oriented finger printing scheme. For each buyer,

the fingerprint is obtained using hash function based on the private key and buyer’s

ID. By combining the least significant bits of the table attributes, a two dimensional

image is obtained and is divided into sub-images. Using Pseudo-random generator a

bit is chosen in each sub-image and is XOR-ed with a fingerprint bit.

In (71), the authors proposed two level fingerprinting scheme to identify both the

owner and the traitor. In the first embedding process, it embeds a unique fingerprint

to identify each recipient to whom the relational data is distributed. In doing so, first

the tuples are partitioned into m group, where m is the number of bits in the binary

representation of the fingerprint. Next, the ith fingerprint bit is embedded to the can-

didate bit position for selected tuples in the ith group. The second embedding process

is designed for verifying the extracted fingerprint and giving a numerical confidence

99

4. PERSISTENT WATERMARKING OF RELATIONAL DATABASES

level. It uses the fingerprint itself as a secret key. The selected positions will be set to

“1” or “0” depending on whether the hash value (seeded with secret key concatenating

with Primary Key) is odd or even. To avoid conflict between the two embedding, only

tuples not selected in the first embedding process are allowed to be marked in the

second. The fingerprint extracting algorithm is the converse process to this first em-

bedding process. It extracts a bit of the fingerprint from each group, and a numerical

confidence level of each bit could be calculated. The bits those do not meet the pre-set

confidence level are unreliable but could be localized. These bits could either be “1” or

“0”. Thus, a candidate set of suspect fingerprints can be obtained. In the fingerprint

verification algorithm, they used each suspect fingerprint as the secret key to detect

the pattern embedded in the second embedding process. Once the pattern is detected,

the fingerprint is proved to be the exact originally embedded fingerprint at a high

numerical confidence level.

4.1.7 Comparison

The classification and comparison of different schemes are depicted in Table 4.1 and 4.2.

Table 4.1 depicts distortion-based watermarking and fingerprinting schemes, whereas

distortion-free watermarking schemes are listed in Table 4.2. As the watermark de-

tection phase for most of the schemes is probabilistic in nature, we explicitly mention

when the detection phase is deterministic.

4.1.8 Probabilistic Issues

Consider n Bernoulli trials of an event, with probability p of success and q = 1 − p of

failure in any trial. Let b(k; n, p) be the probability of obtaining exactly k successes out

of n Bernoulli trials. Then,

b(k; n, p) =

(
n
k

)
pkqn−k

(
n
k

)
=

n!
k!(n − k)!

0 ≤ k ≤ n

Let B(k; n, p) =
∑n

i=k+1 b(i; n, p) which is the probability that more than k successes take

place in n Bernoulli trials. Consider the robust watermarking scheme AHK algorithm

100

4.1 Literature Survey

Ta
bl

e
4.

1:
C

om
pa

ri
so

n
of

D
is

to
rt

io
n-

ba
se

d
W

at
er

m
ar

ki
ng

an
d

Fi
ng

er
pr

in
ti

ng
Sc

he
m

es

Pr
op

os
ed

Sc
he

m
es

W
at

er
m

ar
k

In
fo

rm
at

io
n

C
ov

er
Ty

pe
G

ra
nu

la
ri

ty
Le

ve
l

V
er

ifi
ab

il
it

y
In

te
nt

A
H

K
al

go
ri

th
m

s
(4

,5
,6

)
M

ea
ni

ng
le

ss
Bi

tP
at

te
rn

N
um

er
ic

Bi
t-

le
ve

l
Bl

in
d,

Pr
iv

at
e

O
w

ne
rs

hi
p

Pr
oo

f

G
up

ta
et

al
.(

74
)

M
ea

ni
ng

le
ss

Bi
tP

at
te

rn
N

um
er

ic
M

ul
ti

-B
it

le
ve

l
Bl

in
d,

R
ev

er
si

bl
e,

Pr
iv

at
e

O
w

ne
rs

hi
p

Pr
oo

f

Im
ag

e-
ba

se
d

(8
,1

86
,1

90
,2

03
)

Im
ag

e

N
um

er
ic

or
N

on
-N

um
er

ic
M

ul
ti

-W
or

d

Bi
t-

le
ve

lo
r

W
ho

le
A

tt
ri

bu
te

V
al

ue
or

C
ha

ra
ct

er
-l

ev
el

Bl
in

d,
Pr

iv
at

e
O

w
ne

rs
hi

p
Pr

oo
fa

nd
/o

r
Ta

m
pe

r
D

et
ec

ti
on

Sp
ee

ch
-b

as
ed

(1
91

)
O

w
ne

r’
s

Sp
ee

ch
N

um
er

ic
Bi

t-
le

ve
l

Bl
in

d,
Pr

iv
at

e
O

w
ne

rs
hi

p
Pr

oo
f

C
on

te
nt

-b
as

ed
(7

3,
20

2)
D

at
ab

as
e

C
on

te
nt

N
um

er
ic

M
ul

ti
-B

it
le

ve
l

Bl
in

d,
Pr

iv
at

e
O

w
ne

rs
hi

p
Pr

oo
fa

nd
/o

r
Ta

m
pe

r
D

et
ec

ti
on

an
d

Lo
ca

liz
at

io
n

C
lo

ud
M

od
el

-b
as

ed
(2

01
)

C
lo

ud
m

od
el

w
it

h
th

re
e

ch
ar

ac
te

ri
st

ic
s:

Ex
pe

ct
ed

va
lu

e,
En

tr
op

y
an

d
H

yp
er

En
tr

op
y

N
um

er
ic

W
ho

le
A

tt
ri

bu
te

V
al

ue
N

on
-B

lin
d,

Pr
iv

at
e

O
w

ne
rs

hi
p

Pr
oo

f

C
at

eg
or

ic
al

A
tt

ri
bu

te
-b

as
ed

M
ea

ni
ng

fu
lB

in
ar

y
St

ri
ng

C
at

eg
or

ic
al

Bi
t-

le
ve

l
Bl

in
d,

Pr
iv

at
e

O
w

ne
rs

hi
p

Pr
oo

f
(1

78
,1

79
)

Fa
ke

Tu
pl

e-
ba

se
d

(1
62

)
Fa

ke
In

fo
rm

at
io

n
ob

ta
in

ed
fr

om
da

ta
ba

se
co

nt
en

t
D

at
ab

as
e

Ta
bl

e
Tu

pl
e-

le
ve

l
Bl

in
d,

Pr
iv

at
e

O
w

ne
rs

hi
p

Pr
oo

f

V
ir

tu
al

A
tt

ri
bu

te
-b

as
ed

(1
63

)
D

at
ab

as
e

co
nt

en
t

D
at

ab
as

e
Ta

bl
e

A
tt

ri
bu

te
-l

ev
el

Bl
in

d,
D

et
er

m
in

is
ti

c,
Pr

iv
at

e
Ta

m
pe

r
D

et
ec

ti
on

O
th

er
s

(7
2,

99
,1

02
)

M
ea

ni
ng

fu
lI

nf
or

m
at

io
n

of
an

y
ty

pe
N

um
er

ic
Bi

t-
le

ve
l

Bl
in

d
or

N
on

-B
lin

d,
Pr

iv
at

e
O

w
ne

rs
hi

p
Pr

oo
f

Fi
ng

er
pr

in
ti

ng
Te

ch
ni

qu
es

M
ea

ni
ng

fu
lF

in
ge

rp
ri

nt
Id

en
ti

fy
in

g
Bu

ye
rs

un
iq

ue
ly

N
um

er
ic

Bi
t-

le
ve

l
Bl

in
d,

Pr
iv

at
e

Tr
ai

to
r

D
et

ec
ti

on
(7

1,
13

4,
13

5,
13

7)

101

4. PERSISTENT WATERMARKING OF RELATIONAL DATABASES

Table
4.2:C

om
parison

ofD
istortion-free

W
aterm

arking
Schem

es

Proposed
Schem

es
W

aterm
ark

Inform
ation

C
over

Type
G

ranularity
Level

V
erifiability

Intent

Perm
utation-based

(19,133)
A

Partof
G

roup-levelH
ash

V
alue

Tuples’Positions
Tuple-level

Blind,Private
Tam

per
D

etection

C
haracteristic-based

(187)
W

hite
Im

age
w

ith
O

w
ner’s

M
ark

at
Four

C
orners

N
il

N
il

Blind,Public
Tam

per
D

etection

Binary
Form

R
elation

(20,21,132)
R

elation
in

Binary
form

N
il

N
il

Blind,Public
or

Private
O

w
nership

Proof

R
tree-based

Schem
e

(113)
N

um
eric

V
alue

Identifying
O

w
ner

O
rder

ofEntries
in

R
-tree

N
odes

R
-tree

N
odes

Blind,Private
Tam

per
D

etection

102

4.1 Literature Survey

(5, 6). In AHK algorithm, a watermark is successfully detected if number of match is

more than the threshold τ which is just a percentage of the total number of embedded

bits. Suppose ω is the total number of embedded bits. If the detection algorithm

scans ω number of bits and observes the number of bits whose values match those

assigned by the marking algorithm, the probability that at least τ out of ω random

bits matches the assigned value is B(τ;ω, 0.5). Thus, Alice should choose τ such that

B(τ;ω, 0.5) < α where α is the false hit i.e. probability that Alice will discover her

watermark in a database relation not marked by her. By choosing lower values of α,

Alice can increase her confidence that if the detection algorithm finds her watermark

in a suspected relation, it probably is a pirated copy. Suppose, Mallory knows the

private parameters ν and ξ used by AHK algorithm. Since Mallory does not know the

exact marked positions, he randomly chooses ζ tuples out of η tuples and flips all of

the bits in all of ξ bit positions in all of ν attributes. The attack would be successful,

if he flips at least τ̄ = ω − τ + 1 marks. The probability that this attack will succeed is

represented as
∑ω
τ̄

(ωi)(
η−ω
ζ−i)

(ηζ)
.

Consider now the categorical attribute based schemes in (179). Suppose an attacker

randomly alters q number of tuples and succeeds in each case to flip the embedded

watermark bit with a success rate p, then the probability of success of altering at least

r (r < q) watermark bits in the result is:

P(r, q) =

q∑
i=r

(
q
i

)
× pq
× (1 − p)(q−i)

This metric illustrates the relationship between attack vulnerability and embedding

bandwidth. Since only e tuple (on average) is watermarked, thus, Mallory effectively

attacks only an average of a q/e tuples actually watermarked. If r > q/e, then P(r, q) = 0.

For r < q/e, we have

P(r, q) =

q/e∑
i=r

(
q/e

i

)
× pq/e

× (1 − p)(q/e−i)

Now consider a fragile watermarking scheme (133). Assume that each group

consists of exactly ν tuples; thus, the length of each embedded watermark W is ν/2.

Let the jth attribute of the ith tuple is modified. This modification will affect the tuple

hash value, group hash value and thus yield to watermark W′. The probability that this

103

4. PERSISTENT WATERMARKING OF RELATIONAL DATABASES

modification can be detected i.e.W ,W′ is, thus, P = 1− 1
2ν/2 . If the value of the primary

key has been modified. The probability that the tuple will be in the same partition is

1/g and probability of shifting to another group is 1− 1/g. Shifting of a tuple between

groups affect the hash value of both groups. The probability that the modification can

be correctly detected is P = 1
g (1− 1

2ν/2)+ g−1
g (1− 1

2(ν−1)/2)(1− 1
2(ν+1)/2). Clearly, the probability

in this case is less than that in the case of modifying non-primary key value.

Observe that most of the distortion-based watermarking techniques mainly aim

at protecting the ownership, whereas distortion-free watermarking techniques mostly

are fragile and aim at maintaining integrity of the database information. Although we

classify the schemes based on different watermark information, most of the numerical

distortion-based schemes follow almost similar steps to identify the candidate bit

positions for the watermark. Finally, we observe that the usability of the watermarked

database and queries still remains an open issue for future research.

4.2 Proposed Persistent Public/Private Watermarking Schemes

In our proposal, we address the notion of persistent watermarking of relational

databases that serves as a way to recognize the integrity and ownership proof of

the database while allowing the evaluation of its content by a set of SQL statements

Q associated with it. We propose a novel fragile and robust persistent watermarking

scheme that embeds both private and public watermarks where the former allows the

owner to prove his ownership, while the latter allows any end-user to verify the

correctness and originality of the data in the database without loss of strength and

security. The persistency of the watermarks is preserved by exploiting the invariants

of the database content: the public watermark is based on a part of the database state

which remains invariant under processing by the SQL statements associated with the

database, whereas private watermarking is based on an appropriate form of the origi-

nal database state, called abstract database, and the semantics-based properties of the data

which remain invariant under the processing by the associated SQL operations.

Before describing our proposal, let us define some basic notions.

104

4.2 Proposed Scheme

(1) Persistent Watermark. Given a database dB and the set of applications interacting

with the dB. Let Q be the set of SQL statements issued by the applications. We denote

the database model by a tuple 〈dB,Q〉. It is worthwhile to mention that by Q we assume

the set of all data manipulation operations SELECT, UPDATE, DELETE, INSERT.

Let the initial state of the database dB be d0. When statements in Q are executed, its

initial state d0 changes and goes through a number of valid states d1, d2 . . . , dn−1. Let

W be the watermark that is embedded in state d0. The watermark W is persistent if we

can extract and verify it blindly from any of the following n − 1 states successfully.

Definition 8 (Persistent Watermark) Let 〈dB,Q〉 be a database model where Q represents
the set of SQL statements associated with the database dB. Suppose the initial state of dB is d0.
The processing of the SQL statements in Q over d0 yield to a set of valid states d1, . . . , dn−1. A
watermark W embedded in state d0 of dB is called persistent if

∀i ∈ [1..(n − 1)], verify(d0,W) = verify(di,W)

where verify(d,W) is a boolean function such that the probability of ”verify(d,W) = true” is
negligible when W is not the watermark embedded in d.

(2) Static versus Non-static Database States. Consider a database model 〈dB,Q〉

where Q is the set of SQL statements associated with dB. Let dB goes through n

valid states d0, d1, . . . , dn−1 under processing by the statements in Q. For any state

di, i ∈ [0..(n − 1)], we can partition the data cells in di into two parts: static and non-

static. Static part contains those data cells of di that are not affected by Q at all, whereas

data cells in non-static part of di may change under processing by the statements in Q.

Let CELLdi be the set of cells in state di of dB. We denote the set of static cells of

di w.r.t. Q by STCQ
di
⊆ CELLdi . For each tuple t ∈ di we denote the static part of it by

STCQ
t ⊆ STCQ

di
. Thus, STCQ

di
=

⋃
t j∈di

STCQ
t j

.

Now we discuss how to determine the static and non-static parts of database states

bounded with Q. As SELECT and INSERT statements in Q do not affect the existing

data cells in a state at all, they do not take part in determining static/non-static part

of the database state. However, DELETE statement may delete some cells form the

static or non-static part, resulting in a subset of it. Thus, if STCQ
di

and (CELLdi − STCQ
di

)

represent the static and non-static part of a database state di w.r.t. Q respectively,

a subset of it remains invariant over all the n valid states d0, d1, . . . , dn−1 under the

105

4. PERSISTENT WATERMARKING OF RELATIONAL DATABASES

processing of DELETE statements in Q. The UPDATE statements modify values of

the data cells in non-static part only. Let ATTupdate be the set of attributes of dB that

are targeted by the UPDATE statements in Q. Thus we can identify the set of cells

STCQ
di
, i ∈ [0..(n− 1)] in state di w.r.t.Q corresponding to the attributes not in ATTupdate,

which remains invariant over all the n valid states.

(3) Semantics-based Properties of Data in Database States. Given a database state

di, i ∈ [0..(n−1)] of dB associated with a set of SQL statements Q, we can identify some

semantics-based properties of the data in di w.r.t.Q. These properties include intra-cell

(IC), intra-tuple (IT) or Intra-attribute among-tuples (IA) properties.

Intra-cell (IC) Property: In this case, individual cells of the relational databases

represent some specific properties of interests. Let the possible values for a cell cor-

responding to the attribute Z be a ≤ Z ≤ b over all the valid states, where a and b

represent integer values. The Intra-cell (IC) property can be represented by [a, b] from

the domain of intervals. For instance, suppose a publisher is offering at most 50% dis-

count to all the articles published by them. Thus, the article with price $100 euro can be

at least $50 euro. The intra-cell property for this cell can be represented by the interval

[50, 100]. Observe that, although the actual value of any cell may change under the

processing by the SQL statements, the IC properties represented by the elements from

non-relational abstract domains remain unchanged.

Intra-tuple (IT) Property: An intra-tuple property is a property which is extracted

based on the inter-relation between two or more attribute values in the same tuple.

As an example, we may consider inter-relation between the attributes basic price and

total price in a database containing commodity information where total price includes

basic price plus a percentage of VAT on the basic price. This can be abstracted by

the relational abstract domain, viz the domain of octagons (146). Examples of other

relational abstract domain that can be used to represent IT properties are convex

polyhedra, difference-bound matrices, linear equalities etc (31, 32, 145). Observe that

although the update operation may modify the values of the inter-related attributes

but their relational property should remain intact.

Intra-attribute among-tuples (IA) property: The Intra-attribute among-tuples (IA)

property is obtained from the set of independent tuples in a relation. Examples of such

property are: (i) in an employee database #male employee = # f emale employee± 1, where

106

4.2 Proposed Scheme

denotes cardinality of a set, (ii) average salary of male employees is greater than

average salary of female employees, (iii) total number of female employees is greater

than 3, etc. The first two can be abstracted by relational abstract domain, whereas last

one can be represented by interval [3,+∞].

We denote the set of semantics-based properties obtained this way from state di

w.r.t. Q by PQ
di

. For each tuple t ∈ di we denote the set of IC, IT properties by PQ
t

= ICQ
t ∪ ITQ

t ⊆ PQ
di

. Note that IA properties can not be determined at tuple level.

Thus, PQ
di

= {
⋃

t j∈di
(ICQ

t j
∪ ITQ

t j
)} ∪ IAQ

di
, where IAQ

di
is the Intra-attribute among-tuples

(IA) property in state di w.r.t. Q. Observe that the set of IC, IT and IA properties PQ
di

remains invariant over all the n valid states d0, d1, . . . , dn−1 obtained by processing the

statements in Q.

(4) Persistency in Abstract Database. In chapter 3, we proposed a sound approxi-

mation technique for database query languages based on the Abstract Interpretation

framework where the values of the concrete database are replaced by abstract val-

ues from abstract domains representing some specific properties of interests, resulting

into an abstract database. The abstract database provides a partial view of the data

by disclosing the properties rather than their exact content. Consider an employee

database that consists of a single table emp depicted in Table 4.3(a). Table 4.3(b) depicts

an partial abstract database consisting of emp] obtained by abstracting the basic and

gross salaries of the employees in emp by the elements from domain of intervals.

Watermarking based on partial abstract databases which are obtained by abstract-

ing only the data cells in non-static part (CELLd − STCQ
d) of the state d w.r.t. Q, results

into a content-independent persistent watermark. This is because although the exact

values in (CELLd − STCQ
d) may change under processing by the statements in Q, their

properties represented by the abstract values remain invariant.

We are now in position to describe our proposed public and private watermarking

scheme. In the rest of the chapter, we do not restrict ourself to any particular data type

of the attributes. Attributes of any type including numeric, boolean, character, or any

other can play roles in the public as well as private watermarking phase. Consider a

database dB(PK,A0,A1,A2, . . . ,Aβ−1) in state d associated with a set of SQL statements

Q, where PK is primary key. We divide the attribute set {A0,A1,A2, . . . ,Aβ−1} into two

107

4. PERSISTENT WATERMARKING OF RELATIONAL DATABASES

Table 4.3: A concrete and corresponding partial abstract employee database

(a) Concrete table emp

eID Name Basic Sal
(euro)

Gross Sal
(euro)

Age DNo

E001 Bob 1000 1900 48 2
E002 Alice 900 1685 29 1
E003 Matteo 1200 2270 58 2
E004 Tom 600 1190 30 2
E005 Marry 1350 2542.5 55 1

(b) Partial abstract table emp]

eID] Name] Basic Sal] (euro) Gross Sal] (euro) Age] DNo]

E001 Bob [1000, 1300] [1900, 2470] 48 2
E002 Alice [900, 1170] [1685, 2190.5] 29 1
E003 Matteo [1200, 1560] [2270, 2951] 58 2
E004 Tom [600, 780] [1190, 1547] 30 2
E005 Marry [1350, 1755] [2542.5, 3305.25] 55 1

parts w.r.t. Q: Static attribute set AQ
static = {As

0,A
s
1, . . . ,A

s
p−1} and Non-static attribute set

AQ
var = {Av

0,A
v
1, . . . ,A

v
q−1}, where p + q = β. The set of static data cells STCQ

d in state d

w.r.t.Q corresponds to static attribute set AQ
static, whereas the set of non-static data cells

(CELLd−STCQ
d) corresponds to non-static attribute set AQ

var. Although the primary key

PK may be static in nature, we exclude it from the set AQ
static and mention it separately

in the rest of the chapter for better understanding.

The Public watermark is embedded into known locations of the host data with

known methods to guarantee its public detectability. We identify most significant bit

(MSB) positions of the data cells in STCQ
d as the location for public watermark. We

avoid non-static data cells because their values keep changing under processing by

the statements in Q. This ensures the persistency of the public watermark. Since

the public watermark in the host data is visible to all end-users, it is highly possible

that attackers try to remove or distort it. We achieve the robustness of the public

watermark by choosing only most significant bit positions of the host data as the

location for public watermark so that any malicious change of the MSB makes the

data useless and also reflects to the hash value, resulting the verification unsuccessful.

Moreover, our scheme is designed to be fragile by using cryptographic hash value of

each tuple so as to detect and locate any modifications when attackers try to modify

the data in the database while keeping the watermark untouched.

108

4.2 Proposed Scheme

The private watermarking is based on two invariants of the database states:

Semantics-based properties of the data and Partial abstract database, so as to maintain

the persistency of the watermark under processing by the SQL statements associated

with the database. The security of the private watermarking relies on the secret key as

well as the level of abstraction used. Attackers do not know which properties are used

to abstract the database. In addition, private watermarking is also based on MSBs of

the attribute values. We assume the secret key to be large enough to thwart Brute force

attack.

It is worthwhile to mention that, unlike existing techniques (5, 20, 132, 202), the ver-

ification phase of the proposed scheme is deterministic. Moreover, the watermarking

does not introduce any distortion to the underlying data, hence it is distortion-free.

4.2.1 Public Watermarking

The overall architecture of the public watermarking phase is depicted in Figure 4.2.

It consists of a single procedure, called GenPublicKey. The inputs of GenPublicKey

are the database dB(PK,A0,A1,A2, . . . ,Aβ−1) in state d associated with a set of SQL

statements Q, the signature S of the database owner which is known to all end-users,

and a parameter ξ representing the number of most significant bits (MSBs) available

in attributes. The procedure generates a table B(PK, b0, . . . , bp−1) where PK is primary

key, p is the number of attributes in AQ
static and ∀ j ∈ [0..(p− 1)]: b j contains either 1 or 0.

The binary table B is treated as public key and made available to all end-users. Later,

when any end-user wants to verify the source of a suspicious database, she uses B as

the public key to generate and verify the embedded signature.

The algorithm of GenPublicKey is depicted in Figure 4.3. Let us describe it in

details.

Let |S| be the length of the signature S in binary form. We divide S into m blocks

{S0,S1, . . . ,Sm−1} each of length p, where p is the number of attributes in AQ
static and

m = d |S|p e. If the length of the last block is less than p, we append 0s to make it of length

p.

For each tuple t ∈ d, the algorithm generates an hash value h in binary form of

length p from its primary key and its static part STCQ
t = {t.As

0, . . . , t.A
s
p−1}. We exclude

the dynamic part of the tuples in computing hash because it keeps changing under

the processing of SQL operations. While computing hash values, we assume the

109

4. PERSISTENT WATERMARKING OF RELATIONAL DATABASES

Figure 4.2: Overall architecture of Public Watermarking Phase

Performed by: Database Owner

GenPublicKey

Original Database dB(PK,A0, . . . , A 1 )

in state d associated with Q

Signature S

Public Key B(PK,b0, . . . , bp-1) in binary form

Parameter 

following so that any minor tampering of the data can be captured through the hash

value: the hash function is one-way function; it is almost infeasible to generate the

same hash value from two different messages; all bits in the message provide the same

contribution to the hash value.

The HASH function we might use takes a parameter p and generates a binary hash

value of length p: we can use Merkle-Damgård’s Meta method (143) where the length

of initial hash value and the length of each block of the binary string obtained from

”t.PK||t.As
0|| . . . ||t.A

s
p−1” (where || stands for concatenation operation) is considered to

be p.

Using pseudorandom sequence generator PRSG (e.g. Linear FeedBack Shift Regis-

ter) seeded by tuple’s primary key t.PK, we identify which group the tuple belongs to.

If the tuple t belongs to ith group, we compute w = h ⊗ Si where h is the binary hash

value of length p and Si is the ith block of the binary signature S. In other words, we

embed ith block Si of the signature S into all tuples that belong to the ith group. This

ensures the existence of the signature during verification phase if there exists at least

one marked tuple in each group after the processing of DELETE operations over the

database state. Observe that w is of length p.

Corresponding to tuple t, we now create a binary tuple r in B(PK, b0, . . . , bp−1)

whose primary key PK is the same as that of t, i.e. r.PK = t.PK. For each static attribute

As
j ∈ AQ

static where j = 0, . . . , (p − 1), we obtain a MSB bit position in the corresponding

data cell t.As
j by computing k = HASH(t.PK||t.As

j)%ξ where ξ is the number of MSBs

available in As
j. The value of the jth attribute b j of r is, thus, r.b j= kth MSB of t.As

j ⊗ w[j].

110

4.2 Proposed Scheme

Figure 4.3: Algorithm for Signature Embedding and Public Key Generation

Algorithm 1: GenPublicKey

Input: Database dB(PK,A0,A1,A2, . . . ,Aβ−1) in state d associated with a set of SQL statements
Q, Owner’s signature S, Parameter ξ representing the no. of MSBs available in attributes
Output: A publicly available binary table B(PK, b0, . . . , bp−1)

1. Identify AQ
static = {As

0,A
s
1, . . . ,A

s
p−1}

2. Compute m = d |S|p e, where |S| denotes length of signature S in binary form and

p=no. of attributes in AQ
static.

3. Split the signature S into m blocks {S0,S2, . . . ,Sm−1}where |Si| = p.
4. FOR each tuples t ∈ d DO
5. h = HASH(t.PK||t.As

0|| . . . ||t.A
s
p−1, p)

6. i = PRSG(t.PK)%m
7. w = h ⊗ Si

8. Generate a binary tuple r in B(PK, b0, . . . , bp−1) with r.PK = t.PK
9. FOR j = 0 . . . p − 1 DO
10. k = HASH(t.PK||t.As

j)%ξ

11. r.b j= kth MSB of t.As
j ⊗ w[j]

12. END FOR
13. END FOR
14. Return B

We perform similar operations for all tuples in state d of dB, and finally we get a

binary table B(PK, b0, . . . , bp−1) consisting of a set of binary tuples generated this way.

This binary table B is then made publicly available and treated as public key which

is later used by end-users to verify the embedded signature S. We assume that the

database contains primary key. However, for the databases that do not contain primary

key we can follow the virtual primary key schemes in (134).

Signature Verification

Figure 4.4 depicts an overall architecture of the signature verification phase performed

by end-users. The procedure PublicVerify takes a suspicious database dB(PK, A0, . . . ,

Aβ−1) in different state d′ as input, and generates an intermediate binary table B′(PK,

a0, . . . , ap−1). Based on this intermediate binary table B′(PK, a0, . . . , ap−1) and the public

key B(PK, b0, . . . , bp−1) which is generated by the database owner in watermarking

111

4. PERSISTENT WATERMARKING OF RELATIONAL DATABASES

Figure 4.4: Overall architecture of publicly Signature Verification phase

Performed by: End-Users

PublicVerify

Suspicious Database dB(PK,A0, . . . , A 1 )

in state d’ associated with Q

Signature S’

An intermediate table in binary

form B’(PK,a0, . . . , ap-1)

ExtractSig Public Key B(PK,b0, . . . , bp-1)

in binary form

MatchSig Original Signature S
Signature

Verification Claim

as True or False

Parameter 

phase, the procedure ExtractSig extracts a signature S′. Finally, MatchSig compares

S′ with the original signature S. If it matches, the verification claim is true, otherwise

false.

The algorithms of the procedures PublicVerify and ExtractSig are depicted in

Figure 4.5 and 4.6 respectively. For each tuple t ∈ d′, Algorithm PublicVerify generates

a binary tuple r′ in B′(PK, a1, . . . , ap−1) whose primary key is equal to the primary key of

t, i.e. r′.PK = t.PK. The binary values of the attributes a j, j ∈ [0..(p−1)] in r′ are obtained

as follows: (i) compute a binary hash value h of length p from the primary key t.PK and

static part STCQ
t = {t.As

0, . . . , t.As
p−1} in similar way as in Algorithm GenPublicKey,

(ii) extract the kth MSB from t.As
j in similar way as in Algorithm GenPublicKey, (iii)

compute a j = kth MSB of t.As
j ⊗h[j], where h[j] represents jth bit of h. In this way, the

algorithm generates a set of binary tuples from the tuples in database state d′, and

collection of these binary tuples forms the table B′.

Procedure PublicVerify then calls another procedure ExtractSig, and passes the

binary table B′ and the public key B (generated by the owner in watermarking phase).

ExtractSig finds the pairs of tuples (r, r’) where r ∈ B and r′ ∈ B′ such that their

112

4.2 Proposed Scheme

Figure 4.5: Algorithm to Verify Signature

Algorithm 2: PublicVerify

Input: Database dB(PK,A0,A1,A2, . . . ,Aβ−1) in state d′ associated with Q, Parameter ξ,
Public key B(PK, b0, . . . , bp−1), Owner’s Signature S
Output: Signature Verification Claim as True or False

1. Identify AQ
static = {As

0,A
s
1, . . . ,A

s
p−1}

2. FOR each tuples t ∈ d′ Do
3. h = HASH(t.PK||t.As

0|| . . . ||t.A
s
p−1, p)

4. Construct a tuple r′ in B′(PK, a0, . . . , ap−1) such that r′.PK = t.PK
5. FOR j = 0 . . . p − 1 DO
6. k=HASH(t.PK, t.As

j) % ξ.

7. r′.a j= kth MSB in t.As
j ⊗ h[j].

8. END FOR
9. END FOR
10. S’=ExtractSig(B,B’)
11. Return MatchSig(S, S’)

primary keys are same i.e. r.PK = r′.PK. It then performs attribute-wise XOR i.e.

r.b j ⊗ r′.a j for all j ∈ [0..(p − 1)], excluding the primary key attribute, and concatenate

them to obtain a binary string str. If the tuple r and r′ belongs to the ith group which

is determined from the pseudo random sequence generator PRSG seeded by r.PK or

r′.PK, the corresponding str denotes the ith block S′i of signature S′. This way we can

collect all strings str from the tuples belonging to the ith group and put them into

the buffer bu f f [i]. If no tampering occurred, all strings in bu f f [i] will be same and

represent S′i . However, when data is tampered, some strings str in bu f f [i] may be

different from the others. In such case, function MajorityVote() returns the string with

maximum match. In this way, we can determine S′1, . . . ,S
′
m by extracting str from tuples

belonging to m different groups. By concatenating them, finally we get the signature

S′. The procedure MatchSig returns true when S′ matches with the original signature

S, otherwise it returns False.

Example 7 Consider the employee database of Table 4.3(a) where eID is the primary key.
Suppose the set of SQL statements Q associated with the database are only able to increase
the basic and gross salary of the employees by at most 30%. As only the basic and gross

113

4. PERSISTENT WATERMARKING OF RELATIONAL DATABASES

Figure 4.6: Algorithm to Extract Signature

Algorithm 3: ExtractSig

Input: Public key B(PK, b0, . . . , bp−1) and Binary table B′(PK, a0, . . . , ap−1)
Output: Signature S′

1. Find binary tuple r ∈ B and r′ ∈ B′ such that r.PK == r′.PK.
2. FOR all pair (r, r′) DO
3. str=NULL
4. FOR j = 0 . . . p − 1 DO
5. Perform str = str||r.b j ⊗ r′.a j

6. END FOR
7. i = PRSG(r.PK)%m
8. bu f f [i]← str
9. END FOR
10. FOR i = 0 . . . m − 1 DO
11. S′i=MajorityVote(bu f f [i])
12. END FOR
13. Return S′ = S′0||S

′

1|| . . . ||S
′

i || . . . ||S
′

m−1

salary can possibly be modified by the statements, we get AQ
static = {Name,Age,Dno} and

AQ
var = {Basic Sal,Gross Sal}.

Let the signature of the database owner be S = ”RAJU” which is public and known to all
end-users. Suppose the binary representation of S is 01010010010000010100101001010101,
obtained by concatenating the ASCII codes of the characters in S. Since |S| = 32 and the
number of static attributes in AQ

static is p=3, we divide S into m = d |S|p e = d32
3 e = 11 blocks i.e.

010 100 100 100 000 101 001 010 010 101 010. Observe that each block has length p = 3.
Since last block contains only 2 bit, we append 0 to make it of length 3.

Consider the tuple t=〈E001, Bob, 1000, 1900, 48, 2〉. The static part of t is STCQ
t =

〈t.Name, t.Age, t.Dno〉=〈Bob, 48, 2〉. Let the binary hash value of length p = 3 obtained from its
primary key t.eID = E001 and its static part STCQ

t be h = HASH(E001||Bob||48||2, 3) = 001.
Based on the random value generated from the pseudorandom sequence generator PRSG seeded
by t.PK = E001, suppose we determine that t belongs to third partition i.e. i = 2. Therefore,
we compute w = h ⊗ S2 = 001 ⊗ 100 = 101.

Corresponding to tuple t, we now create a binary tuple r in B(PK, b0, b1, b2) with r.PK =

t.PK = E001.
We now describe how to compute r.b0, r.b1 and r.b2: let the value of the parameter ξ be 4.

For each of the three static attribute values t.Name = ”Bob”, t.Age = ”48” and t.Dno = ”2”

114

4.2 Proposed Scheme

in STCQ
t , we compute most significant bit position k and extract the kth most significant bit

from them. Suppose we get the value of k as 2, 3, 1 for ”Bob”, ”48” and ”2” respectively. We
extract the 2nd MSB of ”Bob”, the 3rd MSB of ”48”, and the 1st MSB of ”2”. Let the extracted
bits be 0, 1, 1 respectively. Thus, r.b0 = 0 ⊗ 1 = 1, r.b1 = 1 ⊗ 0 = 1 and r.b2 = 1 ⊗ 1 = 0, and
the corresponding binary tuple r in B(PK, b0, b1, b2) is 〈E001, 1, 1, 0〉. We compute the same
for other tuples in state d, and finally we obtain a binary table B which is then made publicly
available.

Now we illustrate the verification phase. Consider the tuple t=〈E001, Bob, 1000, 1900, 48,
2〉 in a pirated table emp′. The static part of t is STCQ

t =〈Bob, 48, 2〉. We compute the binary
hash value h of length p = 3 in similar way, and we obtain h = 001. We now construct a
binary tuple r′ in B′(PK, a0, a1, a2) as follows: (i) r′.PK = t.PK = E001, (ii) for attribute values
”Bob”, ”48” and ”2”, we get MSB position k as 2, 3 and 1 respectively. Thus, a0=0 ⊗ 0 = 0,
a1=1 ⊗ 0 = 1 and a2=1 ⊗ 1 = 0, and the binary tuple r′ in B′(PK, a0, a1, a2) is 〈E001, 0, 1, 0〉.

When we call the procedure ExtractSig, it finds two binary tuples r = 〈E001, 1, 1, 0〉 ∈ B
and r′ = 〈E001, 0, 1, 0〉 ∈ B′, and it generates the string str = 1 ⊗ 0||1 ⊗ 1||0 ⊗ 0 = 100.
Since the tuples r and r′ belong to the 2nd group which is determined from the pseudorandom
sequence generator seeded by r.PK = E001, we get that the string str = 100 represents the
2nd block S′2 of the signature S′. In similar way we can extract all 11 blocks S′0, . . . ,S

′

11 of
the signature S′ from the tuples in d′ belonging to 11 different groups, and by concatenating
them we get 010100100100000101001010010101010 which is same as the original signature
S = ”RAJU”.

4.2.2 Private Watermarking

The private watermarking algorithm PrivateWatermark is depicted in Figure 4.7. The

inputs of the algorithm are the original database dB(PK, A0, A1, . . . , Aβ−1) in state d

bounded with a set of SQL statements Q and a secret key K. It generates a private

binary watermark PW whose schema is PW(PK, c0, . . . , cβ−1, p0, p1, p2).

The algorithm generates a partially abstract database state d] from the original state

d by abstracting the data cells belonging to non-static part (CELLd − STCQ
d) only. For

each tuple t] in d], the algorithm generates a tuple r in PW(PK, c0, . . . , cβ−1, p0, p1, p2)

whose primary key is equal to the primary key of t] just to identify the tuples in PW

uniquely and to perform matching in the verification phase. Note that as the primary

key attribute is static in nature we never abstract its values. The algorithm, then, adds

three values for the attributes p0, p1 and p2 in r that correspond to the encoded values of

115

4. PERSISTENT WATERMARKING OF RELATIONAL DATABASES

Figure 4.7: Private Watermarking Algorithm

Algorithm 4: PrivateWatermark

Input: Database dB(PK,A0, . . . ,Aβ−1) in state d bounded with a set of SQL statements Q,
Secret key K
Output: A private binary watermark PW(PK, c0, . . . , cβ−1, p0, p1, p2)

1. Obtain Partially Abstract Database dB](PK],A]
0, . . . ,A

]
β−1) in state d] by abstracting

non-static part (CELLd − STCQ
d) only;

2. Determine intra − attribute among − tuples property IAQ
d]

;
3. FOR each tuple t] ∈ d] DO
4. Construct tuple r in PW with primary key r.PK = t].PK];
5. Determine ICQ

t]
, ITQ

t]
;

6. r.p0 = gp
encode(IC

Q
t]

);
7. r.p1 = gp

encode(IT
Q
t]

);
8. r.p2 = gp

encode(IA
Q
d]

);
9. FOR (i=0; i< β; i=i+1) DO
10. val= Gi(K ◦ t].PK]

◦ t].A]
0 ◦ · · · ◦ t].A]

β−1);

11. j = val%(no. o f attributes in t]);
12. r.ci= (MSB of jth attribute in t]);
13. delete the jth attribute from t];
14. END FOR
15. END FOR
16. Return PW;

intra-cell, intra-tuple properties for t] and encoded value of intra-attribute among-tuples

property for the whole database state d], where gp
encode represents an encoding function.

Gi represents a pseudorandom sequence generator that returns ith random value val

when it is seeded by the attribute values of t] including its primary key, and the secret

key K. For all i from 0 to β − 1, val chooses an attribute randomly in t] excluding the

primary key and consider its MSB as the binary value for ci in r. While computing the

seed value for Gi or extracting MSBs, if there is any problem with abstract form of the

values we can use its encoded form too. For instance, we can encode any interval by

using the Chinese Remainder Theorem (166).

Observe that since the binary tuples in PW are constructed from the semantics-

based properties and partially abstract database information, the private watermark

PW is invariant under processing by the statements in Q. The inputs of the verification

116

4.2 Proposed Scheme

algorithm are the database in state d′ bounded with Q, secret Key K, and the output is a

binary table PW′. We use a boolean function match(PW,PW′) to compare PW′ with the

original private watermark PW which is obtained in the private watermarking phase.

Note that the function match(PW,PW′) compares tuple by tuple taking into account the

the primary key of the tuples in PW and PW′. As tuples may be deleted from or added

to the initial state d and yield to a different state d′, only those tuples whose primary

keys are common in both PW and PW′ are compared. If match(PW,PW′) = True, then

the claim of the ownership is true, and false otherwise. Observe that the verification

phase is deterministic rather than probabilistic (132), as we compare and verify tuples

in PW′ against the tuples in PW with the same primary key only, and the binary values

of the attributes of tuples in PW are invariant.

Example 8 Consider the employee database that consists of a table emp with eID as the
primary key as shown in Table 4.3(a) where we determine that AQ

static = {Name,Age,Dno} and
AQ

var = {Basic Sal,Gross Sal} w.r.t. the SQL statements that are only able to increase the basic
and gross salary of the employees by at most 30%.

The partially abstract table emp] is shown in Table 4.3(b) where data cells corresponding
to the non-static attribute set AQ

var are abstracted by elements from the domain of intervals.
Consider an abstract tuple t], say, 〈E002, Alice, [900, 1170], [1685, 2190.5], 29, 1〉 in emp].
Corresponding to t] we create a tuple r in watermark table PW(PK, c0, . . . , cβ−1, p0, p1, p2) with
r.PK = E002.

In t], the abstract values of the basic and gross salary are [900, 1170] and [1685, 2190.5]
respectively. These abstract values represent the intra-cell (IC) properties for t]. The relation
between the two attributes Basic Sal] and Gross Sal] can be represented, for instance, by the

following equation: Gross Sal] ≥ (165×Basic Sal])
100 + 200, assuming that Gross Sal] includes Basic

Sal], 65% of the Basic Sal] as PF,HRA etc and minimum of 200 euro as incentive. Thus, the
intra-tuple (IT) property can be obtained by abstracting the above relation by the elements from
the domain of polyhedra (31) i.e. by the linear equation just mentioned. The intra-attribute
among-tuples property may be: ”The number of employees in every department is more than
2”. This can also be represented by [3,+∞] in the domain of intervals. Suppose after encoding
these three properties, we obtain the encoded values k1, k2, k3. Therefore, the values of the
attributes p0, p1, p2 in r will be k1, k2, k3 respectively.

Suppose the random selection of the attributes in t] based on the random value generated by
the pseudorandom sequence generator yield to the selection order as follows: 〈[1685, 2190.5], 1,
29, [900, 1170], Alice〉. We choose MSB from these attribute values in this order. For instance,
for the abstract values (represented by intervals), we may extract the MSB from the encoded

117

4. PERSISTENT WATERMARKING OF RELATIONAL DATABASES

values which are obtained by using Chinese Remainder Theorem (166). Let the extracted MSBs
be 0, 1, 1, 0, 1 respectively. Thus the tuple r in PW would be 〈E002, 0, 1, 1, 0, 1, k1, k2, k3〉.

After performing similar operations for all the tuples in all partitions, the watermark PW
is generated.

4.2.3 Time Complexity

The time complexity to generate public key B (in case of public watermarking phase)

and to generate private watermark PW (in case of private watermarking phase) de-

pends on the number of tuples η in the original database state d linearly. That is, time

complexity of the algorithms GenPublicKey and PrivateWatermark is O(η) where η

is the number of tuples in the original database state. Similarly, time complexity of the

public and private watermark verification phases is also O(η).

Given a database dB(PK,A0,A1,A2, . . . ,Aβ−1), the number of attributes in public

watermark B is p + 1, where p is the number of static attributes in AQ
static. Suppose η is

the number of tuples in the original database state. The total number of cells in public

watermark B is, thus, (p + 1) × η. If δ is the number of bits required to represent the

primary key, the total number of bits in B is (δ+ p)× η. Thus, the space complexity can

be represented by O(η).

Similarly we can show that, for a relation with η tuples, the total number of bits

in private watermark PW is (ν + β) × η where β is the number of attributes except the

primary key, and ν is the total number of bits required to represent the primary key

and three semantics-based properties p0, p1, p2. Therefore, the space complexity in

case of private watermarking can also be represented by O(η).

4.2.4 Discussions

Before concluding, let us briefly discuss the properties of our proposal and relate it

with the existing techniques in the literature.

Our proposed public and private watermarking scheme has the following prop-

erties: (i) it is blind, (ii) it does not introduce any distortions to the underlying data,

and thus never degrades the usability of the data in the database, (iii) it preserves the

persistency of both public and private watermarks, (iv) public watermarking is robust

as well as fragile, (v) there is no need of recomputation when tuples are modified by the

118

4.2 Proposed Scheme

UPDATE statements. (vi) verification phase is deterministic rather than probabilistic

and can, thus, reduce the false positive and false negative.

Although the public watermarking algorithm of (132) is robust, it is not fragile:

attackers can easily tamper the data by keeping the MSBs unchanged. Observe that

our scheme uses cryptographic hash value obtained from the static part of each tuple.

Thus, any modification of the attribute values of a tuple reflects to the hash value

and results the signature extraction from that tuple unsuccessful. In other words, any

modification is narrowed down to each tuple.

The watermark embedding phase in (73, 133, 187, 202) is content-dependent. Any

intentional processing of the database content may damage or distort the existing

watermark, resulting the persistency of it into a risk. Our scheme is designed in such

a way to preserving the persistency of the watermark by exploiting the invariants of

the database state.

The watermark detection algorithm of (5, 20, 132, 202) is parameterized with a

threshold value. The lower the value of the threshold, the higher is the probability

of a successful verification. We strictly improve on these techniques by exploiting the

invariants of the database state and by keeping the identity of the binary tuples in the

public key B and in the private watermark PW. This makes the verification phase in

both cases deterministic.

We can randomize the selection of MSB in private watermarking by introducing

a parameter ξ where ξ represents the number of most significant bits available. We

choose jth bit from the ξ available MSBs of the attribute A using the following equation:

j = hash(PK ◦ A) mod ξ.

As suggested in (132), we can also use the watermark generation parameter x ≤ β, that

controls the number of attributes in private watermark PW. In such case, the schema

of PW will be W(PK, c1, . . . , cx, p0, p1, p2). Thus the number of attributes in watermark

would be (ν + x) × η, where η is the number of tuples and ν is the total number of bits

required to represent primary key and properties p0, p1, p2.

Although the notion of persistency is a crucial issue in the context of database

watermarking, to our best knowledge this is the first attempt to address this issue.

There are very few works on public watermarking of relational databases and all are

distortion-free. In order to avoid the transmission of the public watermarks separately

on demand to the end-users for verification purpose, there is a scope to embed the

119

4. PERSISTENT WATERMARKING OF RELATIONAL DATABASES

generated persistent public watermark information into the less significant part of the

underlying data, resulting into a distortion-based public watermarking scheme.

120

Chapter 5

Observation-based Fine Grained
Access Control (OFGAC)

[Part of this chapter is already published in (81, 85, 86)]

Due to emerging trend of Internet and database technology, the information systems

are shared by many people all around the world. With more and more information

being shared, exchanged, distributed or published through the web, it is important

to ensure that sensitive information is being accessed by the authorized users only.

Disclosure of sensitive information to unauthorized users may cause a huge loss to

the enterprizes or organizations. Access control mechanism (15, 70, 110) emerged as a

most effective solution to ensure the safety of the information in Relational Database

Management System (RDBMS) or eXtensible Markup Language (XML) documents.

The granularity of the traditional access control mechanism is coarse-grained and

can be applied only at database/table level for RDBMS or file/document level for

XML. Therefore, an XML file containing data with both public and private protec-

tion requirements, for instance, will have to be split into two files before applying

the traditional access control. The need of more flexible business requirements and

security policies mandate the use of Fine Grained Access Control (FGAC) mecha-

nisms (54, 112, 121, 138, 167, 174, 192, 204, 205) that provide the safety of the database

information even at lower level such as individual tuple/cell level for RDBMS or ele-

ment/attribute level for XML without changing their original structure.

The traditional fine grained disclosure policy p determines the part of the database

121

5. OBSERVATION-BASED FINE GRAINED ACCESS CONTROL (OFGAC)

state to be allowed to disclose while answering the queries Q. It splits any database

state into two distinct parts: a public one (insensitive data) and a private one (sensitive

data). Generic users are able to see the information from public part only, while the

private part remains undisclosed. We denote a database state σ under a disclosure

policy p by a tuple σp = 〈σh, σl〉, where σh and σl represent the states corresponding

to the private and public part respectively. Given a database state σp under a policy

p and a query Q, the execution of Q on σp returns the result ξ= S[[Q]](σp). In reality,

p depends on the context in which queries are issued, for instance, the identity of the

issuer, the purpose of the query, the data provider’s policy etc.

As far as the security of the system is concerned, the disclosure policy should

comply with the non-inter f erence policy (168), i.e. the results of admissible queries

should not depend on the confidential data in the database. The non-inter f erence says

that a variation of private (sensitive) database values does not cause any variation of

the public (insensitive) view (see Definition 9).

Definition 9 (Non-interference) Let σp = 〈σh, σl〉 and σ′p = 〈σ′h, σ
′

l〉 be two database states
under the disclosure policy p. The non-inter f erence policy says that

∀Q,∀σp, σ
′

p : σl = σ′l =⇒ S[[Q]](σp) = S[[Q]](σ′p)

That is, if the public (insensitive) part of any two database states under disclosure policy p are
the same, the execution of any admissible query Q over σp and σ′p return the same results.

In the context of information flow security, the notion of non-interference is too restric-

tive and impractical in some real systems where intensional leakage of the information

to some extent is allowed with the assumption that the power of the external observer

is bounded. Thus, we need to weaken or downgrading the sensitivity level of the

database information, hence, the notion of non-interference which considers weaker

attacker model. The weaker attacker model characterizes the observational character-

istics of the attacker and can be able to observe specific properties of the private data.

Example 9 illustrates this situation with a suitable example.

Example 9 Consider an XML document that stores customers’ information of a bank. Figure
5.1(a) and 5.1(b) represent the Document Type Definition (DTD) and its instance respectively.
According to the DTD, the document consists of zero or more “customer” elements with three
different child elements: “PersInfo”, “AccountInfo”, “CreditCardInfo” for each customer. The

122

“CreditCardInfo” for a customer is optional, whereas each customer must have at least one bank
account represented by “AccountInfo”. The element “PersInfo” keeps the record of personal
information for the customers.

Suppose, according to the access control policy, that employees in the bank’s customer-care
section are not permitted to view the exact content of IBAN and credit-card numbers of the
customers, while they are allowed to view only the first two digits of IBAN numbers and the
last four digits of credit card numbers, keeping other sensitive digits hidden. For instance, in
case of the 12 digits credit card number “4023 4581 8419 7835” and the IBAN number “IT10G
02006 02003 000011115996”, a customer-care personnel is allowed to see them as “**** ****
**** 7835” and “IT*** ***** ***** ************” respectively, just to facilitate the searching of
credit card number and to redirect the account related issues to the corresponding country (viz,
“IT” stands for “Italy”). In addition, suppose the policy specifies that the expiry dates and
secret numbers of credit cards and the deposited amounts in the accounts are fully-sensitive
and completely hidden to them. The traditional FGAC mechanisms are unable to implement
this scenario as the IBAN numbers or credit card numbers are neither private nor public as
a whole. To implement traditional FGAC, the only possibility is to split the partial sensitive
element into two sub-elements: one with private privilege and other with public. For example,
the credit-card numbers can be split into two sub-elements: one with first 12 digits which is
made private and the other with last 4 digits which is made public. However, practically this
is not feasible in all cases, as the sensitivity level and the access-privilege of the same element
might be different for different users, and the integrity of data is compromised. For instance,
when an integer data (say, 10) is partially viewed as an interval (say, [5, 25]), we can not split
it.

To cope with this situation, we propose an Observation-based Fine Grained Access

Control (OFGAC) mechanism where data are made accessible at various level of

abstraction according to their sensitivity level, based on the Abstract Interpretation

framework. In this setting, unauthorized users are not able to infer the exact content

of the data cell containing partial sensitive information, while they are allowed to get

a relaxed view of it, according to their access rights.

The structure of this chapter is as follows: in section 5.1, we discuss the related work

on FGAC framework for relational databases and XML documents in the literature.

In sections 5.2 and 5.3, we describe the proposed OFGAC framework to the context of

RDBMS and XML documents respectively.

123

5. OBSERVATION-BASED FINE GRAINED ACCESS CONTROL (OFGAC)

Figure 5.1: A Document Type Definition (DTD) and its instance

(a) DTD

<?xml version=“1.0”? >
<! DOCTYPE BankCusomers [>
<! ELEMENT BankCusomers(Customer*) >
<! ELEMENT Customer(PersInfo, AccountInfo+, CreditCardInfo?) >
<! ELEMENT PersInfo(Cid, Name, Address, PhoneNo) >
<! ELEMENT Cid (# PCDATA) >
<! ELEMENT Name (# PCDATA) >
<! ELEMENT Address (street, city, country, pin) >
<! ELEMENT street (# PCDATA) >
<! ELEMENT city (# PCDATA) >
<! ELEMENT country (# PCDATA) >
<! ELEMENT pin (# PCDATA) >
<! ELEMENT PhoneNo (# PCDATA) >
<! ELEMENT AccountInfo (IBAN, type, amount) >
<! ELEMENT IBAN (# PCDATA) >
<! ELEMENT type (# PCDATA) >
<! ELEMENT amount (# PCDATA) >
<! ELEMENT CreditCardInfo (CardNo, ExpiryDate, SecretNo) >
<! ELEMENT CardNo (# PCDATA) >
<! ELEMENT ExpiryDate (# PCDATA) >
<! ELEMENT SecretNo (# PCDATA) >
<! ATTLIST Cid IBAN CDATA #REQUIRED]>

(b) XML document

<?xml version=“1.0”? > <AccountInfo>
<BankCusomers> <IBAN> IT10G 02006 02003 000011115996 </IBAN>
<Customer> <type> Savings </type>
<PersInfo> <amount> 50000 </amount>
<Cid> 140062 </Cid> </AccountInfo >
<Name> John Smith </Name> <CreditCardInfo>
<Address> <CardNo> 4023 4581 8419 7835 </CardNo>
<street> Via Pasini 62 </street> <ExpiryDate> 12/15 </ExpiryDate>
<city> Venezia </city> <SecretNo> 165 </SecretNo>
<country> Italy </country> </CreditCardInfo>
<pin> 30175 </pin> </Customer>
</Address> </BankCusomers>
<PhoneNo> +39 3897745774 </PhoneNo>
</PersInfo>

124

5.1 Related Works

5.1 Related Works

The existing schemes on FGAC for RDBMS suggest to mask the confidential informa-

tion by special symbols like NULL (130) or Type-1/Type-2 variables (192), or to execute

the queries over the operational relations (175, 205) or authorized views (112, 167), etc.

Wang et al. (192) proposed a formal notion of correctness in fine-grained database

access control. They showed why the existing approaches (130) fall short in some

circumstances with respect to soundness and security requirements, like when queries

contain negation operations. Moreover, they proposed a labeling approach for masking

unauthorized information by using two types of special variables (Type-1 or Type-2) as

well as a secure and sound query evaluation algorithm in case of cell-level disclosure

policies.

In (175, 205), the authors observed that the proposed algorithm in (192) is unable

to satisfy the soundness property for the queries containing the negation operations

NOT IN or NOT EXISTS. They proposed an enforcing rule to control the information

leakage where the query is executed on an operational relation rather than the original

relation. However, although the algorithm for Enforcing Rule satisfies the soundness

and security properties for all SQL queries, it would not reach the maximum property

(192).

The authors in (23) expressed the secret information by an existentially quantified

boolean query. They presented a formal model of secret information disclosure that

defines a query to be suspicious if and only if the disclosed secret could be inferred

from its answer.

Agrawal et al. (3) introduced the syntax of a fine grained restriction command

at column level, row level, or cell level. The enforcement algorithm automatically

combines the restrictions relevant to individual queries annotated with purpose and

recipient information, and transforms the users’ queries into equivalent queries over

a dynamic view that implements the restriction.

In (204), the authors extended the SQL language to express the FGAC security

policies. They provide syntax to create a new policy type or replace the old policy

with a new one. Many policy instances of a policy type can be created when needed.

Moreover it specifies the operations on the objects that the security policy restricts

and the filter list that specifies the data to be accessed in the specific objects. Finally

125

5. OBSERVATION-BASED FINE GRAINED ACCESS CONTROL (OFGAC)

it has constraint expressions whose truth value determine whether the policy will be

executed or not.

Rizvi et al. in (167) described two models for fine-grained access control: Truman

and Non-Truman models. Both models support authorization-transparent querying.

Unlike the Truman model, the Non-Truman model avoids the pitfalls of the query

modification approach and allows a great deal of flexibility in authorization, such as

authorization of aggregate results. They defined the notions of unconditional and

conditional validity of the query, and presented several inference rules for validity.

Kabra et al. (112) defined the circumstances when a query plan is safe with respect

to user defined functions (UDFs) and other unsafe functions (USFs). They proposed

techniques to generate safe query plans. However, these safe query plans may yield

to un-optimized plans.

The authors in (118) presented two models to solve the information leakage problem

occurring during query aggregation. The first model is the base model that uses a single

inference dispersion value (∆) for each user where as the second model uses multiple

inference dispersion values for each user with a view to provide more accessibility.

Whenever a user queries the database, the query is passed through the inference

interpreter. Based on the data items already sent to the user and the data items

currently requested the interpreter determines if there is a possibility of inference. The

interpreter rejects the query if it finds that inference is possible; otherwise, the query is

processed. The interpreter determines inference mathematically by using a mechanism

called aggregation graphs and setting up a threshold called inference dispersion.

In (97), authors presented a quantitative model for privacy protection. In the model,

a formal representation of the user’s information states is given, and they estimate the

value of information for the user by considering a specific user model. Under the

user model, the privacy protection task is to ensure that the user cannot profit from

obtaining the private information.

Various proposals in support of fine-grained XML access control have been in-

troduced in the literature. These include View-based (14, 53, 54), Non-Deterministic

Finite Automata (NFA)-based (24, 138, 151), RDBMS-based (121, 128, 184) XML Access

Control Enforcement Techniques, etc.

The idea of view-based access control is to create and maintain separate view for

each user based on the authorization rules. During run-time, users’ queries are exe-

126

5.1 Related Works

cuted on the corresponding view, without worrying about the security enforcement.

However, for a system with large number of users, the view based approach suffers

from high maintenance and storage cost, although views are prepared offline. Yu et

al. (199) strictly improved the time and space complexity of view-based approaches

by taking advantage of structural locality of accessibility where data items grouped

together with similar accessibility properties and a Compressed Accessibility Map

(CAM) is built that acts as an accessibility index. In addition to the existing authoriza-

tion privileges (“allow” or “forbid”), Wu and Raun (196) included one more access

privilege, called delegatable administrative privilege, where authorization of an el-

ement can be propagated to its parent/child elements if the element has delegatable

administrative privilege and there is no authorization for its parent/child elements

at all. Moreover, any conflict in the access authorization, if occurs, are resolved by

assigning priority to each authorization privileges.

The proposals in (24, 138, 151) are based on rewriting the users queries conforming

the access control rules by using Non-Deterministic Finite Automata (NFA). The static

analysis in (151) compares the schema automata, access-control automata, and query

regular expressions, and classifies queries to be either entirely authorized or entirely

prohibited before submitting it to the XML engine. For partially authorized XML

queries it relies on the XML engine to filter out the data nodes that users do not

have authorization to access, i.e., when static analysis cannot provide determinate

answers, the scheme relies on run-time checking. QFilter (24) first generates NFA for

the set of access control rules. The input query is then processed against the NFA to

determine whether the query satisfies the access control rules completely or partially,

and accordingly, it is rewritten into a filtered query by removing the conflicting portions

from the input query. The proposal in (138) uses NFA to process streaming XML data

for access control.

Although, Relational Database Management System, due to its structured na-

ture, becomes inappropriate in the context of World Wide Web, most data for XML

documents still reside in relational databases behind the scene. The proposals in

(121, 128, 184) takes advantage of relational model, by mapping all the XML data

and access controls rules for XML data (in XML format) into the equivalent relational

database and structured query language representation. Finally, the accessibility of

127

5. OBSERVATION-BASED FINE GRAINED ACCESS CONTROL (OFGAC)

the data are checked at the level of relational database representation using the SQL

representation of the rules.

5.2 OFGAC for RDBMS

In this section, we describe the observation-based access control framework for RDBMS,

in order to provide various levels of accessibility of database information to the users.

5.2.1 Observation-based Access Control Policy Specification for RDBMS

Before describing the OFGAC framework for RDBMS, let us define observation-based

access control policy under OFGAC framework, in contrast to traditional binary-based

access control policy, and the abstract database representation under these observation-

based access policies.

Definition 10 (Observation-based Disclosure Policy) Given a domain of observable prop-
erties D, and an abstraction function αD : ℘(val)→ D, an observation-based disclosure policy
op assigned to the observer O is a tagging that assigns each value v in the database state σ a tag
αD(v) ∈ D, meaning that O is allowed to access the value αD(v) instead of its actual value v.

Unlike traditional FGAC, the database information which are unauthorized under an

observation-based disclosure policy op, are abstracted by the information at various

levels of abstractions representing some properties of interest. In other words, the

confidential database information are abstracted by the abstract values, rather than

NULL or special symbols (130, 192). The unauthorized users, thus, could not be able

to infer the exact content of the sensitive cells. Different levels of sensitivity of the

information correspond to different levels of abstractions. Less sensitive values are

abstracted by the abstract values at lower level of abstraction, while more sensitive

values are abstracted by the abstract values at higher level of abstraction. This way,

we can tune different parts of the same database content according to different levels

of abstractions at the same time, giving rise to various observational access control for

various parts of the database state. The query issued by the external users will be di-

rected to and executed over the abstract databases, yielding to a sound approximation

of the query results. The traditional fine grained access control can be seen as a special

case of our OFGAC framework.

128

5.2 OFGAC for RDBMS

Example 10 Consider the database of Table 5.1 where the cells containing sensitive information
are marked with ‘N’ within parenthesis. In OFGAC framework, we abstract these sensitive

Table 5.1: Concrete Database

(a) “emp”

eID Name Age Dno Sal
1 Matteo (N) 30 2 2800 (N)
2 Pallab (N) 22 1 1500
3 Sarbani (N) 56 (N) 2 2300
4 Luca (N) 35 1 6700 (N)
5 Tanushree (N) 40 (N) 3 4900
6 Andrea (N) 52 (N) 1 7000 (N)
7 Alberto (N) 48 3 800
8 Mita (N) 29 (N) 2 4700 (N)

(b) “dept”

Dno Name Loc Phone DmngrID
1 Financial Venice 111-1111 (N) 6
2 Research Rome 222-2222 (N) 8
3 Admin Treviso 333-3333 (N) 3

Table 5.2: Partial Abstract Database

(a) “emp]”

eID] Name] Age] Dno] Sal]

1 Male 30 2 Medium
2 Male 22 1 1500
3 Female [50, 59] 2 2300
4 Male 35 1 Very high
5 Female [40, 49] 3 4900
6 Male [50, 59] 1 Very high
7 Male 48 3 800
8 Female [20, 29] 2 High

(b) “dept]”

Dno] Name] Loc] Phone] DmngrID]

1 Financial Venice > 6
2 Research Rome > 8
3 Admin Treviso > 3

information by the abstract values representing specific properties of interests as depicted in
Table 5.2. Observe that in emp], the ages are abstracted by the elements from the domain
of intervals, the salaries are abstracted by their relative measures: Low, Medium, High,
Very High, and the names are abstracted by their sex properties. It is worthwhile to mention
here that we assume employees’ salaries to be more sensitive than their ages, and thus, we
abstract salary values with a higher level of abstraction than the age values, although both
are numeric. Most importantly, in the abstract table dept], since the phone numbers of
all departments are strictly confidential, they are abstracted by the top element > of their

129

5. OBSERVATION-BASED FINE GRAINED ACCESS CONTROL (OFGAC)

corresponding abstract lattice. We call the resulting database as “Partial Abstract Database”,
in contrast to “Full Abstract Database”, since only a subset of the database information is
abstracted. The correspondence between the concrete values of salaries and the abstract values
that partially hide sensitive salary values can formally be expressed by the abstraction and
concretization functions αsal and γsal respectively as follows:

αsal(X) ,



⊥ if X = ∅

Low if ∀x ∈ X : 500 ≤ x ≤ 1999

Medium if ∀x ∈ X : 2000 ≤ x ≤ 3999

High if ∀x ∈ X : 4000 ≤ x ≤ 5999

Very High if ∀x ∈ X : 6000 ≤ x ≤ 10000> otherwise

γsal(d) ,



∅ i f d = ⊥

{x : 500 ≤ x ≤ 1999} if d = Low

{x : 2000 ≤ x ≤ 3999} if d = Medium

{x : 4000 ≤ x ≤ 5999} if d = High

{x : 6000 ≤ x ≤ 10000} if d = Very High

{x : 500 ≤ x ≤ 10000} if d = >

Formally, the sensitive values of the data cells belonging to an attribute x are ab-

stracted by using the Galois Connection (℘(Dcon
x), αx, γx,Dabs

x), where ℘(Dcon
x) and Dabs

x

represent the powerset of concrete domain of x and the abstract domain of x respec-

tively, whereas αx and γx represent the corresponding abstraction and concretization

functions (denoted αx : ℘(Dcon
x)→ Dabs

x and γx : Dabs
x → ℘(Dcon

x)) respectively. In case

of insensitive information, the abstraction and concretization functions represent the

identity function id.

Given a concrete database state σop under an observation-based disclosure policy

op, the abstract state is obtained by performing σ]op = α(σop) where the abstraction

function α can be expressed as collection of abstraction functions for all attributes in

the database.

We assume that for each type of values in a database there exists a hierarchy of

abstractions such that Galois Connections combine consistently, i.e. if (X, α1, γ1,Y) and

(Y, α2, γ2,Z) represent two Galois Connection, then we have the following:

i f (X, α1, γ1,Y) and (Y, α2, γ2,Z) then (X, α2 ◦ α1, γ1 ◦ γ2,Z)

130

5.2 OFGAC for RDBMS

Observe that the traditional FGAC (130, 192) is a special case of our OFGAC

framework where each unauthorized cell is abstracted by the top element > of its

corresponding abstract lattice.

5.2.2 Preserving Referential Integrity Constraints under OFGAC

We know that the uniqueness of the values in primary or foreign key attributes is

a crucial requirement in order to maintain the secure linking or referential integrity

among database relations. When sensitive cells in primary or foreign key attributes are

abstracted in OFGAC framework, the uniqueness criterion can not be maintained due

to loss of precision, and the referential integrity constraints among database relations

put under threat. In (192), Wang et al. used Type-2 variable in order to keep these

referential integrity constraints intact while masking operation is performed. The

attribute values which are sensitive and act as primary key or foreign key are masked

by the Type-2 variables.

We extend the same approach of Wang et al. (192) in our OFGAC framework. We

denote the Type-2 variable by a pair (v, A) where A is an abstract value and γ(A) is the

domain of the variable v, depicted in definition 11.

Definition 11 (Type-2 Variable) A Type-2 variable is represented by a pair (v, A) where A
is an abstract value and γ(A) is the domain of the variable v. Given v1, v2, A1, A2 where v1 is
assumed to be different from v2, then we have that (i) “(v1, A1) = (v1, A1)” and “(v1, A1) ,
(v2, A1)” are always true, (ii) “(v1, A1) , (v2, A2)” is true if γ(A1)∩γ(A2) = ∅, (iii) “(v1, A1)
= (v2, A2)” is > if γ(A1) ∩ γ(A2) , ∅, and (iv) “(v1, A1)=c” is > where c ∈ γ(A1).

Given two sensitive values x1 and x2 under the same primary/foreign key attribute.

According to Definition 11, we abstract them as follows: (i) if x1 = x2 and α(x1) =

α(x2) = A, then both x1 and x2 are abstracted by the Type-2 variable (v,A), (ii) if x1 , x2

and α(x1) = α(x2) = A, then x1 and x2 are abstracted by (v1,A) and (v2,A) respectively,

(iii) if x1 , x2, α(x1) = A1, α(x2) = A2 and γ(A1)∩γ(A2) = ∅, then x1 and x2 are abstracted

by (v1,A1) and (v2,A2) respectively.

Example 11 Consider the supplier-parts database and its abstract version under an observation-
based access control policy, depicted in Table 5.3. The attributes S-id and P-id are the primary
keys of the tables “Supplier” and “Part” respectively, whereas the composite attribute {S-id,
P-id} is used as the primary key of the table “Supp-Part”. Observe that S-id and P-id in

131

5. OBSERVATION-BASED FINE GRAINED ACCESS CONTROL (OFGAC)

“Supp-Part” are used as the foreign keys that link to the primary keys of “Supplier” and
“Part” respectively, and relate the suppliers with the parts sold by them. Suppose according
to the disclosure policy that all values of the attributes S-id, P-id and some values of QTY in
“Supp-Part” are confidential (marked with ‘N’ in the parenthesis). If we abstract these values
by the abstract values from the domain of intervals, we may loose the ability to identify the
tuples uniquely and the secure linking between “Supplier” and “Part” might be disturbed. To
preserve the uniqueness of the values in abstract domain, we use Type-2 variable, as depicted
in the abstract tables “Supplier]”, “Part]” and “Supp-Part]”. Observe that since the attribute
QTY is not primary key or foreign key, we abstract them only by the abstract values from the
domain of intervals.

Table 5.3: Preserving Referential Integrity Constraint by using Type-2 variable

(a) “Supplier”

S-id Name Age
S230 (N) Alice 24
S201 (N) Bob 21
S368 (N) Tea 22

(b) “Supp − Part”

S-id P-id QTY
S230 (N) P140 (N) 120
S201 (N) P329 (N) 260 (N)
S230 (N) P563 (N) 200
S368 (N) P329 (N) 450 (N)
S368 (N) P140 (N) 430 (N)

(c) “Part”

P-id Pname
P140 (N) Screw
P329 (N) Bolt
P563 (N) Nut

(d) “Supplier]”

S-id] Name] Age]

(v1, [S200,S249]) Alice 24
(v2, [S200,S249]) Bob 21
(v3, [S350,S399]) Tea 22

(e) “Supp − Part]”

S-id] P-id] QTY]

(v1, [S200,S249]) (v4, [P100,P149]) 120
(v2, [S200,S249]) (v5, [P300,P349]) [250,299]
(v1, [S200,S249]) (v6, [P550,P599]) 200
(v3, [S350,S399]) (v5, [P300,P349]) [450, 499]
(v3, [S350,S399]) (v4, [P100,P149]) [400, 449]

(f) “Part]”

P-id] Pname]

(v4, [P100,P149]) Screw
(v5, [P300,P349]) Bolt
(v6, [P550,P599]) Nut

5.2.3 Query Evaluation under OFGAC

A general framework for Abstract Interpretation of Relational Databases has been

introduced in the chapter 3. Here, we briefly recall some notions on query abstraction,

and we extend them by considering queries on multiple abstractions as well.

132

5.2 OFGAC for RDBMS

Example 12 Consider the concrete database of Table 5.1 and the corresponding partial abstract
database depicted in Table 5.2 under an observational disclosure policy op. Suppose an external
user issues a query Q1 under op as below:

Q1 =SELECT * FROM emp WHERE Sal > 4800;

The system transforms Q1 into the corresponding abstract version of the query (denoted Q]
1 as

shown below:

Q]
1 =SELECT * FROM emp] WHERE Sal] > 4800 OR Sal] >] High;

The result of Q]
1 on emp] is depicted in Table 5.4. Observe that the pre-conditionφ] (represented

Table 5.4: ξ]1: Result of Q]
1

eID] Name] Age] Dno] Sal]

4 Male 35 1 Very high
5 Female [40, 49] 3 4900
6 Male [50, 59] 1 Very high
8 Female [20, 29] 2 High

by WHERE clause in Q]
1) evaluates to true for the first three tuples in the result ξ]1, whereas it

evaluates to > (may be true or may be f alse) for the last tuple. The result of Q]
1 is sound as it

over-approximate the result of the query Q1. Observe in fact that Q]
1 includes also the “false

positive” corresponding to the concrete information about Mita.

Query Evaluation in presence of Aggregate Functions and Set Operations
under OFGAC

In chapter 3, we defined the abstract aggregate functions and abstract set operations

in an abstract domain of interest. In OFGAC framework, we apply them in the same

way as depicted in Example 13 and 14 respectively.

Example 13 Consider the abstract database of Table 5.2 and an abstract query Q]
2 containing

aggregate functions.

Q]
2 =SELECT COUNT](∗), AVG](Age]) FROM emp]

WHERE (Age] BETWEEN 32 AND 55) OR (Age] BETWEEN][30, 39] AND [50, 59]);

The result of Q]
2 on emp] is depicted in Table 5.5. In the example, the evaluation of the abstract

WHERE clause extracts five tuples in total where three tuples with eID] equal to 4, 5, 7 belong
to G]

yes and two tuples with eID] equal to 3, 6 belong to G]
may. Thus, in case of AVG](Age]),

we get a] = f n]({35, [40, 49], 48}) = average]({35, [40, 49], 48})=[41, 44] and b] = f n]({[50,

133

5. OBSERVATION-BASED FINE GRAINED ACCESS CONTROL (OFGAC)

Table 5.5: ξ]2: Result of Q]
2

COUNT](*) AVG](Age])
[3, 5] [41, 50]

59], 35, [40, 49], [50, 59], 48}) = average]({[50, 59], 35, [40, 49], [50, 59], 48}) = [44, 50].
Hence, AVG](Age]) = [min](a]), max](b])]=[41, 50]. Similarly, in case of COUNT](∗), we get a]

= count](G]
yes)=[3, 3] and b] = count](G]) = [5, 5]. Thus, COUNT](∗) =[3, 5]. Observe that the

result is sound, i.e., ξ2 ∈ γ(ξ]2) where ξ2 is the result of a concrete query Q2 ∈ γ(Q]
2).

Example 14 Consider the abstract database of Table 5.2 and an abstract query Q]
3 = Q]

l

MINUS] Q]
r, where

Q]
l =SELECT * FROM emp] WHERE Sal] > 2500 OR Sal] >] Medium; and

Q]
r =SELECT * FROM emp] WHERE Sal] > 5500 OR Sal] >] High;

The execution of Q]
l and Q]

r on emp] are depicted in Table 5.6(a) and 5.6(b) respectively. In

Table 5.6: Abstract Computation of Q]
3

(a) ξ]l : Result of Q]
l

eID] Name] Age] Dno] Sal]

1 Male 30 2 Medium
4 Male 35 1 Very high
5 Female [40, 49] 3 4900
6 Male [50, 59] 1 Very high
8 Female [20, 29] 2 High

(b) ξ]r : Result of Q]
r

eID] Name] Age] Dno] Sal]

4 Male 35 1 Very high
6 Male [50, 59] 1 Very high
8 Female [20, 29] 2 High

(c) ξ]3: Performing MINUS] between ξ]l & ξ]r

eID] Name] Age] Dno] Sal]

1 Male 30 2 Medium
5 Female [40, 49] 3 4900
8 Female [20, 29] 2 High

Table 5.6(a), for the first tuple the pre-condition of Q]
l evaluates to > (thus, belongs to ξ]mayl

),

whereas for the remaining four tuples it evaluates to true (thus, belongs to ξ]yesl
). Similarly, in

Table 5.6(b), for the first two tuples the pre-condition of Q]
r evaluates to true (hence, belongs

to ξ]yesr
), whereas for the last one it evaluates to > (hence, belongs to ξ]mayr

). Thus, the first

component (ξ]yesl
− (ξ]yesr

∪ξ]mayr
)) ∈ ξ]3 contains the tuple with eID] equal to 5, and the second

component ((ξ]mayl
∪ ξ]mayr

) − ξ]yesr
) ∈ ξ]3 contains the tuples with eID] equal to 1 and 8, as

shown in Table 5.6(c). The result is sound, i.e., ξ3 ∈ γ(ξ]3) where ξ3 is the result of a concrete
query Q3 ∈ γ(Q]

3).

134

5.2 OFGAC for RDBMS

5.2.4 Collusion Attacks

Wang et al. in (192) illustrate the security of the FGAC system in case of collusion

and multi-query attacks. They define the security aspect in the context of one-party

single-query/weak security and multi-party multi-query/strong security, and prove that the

system with weak-security is also secure under strong-security.

In OFGAC, transforming the system into an abstract domain means transforming

the attackers, and the attackers are modeled by abstractions. The robustness of the

database under OFGAC policies depends on the ability of the external observers to

distinguish the database states based on the observable properties of the query results.

Here we consider three different scenarios: Figure 5.2(a), 5.2(b) and 5.2(c) illustrates

these three cases where the shaded portions indicate the sensitive information and α

(αi , α j if i , j) is the abstraction function used to abstract those sensitive information.

Case 1: Multiple Policies/Single Level Abstraction: Suppose each of the n observers

under op1, op2, . . . , opn respectively issues a query Q. Let σ be a database state

without any policy. Under opi, i = 1, . . . ,n, the database state σ is represented by

σopi and is abstracted into σ]opi
= α(σopi). Therefore, observer Oi under opi will get

the query result ξ]i = S][[Q]]](σ]opi
), where Q] is the abstract version of Q. When

these n users collude, they feed the query results ξ]i , i = . . . ,n, to a function f

which can perform some comparison or computation (viz, difference operation)

among the results and infer about some sensitive information for some observers.

For instance, suppose a portion of database information is sensitive under policy

op j, while it is insensitive under another policy opk, j , k. In the former case,

this part of information will be abstracted, while in the latter case it will not.

Thus, if this portion of information appears in both of the query results ξ]j and

ξ]k, then it is possible for the jth observer to infer the exact content of that portion

of information as it is not abstracted in ξk.

Let σop = 〈σl, σh〉 and σop′ = 〈σ′l , σ
′

h〉 be the database states under two different

policies op and op′. The database state σop•op′ obtained by combining two policies

op and op′ are defined as follows:

σop•op′ = 〈((σl ∪ σh) − (σh ∩ σ
′

h)), (σh ∩ σ
′

h)〉

135

5. OBSERVATION-BASED FINE GRAINED ACCESS CONTROL (OFGAC)

Figure 5.2: Policies and Observations

(a) Multiple policies/Single abstraction

α α α

Observer O1

Policy op1

Observer O2

Policy op2
Observer O3

Policy op3

(b) Single policy/Multiple abstraction

2

Policy op

Observer O

Policy op

Observer O

Policy op

1

(c) Multiple policies/Multiple abstraction

Observer O1

Policy op1

Observer O2

Policy op2

Observer O3

Policy op3

1 2 3

This fact is depicted in Figure 5.3. So, when the observers under op and op′

collude and share the query results, both will act as equivalent to the observer

under the policy op • op′ and thus they can infer the values belonging to the

public part of op • op′, i.e., ((σl ∪ σh) − (σh ∩ σ
′

h)) by issuing a sequence of queries

individually and by comparing the results together.

Case 2: Single Policy/Multiple Level Abstraction: Consider n different observers O1,

O2, . . . , On under the same policy op and the sensitive information part is ab-

stracted to different level of abstraction to different observers. Higher levels of

abstraction make the database information less precise, whereas lower levels of

abstraction represent them with more precision. Thus, the result of a query for

the one with higher abstraction contains less precise information than that with

lower abstraction.

136

5.2 OFGAC for RDBMS

Figure 5.3: Combination of policies

Policy op Policy op’ op • op’

Consider two different observers O1 and O2 under op where the sensitive database

information of σop are abstracted by the domains of abstraction Dabs
1 and Dabs

2 ,

yielding to σ1]
op and σ2]

op respectively.

First consider the case where Dabs
2 is a more abstract domain than Dabs

1 , i.e., Dabs
2 is

an abstraction of Dabs
1 . Since both observers are under the same policy, the query

results over σ1]
op and σ2]

op may contain some common abstract information - one

from Dabs
1 and other from Dabs

2 . Thus when O1 and O2 collude, it is possible for

O2 to obtain sensitive information with lower level of abstraction from the result

obtained by O1 as it is abstracted with lower level of abstraction for O1. But no

real collusion may arise in this case, as the overall information available to O1

and O2 together is at most as precise as the one already available to O1.

The other case is where the two domains are not one the abstraction of the

other. For example, let in a particular database state an attribute of a table has

the sensitive values represented by an ordered list 〈5, 0, 2, 3, 1〉. Suppose the

observer O1 is limited by the property DOM represented by domain of intervals

as shown in Figure 5.4(a), while O2 is limited by parity property represented by

the abstract domain PAR={⊥, EVEN, ODD, >} as depicted in Figure 5.4(b). Thus

O1 sees 〈[4, 5], [0, 1], [2, 3], [2, 3], [0, 1]〉, while O2 sees 〈ODD, EVEN, EVEN, ODD,

ODD〉. When O1 and O2 collude, they can infer the exact values for the attribute,

i.e., 〈5, 0, 2, 3, 1〉 by combining the query results. The corresponding combined

lattice obtained by reduced product (47) of the above two abstract lattices DOM

and PAR is shown in Figure 5.5(a).

Given an OFGAC under Single policy/Multiple level abstraction scenario where

same information under the same policy is abstracted by n different level of

abstraction to n different observers. Such OFGAC is collusion-prone when in-

tersection of the sets (not singletons) obtained by concretizing abstract values

137

5. OBSERVATION-BASED FINE GRAINED ACCESS CONTROL (OFGAC)

of any common sensitive cell appearing in different query results for different

observers, yield to a singleton. This is depicted in Definition 12.

We now show an example where no collusion takes place in practice. Consider

two observers O1 and O2, where O1 is limited by the sign property depicted in

Figure 5.4(c), whereas O2 is limited by the parity property depicted in Figure

5.4(b). Let 〈-2, 0, 2, -1, 1〉 be a list of sensitive values appearing in the results

of the queries issued by both O1 and O2. Thus, O1 sees 〈-, +, +, -, +〉, while

O2 sees 〈EVEN, EVEN, EVEN, ODD, ODD〉. When O1 and O2 collude, they

can infer the values as 〈EVEN−, EVEN+, EVEN+, ODD−, ODD+
〉 by combining

the query results. However, although these combined abstract values represent

more precise information than that of the individual result, the observer still

could not be able to infer the exact content. Figure 5.5(b) shows the combined

abstract lattice obtained by reduced product (47) of two abstract lattices SIGN

and PAR.

Figure 5.4: Abstract Lattices of DOM, PAR and SIGN

(a) DOM

[0,1] [2,3] [4,5] …. [2n, 2n+1]

⊥

(b) PAR

⊥

EVEN ODD

(c) SIGN

⊥

 + -

Definition 12 An OFGAC under Single policy/Multiple level abstraction scenario is
collusion-prone, if the OFGAC uses n different abstract domains Dabs

1 , . . . ,Dabs
n for n

different observers and ∃{di, . . . , d j} ∈ Dabs
i × · · · × Dabs

j for {i, . . . , j} ⊆ {1, . . . ,n} such
that

⋂
k∈{i,..., j} γ(dk) = {e} while ∀k ∈ {i, . . . , j}, γ(dk) , {e}.

Theorem 1 An OFGAC using n different abstract domains Dabs
1 , . . . ,Dabs

n for n different
observers under the same policy is collusion-prone if the reduced product (47) of {Dabs

i ,
. . . , Dabs

j } ⊆ {D
abs
1 , . . . , Dabs

n } is isomorphic to a concrete domain D.

Case 3: Multiple Policies /Multiple Level Abstractions: This is the combination of

the previous two cases. Observers may collude to act as the observer under the

138

5.3 OFGAC for XML

Figure 5.5: Combination of lattices

(a) Combined lattice of DOM and PAR

 EVEN ODD [0,1] [2,3] [4,5] …. [2n, 2n+1]

⊥

 0 1 2 3 2n 2n+1

(b) Combined lattice of SIGN and PAR

⊥

EVEN + - ODD

EVEN
+

 EVEN
-
 ODD

+

 ODD

-

combination of their individual policies, or may try to infer about the confidential

information appearing in the query results by combining (e.g., intersecting) their

domain of abstract values.

5.3 OFGAC for XML

We now extend the notion of OFGAC to the context of XML documents. We first

introduce the notion of access control policy specification for XML under OFGAC

framework. Then, we apply the OFGAC approach in two directions: view-based and

RDBMS-based.

5.3.1 Observation-based Access Control Policy Specification for XML

Most of the existing approaches on fine grained access control for XML are based

on the basic policy specification introduced by Damiani et al. (54) that specifies the

access authorization by a 5-tuple of the form 〈Subject, Object, Action, Sign, Type〉. The

“Subject” represents the identifiers or locations of the access requests to be granted or

rejected. It is denoted by a 3-tuple 〈UG, IP,SN〉where UG, IP and SN are the set of user-

groups/user-identifiers, the set of completely-specified/patterns-of IP addresses and

the set of completely-specified/patterns-of symbolic names respectively. For instance,

〈 Physicians, 159.101.*.*, *.hospital.com 〉 represents a subject belonging to the group

139

5. OBSERVATION-BASED FINE GRAINED ACCESS CONTROL (OFGAC)

physicians, issuing queries from the IP address matching with the pattern 159.101.*.*

in the domain matching with symbolic name pattern *.hospital.com. The “Object”

represents the Uniform Resource Identifier (URI) of the elements or attributes in the

documents. The URI is specified by the conditional or unconditional path expressions.

The “Action” is either “read” or “write” or both being authorized or forbidden. The

“Sign” ∈ {+,−} is the sign of authorization. Sign “+” indicates “allow access”, whereas

sign “-” indicates “forbid access”. The “Type” of the access represents the level of access

(DTD level or instance level), whether access is applicable only to the local element or

applicable recursively to all sub-elements, hard or soft etc. The priority of the type of

accesses from highest to lowest are: LDH (Local Hard Authorization), RDH (Recursive

Hard Authorization), L (Local Authorization), R (Recursive Authorization), LD (Local

Authorization specified at DTD level), RD (Recursive Authorization specified at DTD

level), LS (Local Soft Authorization), RS (Recursive Soft Authorization). Since this

specification provides users only two choices in accessing the information: either

“allow” or “forbid”, we call it Binary-based FGAC Policy for XML.

In contrast to binary-based FGAC Policy, we specify the Observation-based Access

Control Policy for XML under OFGAC framework by a 5-tuple of the form 〈Subject,

Object, Action, Abstraction, Type〉. The components “Subject”, “Object”, “Action” and

“Type” are defined exactly in the same way as in case of FGAC policy specification.

The component “Abstraction” is defined by the Galois Connection (℘(Dcon
x), αx, γx,Dabs

x),

where ℘(Dcon
x) and Dabs

x represent the powerset of concrete domain of x and the abstract

domain of x respectively, and αx and γx represent the corresponding abstraction and

concretization functions.

Since the “Object” represents either XML element or attribute, the following two

cases may arise when “Abstraction” is applied on them:

• The “Object” represents an intermediate element and “Type” is “Recursive” (de-

noted by “R”). In this case, the abstraction defined in the rule for an element

is propagated downwards and applied to all its sub-elements and attributes

recursively.

• The “Object” represents an attribute and “Type” is “Local” (denoted by “L”). In

this case, only the attribute value is abstracted by following the Galois Connection

specified in the rule.

140

5.3 OFGAC for XML

Example 15 illustrates the observation-based access control policy specification for the

XML document of Figure 5.1.

Table 5.7: Observation-based Access Control Policy Specification for XML code

Rule Subject Object Action Abstraction Type
R1 customer-care,

159.56.*.*, *.Uni-
credit.it

/BankCustomers/
Customer/ PersInfo

read (℘(Dcon
x), id, id, ℘(Dcon

x)) R

R2 customer-care,
159.56.*.*, *.Uni-
credit.it

/BankCustomers/
Customer/ Ac-
countInfo/ IBAN

read (℘(Dcon
iban), αiban, γiban, Dabs

iban) L

R3 customer-care,
159.56.*.*, *.Uni-
credit.it

/BankCustomers/
Customer/ Ac-
countInfo/ type

read (℘(Dcon
type), id, id, ℘(Dcon

type)) L

R4 customer-care,
159.56.*.*, *.Uni-
credit.it

/BankCustomers/
Customer/ Ac-
countInfo/ amount

read (℘(Dcon
amount), α>, γ>, {>}) L

R5 customer-care,
159.56.*.*, *.Uni-
credit.it

/BankCustomers/
Customer/ Credit-
CardInfo/ CardNo

read (℘(Dcon
CardNo), αCardNo, γCardNo, Dabs

CardNo) L

R6 customer-care,
159.56.*.*, *.Uni-
credit.it

/BankCustomers/
Customer/ Credit-
CardInfo/ ExpiryDate

read (℘(Dcon
ExDate), α>, γ>, {>}) L

R7 customer-care,
159.56.*.*, *.Uni-
credit.it

/BankCustomers/
Customer/ Credit-
CardInfo/ SecretNo

read (℘(Dcon
SecNo), α>, γ>, {>}) L

Example 15 Consider the XML code in Figure 5.1. The observation-based access control
policy under OFGAC framework can be specified as shown in Table 5.7, where the abstraction
functions are defined as follows:

αCardNo({di : i ∈ [1 . . . 16]}) = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ d13d14d15d16

α>(X) = >

where X is a set of concrete values and > is the top most element of the corresponding abstract
lattice. The functions αiban, γiban, γCardNo, γ> are also defined in this way depending on the
corresponding domains. Observe that the identity function id is used to provide the public
accessibility of non-sensitive information, whereas the functions α> and γ> are used to provide
private accessibility of highly sensitive information by abstracting them with top most element
> of the corresponding abstract lattice.

141

5. OBSERVATION-BASED FINE GRAINED ACCESS CONTROL (OFGAC)

5.3.2 OFGAC Approaches

Given a binary-based access control policy p or an observation-based access control

policy op for XML documents, the FGAC and OFGAC can be implemented in two

ways:

• Non-deterministic Finite Automata (NFA)-based: By applying p or op directly to

the XML documents (view-based) or by rewriting users’ XML queries by pruning

the unauthorized part in it.

• RDBMS-based: By taking the support of RDBMS, where the XML documents

and the XML policies (p or op) are first mapped into the underlying relational

databases and the policy SQL respectively, and then the users’ XML queries are

mapped into equivalent SQL queries and evaluated on those relational databases

by satisfying the policy SQL.

Figure 5.6 depicts a pictorial representation of these approaches. Observe that the

application of FGAC w.r.t. p results into a binary-based access control system that

yields two extreme views to the information: either “allow” or “forbid”, whereas

the application of OFGAC w.r.t. op, on the other hand, results into a tunable access

control system where partial view of the information at various levels of abstractions is

provided. We now discuss the OFGAC approach for XML documents in two directions:

Figure 5.6: Pictorial Representation of FGAC Vs. OFGAC

RDBMS

XML

Mapping

Tunable Access

Control

Binary (0/1)

Access Control

OFGACRD(op)

OFGACXML(op)

FGACXML(p)

FGACRD(p)

Flattening

view-based and RDBMS-based.

View-based OFGAC for XML. Consider the XML code in Figure 5.1 and the asso-
ciated observation-based access control policy specification depicted in Table 5.7. We

142

5.3 OFGAC for XML

know that in view-based approaches for each subject interacting with the system, sep-
arate views are generated with respect to the access rules associated with the subject
(54). Therefore, in our example, the XML view corresponding to the users belonging
to “customer-care” section of the bank is depicted in Figure 5.7. The queries issued by
a user are then executed on the corresponding secure view without worrying about
the security constraint. Consider the following XML query Qxml issued by a personnel

Figure 5.7: View generated for the employees in bank’s customer-care section

<?xml version=“1.0”? > <AccountInfo>
<BankCusomers> <IBAN> IT*** ***** ***** ************ </IBAN>
<Customer> <type> Savings </type>
<PersInfo> <amount> > </amount>
<Cid> 140062 </Cid> </AccountInfo >
<Name> John Smith </Name> <CreditCardInfo>
<Address> <CardNo> **** **** **** 7835 </CardNo>
<street> Via Pasini 62 </street> <ExpiryDate> > </ExpiryDate>
<city> Venezia </city> <SecretNo> > </SecretNo>
<country> Italy </country> </CreditCardInfo>
<pin> 30175 </pin> </Customer>
</Address> </BankCusomers>
<PhoneNo> +39 3897745774 </PhoneNo>
</PersInfo>

in the customer-care section:

Qxml = /BankCusomers/Customer/AccountIn f o[@type = “Savings′′]

The execution of Qxml on the view of Figure 5.7 returns the following results:

<AccountInfo>
<IBAN> IT*** ***** ***** ************ </IBAN>
<type> Savings </type>
<amount> > </amount>
</AccountInfo>

RDBMS-based OFGAC for XML. Consider the XML document in Figure 5.1 and the
observation-based policy specification in Table 5.7. By following (121), we first map the
XML document into relational database representation, partially shown in Table 5.8.
Observe that we do not translate the XML policies into the equivalent SQL statements,
rather we put the rules into the relational database itself by associating them with
the corresponding elements or attributes. The empty rule in a row specifies that the
corresponding element (and its sub-elements and child-attributes) or attribute has
public authorization. If any access-conflict occurs for any sub-element, it is resolved
simply by adopting abstraction-take-precedence policy according to which authorization

143

5. OBSERVATION-BASED FINE GRAINED ACCESS CONTROL (OFGAC)

corresponding to more abstract view overrides the authorization corresponding to less
abstract view. The users’ XML queries are then mapped into SQL representation and
are evaluated on this relational database under OFGAC framework as described before.
Suppose the following XML query Qxml is issued by an employee from customer-care

Table 5.8: The equivalent relational database representation of the XML code

(a) “BankCustomers”

id pid rule
BC1 null -

(b) “Customer”

id pid rule
C1 BC1 -

(c) “PersIn f o”

id pid rule
PI1 C1 R1

(d) “AccountIn f o”

id pid rule
AI1 C1 -

(e) “CreditCardIn f o”

id pid rule
CI1 C1 -

(f) “IBAN”

id pid val rule
IB1 AI1 IT10G 02006 02003 000011115996 R2

(g) “type”

id pid val rule
TP1 AI1 Savings R3

(h) “amount”

id pid val rule
AM1 AI1 5000 R4

(i) “CardNo”

id pid val rule
CN1 CI1 4023 4581 8419 7835 R5

(j) “ExpiryDate”

id pid val rule
EX1 CI1 12/15 R6

section of the bank:

Qxml = /BankCusomers/Customer/AccountIn f o[@type = “Savings′′]/IBAN

Since the OFGAC Policies and XML documents are now in the form of relational
database, the system translates Qxml into an equivalent SQL query Qrdb as follows:

Qrdb =SELECT Ch No.val FROM IBAN Ch No, type Ch Tp, AccountIn f o P AccIn f o,

Customer P Cust, BankCustomers P BCust WHERE (Ch No.pid = P AccIn f o.id

AND Ch Tp.pid = P AccIn f o.id AND Ch Tp.val = “Savings′′) AND P AccIn f o.pid

= P Cust.id AND P Cust.pid = P BCust.id

The execution of Qrdb on the database of Table 5.8, by following the OFGAC technique

for RDBMS, yields the following result:

val
IT*** ***** ***** ************

144

5.3 OFGAC for XML

Observe that RDBMS-based approaches suffer from time-inefficiency, whereas view-

based approaches, on the other hand, suffer from space-inefficiency. The possibility of

collusion attacks for XML documents under OFGAC framework is same as described

before in case of RDBMS.

145

5. OBSERVATION-BASED FINE GRAINED ACCESS CONTROL (OFGAC)

146

Chapter 6

SQL Injection Attacks

[Part of this chapter is already published in (80)]

The increasing popularity of web-based services, such as online stores, e-commerce,

social network services etc, make them an ideal target for different attacks. One of

the most serious type of attacks against web applications is the family of the so called

SQL injection attacks (SQLIA). In an SQL injection attack, data provided by the user

during run-time are included in an SQL statements in such a way that part of the user’s

inputs is treated as SQL code. The web applications which receive input from users

and incorporate it into SQL statements to an underlying database possibly suffers from

SQLIA.

For example, suppose a database contains user names and passwords, and the

underlying application contains the following code:

query ="SELECT * FROM emp WHERE username=‘" +

request.getParameter("username") + "’ AND password=‘" +

request.getParameter("password") + "’;"

This query is used to authenticate the user who tries to login to the web site, by

checking username and password against data stored in the database. However, if a

malicious user enters the input: “’ OR ‘1’=‘1’--” into the username field, the query

147

6. SQL INJECTION ATTACKS

string submitted to the database would be:

query =SELECT * FROM emp WHERE

username=‘ ’ OR ‘1’=‘1’--’ AND password=‘ ’;

Since the atomic formula ‘1’=‘1’ is a tautology, the user will bypass the check, and
authentication will be successful.

In (93), the authors classified the SQL injection attacks into different types: (i) In-
jection through user input; (ii) Injection through cookies; (iii) Injection through server
variables; (iv) Second-order injection. The characterization of attacks is based on goals
or intents of the attacker. The different types of attack intents are: Identifying injectable
parameters, Performing database finger-printing, Determining database schema, Ex-
tracting data, Adding or modifying data, Performing denial of service, Evading de-
tection, Bypassing authentication, Executing remote commands, Performing privilege
escalation.

In this chapter, we propose a novel scheme to detect the presence of SQLIA, combin-
ing static and dynamic analysis whose main features are: (i) it is based on obfuscation
and deobfuscation of SQL statements, (ii) SQLIA can easily be detected and has a
negligible run-time overhead because of dynamic verification is carried out on the
obfuscated statements at atomic formula level and the number of verifications for
possible SQLIA has been reduced by introducing the notion of secure and vulnerable
terms and formulas, (iii) the obfuscation and deobfuscation techniques are application-
independent and developers need not to be aware about this.

The structure of this chapter is as follows: in section 6.1, we discuss the related
work in the literature. Section 6.2 defines the notion of secure and vulnerable terms
and formulas involved in pre-condition φ. Section 6.3 describes the proposed SQLIA
prevention technique and compares the proposal w.r.t. the literature.

6.1 Related Works

In (27, 92, 152, 181), the authors followed a model-based approach and introduced
the tools AMNESIA, SQLGuard and SQLCheck respectively. All these schemata have
two phases: static and dynamic. In AMNESIA, the static phase builds models cor-
responding to all legitimate SQL statements present in the application by analysing
the program. In its run-time phase, before submitting the request to database, all
dynamically generated SQL statements are checked against the corresponding model,
and those violating the models are identified as SQLIA. Observe that, the accuracy of

148

6.1 Related Works

the statically-built model is the measure of the success of AMNESIA. In SQLGuard
and SQLCheck, the model is based on a set of grammar-rules against which the dy-
namically generated SQL statements are checked to detect the possibility of SQLIA.
SQLGuard compares the parse tree of the SQL statement which is generated using
grammar-rules, before and after the user input. Comments are included as a token
in the parse tree to detect when attacker tries to comment out some active portion
of the SQL statement. SQLCheck generates a set of augmented grammar-rules. The
SQL statements are augmented and parsed by the augmented grammar. If parsing
fails, it claims the presence of SQLIA. In both cases, the user inputs are augmented by
some delimiter generated from a private key. Thus, the success of this two schemata
are completely dependent on the fact that the attacker is not being able to discover
the private key. In (152) the static model is based on graph representation of the SQL
statements.

McClure and Krüger (142) proposed a completely different query development
platform by changing the so-called unregulated query generation process that uses
string concatenation, to a new systematic one. This solution consists of two parts. The
first is an abstract object model. The second is an executable which is executed against
a database and the output is a Dynamic Link Library (DLL) containing classes that are
strongly-typed to the database schema. This DLL is used as a concrete instantiation of
the abstract object model. However, as they provided a completely new paradigm for
query development process which is not as easy as previous one, the developer need
to learn before its use.

SQLrand (25) is based on the concept of Instruction-Set Randomization. The SQL
standard keywords are manipulated by appending a random integer to them. The at-
tacker is not aware about that random integer. Thus, if any malicious user attempting
to SQL injection attack would immediately be thwarted as the injective codes in the
randomized SQL statements are treated as non-keywords. In practice, it suffers from
many aspects. First, a modified database would require all applications submitting
SQL statements to conform to its new language. Second, the proxy server which inter-
cepts randomize statements and de-randomizes the keywords imposes a significant
infrastructure overhead. Third, this technique completely relies on the fact that the
attacker is unable to discover the random secret number used to randomize.

In (188), Valeur et al. proposed a learning-based Intrusion Detection System (IDS)
to detect SQLIA. The IDS is trained using a set of typical application queries. The
technique builds statistical models of the typical queries, and then monitors the appli-
cation at run-time to identify the queries that do not match the model. However, the

149

6. SQL INJECTION ATTACKS

fundamental limitation is that the success of such system completely depends on the
quality of the training set used. Poor training set would result large number of false
positive and false negative.

Scott and Sharp, in their work (171), proposed a solution to provide an application
level security including SQLIA for web-based applications. They use a security policy
description language (SPDL) to specify a set of validation constraints and transforma-
tion rules to be applied to application parameters as they flow from the web page to
the application server. The compiled SPDL codes are kept on a security gateway which
acts as application level firewall. However, the developers are completely responsible
for this. They have to know not only which data needs to be filtered, but also what
patterns and filters need to apply to data.

Gould et al. (69) described the static type checking of dynamically generated
queries. Although this technique was not developed with the intent to detect and
prevent SQLIA, it can be used to prevent the attacks that take advantage of type
mismatches in a dynamically generated query.

Many testing techniques (103, 122, 173) have been proposed to test whether an
web application is vulnerable to SQLIA. The proposal in (103) is based on black-box
approach, whereas the proposals in (122, 173) are based on white-box approach.

In (78, 104, 155, 158), the authors provided taint-based approaches to SQLIA: static
analysis is used to check taint flows against preconditions for sensitive functions. The
analysis detects the points in which preconditions have not been met and can suggest
filters and sanitization functions that can be automatically added to the application to
satisfy these preconditions.

Among the most recent works, (136) is a defensive coding practices to prevent
SQLIA. It describes input validation (whitelist, blacklist) and encoding techniques
(sanitize input) to ensure the safety of input. It also introduces a hybrid strategy
combining them. The defensive approach suffers from the false positive or false
negative problems. Defensive coding is prone to human error and is not as rigorously
and completely applied as automated techniques.

Finally, Bertino et al. proposed a scheme in (16) that detects the presence of SQLIA
by creating a fingerprint of the application based on SQL queries submitted by it to
the database. Association rule mining techniques are then used to extract useful rules
from this fingerprint.

150

6.2 Secure and Vulnerable Terms and Formulas

6.2 Secure and Vulnerable Terms and Formulas

In this section, we define the terms and formulas in first-order logic, and we introduce
the notion of secure and vulnerable terms with regards to different attacks.

Definition 13 (Terms) The set of terms of a first-order language L is the set of strings of
symbols formed according to the following rules:

• All the variable symbols x1, x2, x3, ... and all the constant symbols ci in L are terms.

• If fn is an n-ary function symbol in L and t1, t2, ..., tn are terms, then fn(t1, t2, ..., tn) is a
term.

Definition 14 (Atomic Formula) An atomic formula is a string of symbols of the form
Rn(t1, t2, ..., tn) ∈ {true, f alse}, where Rn is a relation symbol of arity n of the language and
t1, t2, ..., tn are terms.

If the language contains the equality relation, then any string of the form t1 = t2, where
t1, t2 are terms, is also an atomic formula.

Definition 15 (Well-formed Formula) The set of formulas of a language L is the set of
strings of symbols formed according to the following rules:

• All atomic formulas are Well-formed Formulas (wffs).

• If φ and ψ are formulas and xi is a variable symbol, then so are ¬φ,φ ∧ ψ,φ ∨ ψ,φ→
ψ,φ↔ φ,∀xiφ,∃xiφ.

Now we define the notion of secure and vulnerable terms, atomic formulas and well-
formed formulas. Let Cφ and Vφ denote the set of constants and variables, respectively,
appearing in the pre-condition φ. Let Csec and Vsec are set of secure constants and
variables respectively whereas, Vvul stands for the set of public variables which are
vulnerable to different attacks. Observe that, since constants and database variables
are provided by the developers, we assume them as secure. Application variables may
or may not be secure depending on whether they are used as public variables directly
or influenced by other vulnerable variables indirectly. Therefore,

Cφ ⊆ Csec and Vφ ⊆ Vsec ∪ Vvul

Let Tsec, AFsec and WFFsec represent the set of secure terms, atomic formulas and well-
formed formulas, whereas Tvul, AFvul and WFFvul represent the set of vulnerable terms,
atomic formulas and well-formed formulas respectively. We can define inference rules

151

6. SQL INJECTION ATTACKS

for terms, atomic and well-formed formulas being secure and vulnerable as shown in
Table 6.1.

Observe that the rules in Table 6.1 are not closed under logical equivalence, i.e.
φ1 ∈ WFFsec and φ2 ≡ φ1 do not imply that φ2 ∈ WFFsec. For instance, let x ∈ Vvul,
y ∈ Vsec and c ∈ Csec, we have: (y = c) ∈ WFFsec while (x = x) ∧ (y = c) ∈ WFFvul

even though the two formulas are equivalent. This is due to the fact that (x = x) is a
potential gateway for SQLIA.

Table 6.1: Inference rules for terms, atomic and well-formed formulas being secure and
vulnerable, where ϑ ∈ {∀,∃} and θ ∈ {∧,∨,→,↔} and x is a bound variable

c∈Csec
c∈Tsec

v∈Vsec
v∈Tsec

v∈Vvul
v∈Tvul

∀ti∈Tsec, i=1,...,n
f (t1,...,tn)∈Tsec

∃ti∈Tvul, i=1,...,n
f (t1,...,tn)∈Tvul

∀ti∈Tsec, i=1,...,n
Rn(t1,...,tn)∈AFsec

∃ti∈Tvul, i=1,...,n
Rn(t1,...,tn)∈AFvul

t1∈Tsec t2∈Tsec
(t1=t2)∈AFsec

t1∈Tvul
(t1=t2)∈AFvul

t2∈Tvul
(t1=t2)∈AFvul

a∈AFsec
a∈WFFsec

a∈AFvul
a∈WFFvul

w∈WFFsec
¬w∈WFFsec

w∈WFFvul
¬w∈WFFvul

w∈WFFsec
(ϑ x) w∈WFFsec

w∈WFFvul
(ϑ x) w∈WFFvul

w1∈WFFvul
(w1θ w2)∈WFFvul

w2∈WFFvul
(w1θ w2)∈WFFvul

w1∈WFFsec w2∈WFFsec
(w1θ w2)∈WFFsec

6.3 Proposed SQLIA Prevention Technique

The proposed scheme has three phases, the first one is performed statically, while the
latter two are performed dynamically.

1. Obfuscating the legitimate SQL statement Q into Q′ at each hotspot of the appli-
cation.

2. After merging the user inputs into the obfuscated SQL statement at run-time,
the dynamic verifier checks the obfuscated statement at atomic formula level in
order to detect the presence of possible SQLIA.

3. Reconstruction into the original SQL statement Q from the obfuscated statement
Q′ before submitting it to the database, if no possible SQLIA was detected.

The overall architecture of our approach is depicted in Figure 6.1 where at the begin-
ning we assume that the user launches a job involving one or more web applications

152

6.3 Proposed Technique

interacting with the DBMS. In the static analysis phase, the SQL statements in the

Figure 6.1: Architecture of the proposed scheme for SQLIA

Obfuscator

Input/Output

Atomic Formula Level Dynamic

Verifier to detect possible

SQLIA

Deobfuscator

Application with original

SQL statements

Application with

obfuscated SQL statements

User Inputs

Obfuscated statements merged

with user inputs

Yes: Abort and Report

No

DBMS

Original SQL statements

Dynamic

Phase

Static Phase

application are replaced by the ones in obfuscated form. The main idea behind the
obfuscation of a SQL string is just to avoid the string concatenation operation in SQL
code generation process, which is considered as the possible root cause of SQLIA (158).
The obfuscation is carried out by converting the SQL statement Q = 〈A, φ〉 into a form
such that the pre-condition φ is partitioned into two sets Sc and S f , where the for-
mer contains all connectives (AND, OR, NOT) of φ, and the latter contains all atomic
formulas present in φ.

During run-time, the inputs provided by the user are merged into the atomic
formulas in S f . The dynamic verifier, then, verifies at atomic formula level for the
possible existence of SQLIA. The task of the dynamic verifier is to determine whether
the elements in the set S f are valid atomic formulas or not. Thus the input of the
dynamic verifier is an atomic formula merged with user input, and the output is a
boolean value indicating whether it is a valid atomic formula or not. If any violation is
detected in the verification phase, the dynamic verifier reports it as a possible SQLIA,
otherwise the run-time converter (which may be part of the verifier) converts the
obfuscated statement into the original form before submitting it to the DBMS.

153

6. SQL INJECTION ATTACKS

The attractive features of this scheme is that the static phase removes the traditional
string concatenation operations (which is the root cause of possible SQLIA) used to
build all the SQL code in the application and replace them by an obfuscated form.
Since the user inputs are merged into the atomic formulas in obfuscated form, there
is no chance to mix-up the malicious input with the other legitimate control elements
of the SQL statements, and the dynamic verification at atomic formula level can easily
detect the presence of possible SQLIA. The number of dynamic verification is reduced
by introducing two categories of terms and formulas: secure and vulnerable ones. The
verification is carried out only over the vulnerable atomic formulas. Moreover, we can
avoid obfuscation for those statements which have secure pre-conditions.

For the sake of simplicity, in the rest of this section, we consider the following
assumptions:

1. The passive part φ of the SQL statement is a function of user input, whereas the
active part is not.

2. The developer-provided part of SQL statement is reliable, whereas the user-
provided part is not trusted and vulnerable to SQLIA.

3. Users are not permitted to provide any control elements of SQL statement. They
are only allowed to provide the data elements to the SQL statement.

Observe that the assumptions above do not yield to severe limitations, and are reason-
able in practice.

6.3.1 Obfuscation of SQL Statements

In this section, we discuss the obfuscation scheme. We first illustrate it on a simple
example, and then we present the actual algorithm.

Suppose, φ1, φ2, ..., φn represent a set of atomic predicate formulas involved in a
pre-condition φ of a SQL statement Q. For example, let the following formula repre-
sent a pre-condition φ which contains the atomic formulas φ1, φ2, ..., φ7:

φ = (φ1 AND φ2 OR φ3)AND(φ4 OR (NOTφ5)) OR φ6 AND φ7

For the simplicity of representation, we denote AND, OR, NOT by ×,+ and ! respec-
tively. Thus,

φ = (φ1 × φ2 + φ3) × (φ4 + (!φ5)) + φ6 × φ7

Since the connectives are unary or binary, the parse tree of φ represents a binary tree
as shown in Figure 6.2. The obfuscation of the original SQL statement Q is obtained by

154

6.3 Proposed Technique

Figure 6.2: The parse-tree of φ

4φ

+

×

×

+ +

× 3φ

1φ 2φ
5φ

6φ 7φ

!

converting the pre-condition φ in such a form in which it is separated into two distinct
partitions. The first partition contains all the connectives (×,+, !) of φ, whereas the
second partition contains all the atomic formulas φ1, . . . , φn of φ.

Observe that if we convert φ into some prefix or postfix form considering ×,+, ! as
operators and φi, i = 1, . . . ,n, as operands, still there is a mixing of connectives and
formulas. For example, if we convert the above formula φ into prefix form we get:
+ × + × φ1φ2φ3 + φ4!φ5 × φ6φ7. Since only a fraction of the connectives (×,+, !) of φ
has been separated, still there is a chance of possible SQLIA.

To remove this problem and to obtain two exclusive partitions of connectives and
atomic formulas, we adopt a different technique consisting of the following steps:

Assign a unique label to each of the connectives (×,+, !) and atomic formulas φi,
i=1,..,n in φ, and partition the connectives and atomic formulas into two different
sets.

The task of assigning unique label is performed as follows: we start assigning a bit to
each node in the parse tree by assigning 0 to the root node. If any internal node has
single child, assign NULL to that child node. Otherwise, the left and right child of the
node are assigned with 0 and 1 respectively. Continue this process until all the nodes
of the parse tree has been assigned by bits. The bit-assigned binary parse tree of the
formula φ of our example is shown in Figure 6.3. We know that each node in a tree has
a unique path from the root to that node. To get a unique label for a node v, traverse
the path from root to the node v in the tree. Collect all the bits of the nodes appearing
in that path and concatenate them in the direction of traversing. This gives a unique
binary string which is used as a unique label. For example, in the bit-assigned parse
tree of Figure 6.3, the unique label for φ4 is 0010, and for φ5 is 0011 (equivalently,

155

6. SQL INJECTION ATTACKS

Figure 6.3: The bit-assigned parse-tree of φ

4φ 0

+ 0

× 1

× 0

+ 0 + 1

× 0 3φ 1

1φ 0 2φ 1

5φ NULL

6φ 0 7φ 1

! 1

0011NULL). This unique labels allow to reconstruct the original SQL statement from
the obfuscated form (as described later).

We convert the above pre-condition φ into a new form in which each token is
represented by a tuple 〈c, lc〉 or 〈 f , l f 〉, where c ∈ {×,+, !} and f ∈ {φi | i = 1, ..,n}. The
unique labels lc and l f obtained from the bit-assigned parse tree, are associated with c
and f respectively. The converted φ results into:

(〈φ1, 00000〉 〈×, 0000〉 〈φ2, 00001〉 〈+, 000〉 〈φ3, 0001〉) 〈×, 00〉 (〈φ4, 0010〉 〈+, 001〉 (〈!, 0011〉 〈φ5, 0011〉))
〈+, 0〉 〈φ6, 010〉 〈×, 01〉 〈φ7, 011〉

Now we are in position to construct two distinct sets Sc and S f taking all the con-
nectives into one and all the atomic formulas into the other respectively. Thus,

Sc = {〈×, 0000〉, 〈+, 000〉, 〈×, 00〉, 〈+, 001〉, 〈!, 0011〉, 〈+, 0〉, 〈×, 01〉}

S f = {〈φ1, 00000〉, 〈φ2, 00001〉, 〈φ3, 0001〉, 〈φ4, 0010〉, 〈φ5, 0011〉, 〈φ6, 010〉, 〈φ7, 011〉}

These two sets Sc and S f represent the obfuscated pre-condition. So, the obfuscated
SQL statement can be written as: Q′ = 〈A, [Sc,S f]〉.

It is worthwhile to mention that the order of the elements in the two partitions Sc

and S f are not relevant at all. At run-time, inputs given by the users are merged into
the atomic formulas in S f . Since S f is a set of atomic formulas and user inputs are part
of the elements in S f at run-time, there is a strong chance for the attacker to change
the number of elements (atomic formulas) in S f . But their target can not be successful
anymore because of the fixed number of connectives present in the set Sc. We can see
in the next section that, any change in the number of atomic formulas in S f would
yield the failure of the deobfuscation phase.

The dynamic verifier will verify the atomic formulas for the possible SQLIA after

156

6.3 Proposed Technique

getting run-time inputs. The input of the dynamic verifier is an atomic formula
merged with user input and the output is a boolean value indicating whether it is
a valid atomic formula or not. To reduce the number of verifications, we categorize
each atomic formula in S f based on whether it belongs to AFsec or AFvul and tag them
accordingly at the end of the static phase. During the dynamic phase, only the atomic
formulas which are tagged as vulnerable will be checked for possible SQLIA. Also note
that for any SQL statement Q = 〈A, φ〉, we do not obfuscate it if φ ∈ WFFsec. In case
of nested queries, the obfuscation-verification-deobfuscation procedure is performed
from the inner-most query to the outer-most one.

We are now in position to formalize the algorithm performing this obfuscation part,
as shown in Figure 6.4.

Figure 6.4: SQL Obfuscation Algorithm

Algorithm 5: Obfuscate SQL

Input: Original SQL statement Q = 〈A, φ〉
Output: Obfuscated SQL statement Q′ = 〈A, [Sc,S f]〉

1. Check whether φ ∈WFFsec or not. If not, perform steps 2-8.
2. Generate binary parse tree of the pre-condition φ of Q.
3. Assign root node by 0. If any node has single child, assign NULL to this child and

if any node has two children, assign left child by 0 and right child by 1, respectively.
Continue this step until all the nodes of the tree are assigned.

4. Assign each of the atomic formulas and connectives inφ by a unique label obtained
from the parse tree as follows: for a node v, traverse from root to node v and collect
all bits of the nodes appearing in the path. Concatenate all those bits in the direction
of traversing. This gives a bit string which is used as the unique label for the node
v.

5. After performing step 4, all connectives c and atomic formulas f of φwill be of the
form 〈c, lc〉 and 〈 f , l f 〉, where lc and l f denote the unique labels assigned to c and f ,
respectively.

6. Partition the connectives 〈c, lc〉 and atomic formulas 〈 f , l f 〉 of φ into two distinct
sets Sc and S f , respectively.

7. If for 〈 f , l f 〉 ∈ S f and f ∈ AFsec, tag it as secure i.e. tag(f) := sec; otherwise, tag it as
vulnerable i.e. tag(f) := vul.

8. The obfuscated form of the SQL statement Q is, therefore, Q′ = 〈A, [Sc,S f]〉.

157

6. SQL INJECTION ATTACKS

6.3.2 Deobfuscation of SQL Statements

We already mentioned that deobfuscation is done only when no SQLIA has been
detected by dynamic atomic formula level verifier. Of course, if the original SQL
statements are kept, then there is no need of deobfuscation. If this is not the case,
the following technique reconstructs the original SQL statement Q = 〈A, φ〉 from the
obfuscated form Q′ = 〈A, [Sc,S f]〉.

To restore φ from Sc and S f (hence, from Q′ to Q) in the dynamic phase before
submitting it to the database engine, the following steps are performed repeatedly
until Sc is empty:

Step 1: Identify the predicate formulas in S f whose label matches with the label of
the connectives in Sc i.e. ∃〈c, lc〉 ∈ Sc,∃〈 f , l f 〉 ∈ S f : |lc| = |l f | and lc ⊗ l f = 0.
⊗ represents bit-wise XOR operation. Apply the unary connective c on the
corresponding matched formula f to get resulting formula fr. Replace 〈 f , l f 〉 by
〈 fr, lc〉 in S f . Remove 〈c, lc〉 from Sc.

Step 2: Identify all the pair of elements {〈 f1, l1〉, 〈 f2, l2〉} ⊆ S f such that, |l1| = |l2| and
only the last bit of l1 and l2 differs. Identify the connective 〈c, l〉 ∈ Sc where
|l| = |l1| − 1 = |l2| − 1 and l is equal to the common part of l1 and l2. Apply the
binary connective c on that pair to obtain the resulting formula fr. Replace the
pair by a new tuple 〈 fr, l〉 in S f and remove 〈c, l〉 from Sc.

The formal description of possible SQLIA detection and deobfuscation algorithm is
shown in Figure 6.5.

We illustrate the deobfuscation technique with the same example of section 6.3.1.
Suppose, the obfuscated SQL statement Q′ = 〈A, [Sc,S f]〉where Sc and S f are:

Sc = {〈×, 0000〉, 〈+, 000〉, 〈×, 00〉, 〈+, 001〉, 〈!, 0011〉, 〈+, 0〉, 〈×, 01〉}

S f = {〈φ1, 00000〉, 〈φ2, 00001〉, 〈φ3, 0001〉, 〈φ4, 0010〉, 〈φ5, 0011〉, 〈φ6, 010〉, 〈φ7, 011〉}

We perform the two steps above repeatedly until the set Sc is empty.

1. In the example, the label of 〈φ5, 0011〉 ∈ S f matches with the label of 〈!, 0011〉 ∈ Sc.
So after performing step 1 we get:

Sc = {〈×, 0000〉, 〈+, 000〉, 〈×, 00〉, 〈+, 001〉, 〈+, 0〉, 〈×, 01〉}

S f = {〈φ1, 00000〉, 〈φ2, 00001〉, 〈φ3, 0001〉, 〈φ4, 0010〉, 〈(!φ5), 0011〉, 〈φ6, 010〉, 〈φ7, 011〉}

158

6.3 Proposed Technique

Figure 6.5: Algorithm to Detect possible SQLIA and deobfuscation of the SQL statements

Algorithm 6: Deobfuscate SQL

Input: Obfuscated SQL statement Q′ = 〈A, [Sc,S f]〉
Output: Claiming for possible SQLIA as true or false; Original SQL statement Q = 〈A, φ〉

1. Perform dynamic verification on all atomic formulas 〈 f , l f 〉 ∈ S f ∧ tag(f) = vul
merged with run-time inputs given by the users, for any possible violation. If
violates, claim:=true else claim:=false.

2. If claim=false, perform steps 3(a), 3(b), 4(a), 4(b) & 5 until Sc is empty.
3(a). Identify the predicate formulas in S f whose label matches with the label of the

connectives in Sc i.e. ∃〈c, lc〉 ∈ Sc,∃〈 f , l f 〉 ∈ S f : |lc| = |l f | and lc ⊗ l f = 0. ⊗ represents
bit-wise XOR operation.

3(b). Apply the unary connective c on the corresponding matched formula f to get
resulting formula fr. Replace 〈 f , l f 〉 by 〈 fr, lc〉 in S f . Remove 〈c, lc〉 from Sc.

4(a). Identify all the pair of elements {〈 f1, l1〉, 〈 f2, l2〉} ⊆ S f such that, |l1| = |l2| and only
the last bit of l1 and l2 differs.

4(b). Identify the connective 〈c, l〉 ∈ Sc where |l| = |l1| − 1 = |l2| − 1 and l is equal to the
common part of l1 and l2. Apply the binary connective c on that pair to obtain the
resulting formula fr. Replace the pair by a new tuple 〈 fr, l〉 in S f and Remove 〈c, l〉
from Sc.

5. If Sc is empty, S f contains the original form of pre-conditionφ and submit Q = 〈A, φ〉
to the DBMS.

2. Following step 2, we get three pairs whose labels are equal in length and differs
by the last bit only: {〈φ1, 00000〉, 〈φ2, 00001〉}, {〈φ4, 0010〉, 〈(!φ5), 0011〉}, and {〈φ6, 010〉,
〈φ7, 011〉}. Since the label of 〈×, 0000〉 equals to the common part of the pair
{〈φ1, 00000〉, 〈φ2, 00001〉} and similarly, 〈+, 001〉 and 〈×, 01〉 for the pairs {〈φ4, 0010〉,
〈(!φ5), 0011〉} and {〈φ6, 010〉, 〈φ7, 011〉} respectively, after performing step 2, we get,

Sc = {〈+, 000〉, 〈×, 00〉, 〈+, 0〉}

S f = {〈φ1 × φ2, 0000〉, 〈φ3, 0001〉, 〈φ4 + (!φ5), 001〉, 〈φ6 × φ7, 01〉}

3. Since Sc is not empty, we repeat the same until Sc is empty and finally we obtain,

φ = ((φ1 × φ2 + φ3) × (φ4 + (!φ5)) + φ6 × φ7)

In this way, we can recover the original SQL statement Q = 〈A, φ〉 from the obfuscated
form Q′ = 〈A, [Sc,S f]〉.

159

6. SQL INJECTION ATTACKS

Lemma 8 (Time complexity) The time complexity of obfuscation and deobfuscation of a SQL
statement are O(n + m) and O(n2) respectively, where n and m are the number of atomic
formulas and connectives in the pre-condition φ.

Proof The time complexity of the obfuscation step mainly depends on two facts: (i)
bit-assigned parse tree generation and, (ii) assigning unique label to each connectives
and atomic formulas of φ.

Let n and m be the number of atomic formulas and connectives present in the pre-
condition φ. All the leaf nodes of the parse tree are atomic formulas whereas internal
nodes are the connectives.

The generation of parse tree as well as traversing of it to assign bits and extracting
unique labels for each of the nodes, needs traversing every nodes exactly once. Hence,
the time complexity of the obfuscation is O(n + m).

Time complexity of the deobfuscation step depends on two main operations: (i)
match the labels of unary connectives with the labels of elements in S f , (ii) find the
pairs in S f and binary connectives in Sc with specific criterion. Let p be the number
of unary connectives in Sc. It is obvious that m − p = n − 1. The worst case time
complexity for the first operation is O(np) whereas best case is O(p2). The time needed
to perform the second operation is O(n2 + nm). Since, n ≥ m and n ≥ p, the worst-case
time complexity for the deobfuscation step is, therefore, O(n2).

6.3.3 Example

Let us illustrate the overall scheme with an example.

Example 16 Recall the example of introduction part where an application generates the fol-
lowing SQL query:

Q ="SELECT * FROM emp WHERE username=‘" +

request.getParameter("username") + "’ AND password=‘" +

request.getParameter("password") + "’;"

160

6.3 Proposed Technique

The above query can be represented by the following components:

A : “SELECT * FROM emp”

φ1 : “username= ‘input1’”

φ2 : “password= ‘input2’”

φ : φ1 AND φ2

Q : 〈A, φ〉

where,
input1 = request.getParameter ("username")

input2 = request.getParameter("password")

The bit-assigned binary parse tree of φ of this example is shown in Figure 6.6. Thus, the

Figure 6.6: The bit-assigned parse-tree of the example pre-condition φ

 0

1 0 2 1

obfuscated query is: Q′ = 〈 A, [Sc,S f] 〉 where, Sc = { 〈×, 0〉 } and S f = { 〈φ1, 00〉, 〈φ2, 01〉 }.
Suppose, the attacker gives the following inputs: “alice’ OR ‘1’=‘1” and “secret” for

input1 and input2 respectively. After merging by these inputs, the atomic formulas in S f of the
obfuscated query would be:

φ1 : “username= ‘alice’ OR ‘1’=‘1’”

φ2 : “password= ‘secret’”

Clearly, the dynamic verification at atomic formula level says that φ1 is no more indicating a
valid atomic formula. So it can be identified as a possible SQLIA.

6.3.4 Static Vs. Dynamic Issues

Previous works (27, 92, 152) proposed mechanisms to generate static models that are
used to verify against the SQL statements at dynamic time where the user inputs are

161

6. SQL INJECTION ATTACKS

allowed to merge into the original SQL statements. However, theses schemes may yield
to false positive in cases where the users are allowed to provide structural attributes
as input. For instance, suppose that a web application generates the following SQL
query:

"SELECT * FROM users WHERE id=" + request.getParameter("id") + ";"

If the web application allows users to provide arbitrary arithmetic expression as input,
the structure of the SQL statements depends on the expression in the id field. Since
(27, 92, 152) rely on the fixed static model built at compile time, they yield to a false
positive. However our scheme can treat them as valid atomic formulas.

Systems like ModSecurity (147) are provided with input validation using defensive
coding practices. They use a white-list/black-list approach to allow/block the good/bad
inputs in order to prevent possible SQLIA. These systems are application-specific
and developers are responsible to create and maintain white/black-list for specific
applications: this is prone to possible human error and can cause both false positives
and false negatives. The advantages of our scheme over defensive coding practices
is that the developers need not to be aware about the obfuscation-deobfuscation, and
completely application independent.

The technique in (25) is based on randomization of the keywords of all SQL state-
ments in the application by appending each keyword with a random value. In practice,
it suffers from many aspects. First, a modified database would require for all applica-
tions submitting SQL statements to conform to its new language. Second, the proxy
server which is responsible to check the syntactic validity of the whole randomized
statements and de-randomize the instruction set for syntactically valid ones, incurs a
significant infrastructure overhead. Third, this technique completely relies on the fact
that the attacker is unable to discover the random secret number used to randomize
(93). However, in our scheme, the dynamic verifier checks only the atomic formu-
las appearing in the statements and this run-time overhead is further minimized by
introducing secure and vulnerable atomic formulas: verification is carried out over
vulnerable atomic formulas only. Furthermore, unlike (25), for the SQL statements
that contain secure passive part, we do not apply obfuscation-deobfuscation to avoid
unnecessary processing.

In brief, the obfuscation/deobfuscation approach presented above has the following
advantages: the verification for the presence of possible SQLIA is performed at atomic
formula level and only on those atomic formulas which are tagged as vulnerable; the
scheme avoids the root cause (string concatenation operation) of SQLIA in traditional

162

6.3 Proposed Technique

dynamic SQL code generation; the developer can enjoy the traditional application
development techniques and need not to be aware about the obfuscation/deobfuscation
techniques. Unlike most of the existing methods, this scheme does not depend on the
static models or the private key. It depends only on the accuracy of the dynamic
verifier at atomic formula level.

163

6. SQL INJECTION ATTACKS

164

Chapter 7

Cooperative Query Answering

[Part of this chapter is already published in (84)]

Traditional query processing system enforces database-users to issue precisely spec-
ified queries, while the system provides limited and exact answers, or no information
at all when the exact answer is unavailable in the database. Therefore, it is important
to the database-users to fully understand problem domain, query syntax, database
schema, and underlying database content.

To remedy such shortcomings and to enhance the effectiveness of the informa-
tion retrieval, the notion of cooperative query answering (34, 34, 36, 61, 115) has
been explored. The cooperative query answering system provides users an intelli-
gent database interface that allows them to issue approximate queries independent
to the underlying database structure and its content, and provides additional useful
information as well as the exact answers.

As an example, in response to the query about “specific flight departing at 10 a.m.
from Rome Fiumicino airport to Paris Orly airport” the cooperative query answering
system may return “all flight information during morning time from airports in Rome
to airports in Paris”, and thus, the user will be able to choose other flight if the specific
flight is unavailable. Such query answering is also known as neighborhood query
answering, as instead of providing exact answers it captures neighboring information
as well. Cooperative query answering system also gives users the opportunity to issue
conceptual or approximate queries where they might ask more general questions, for
example, “how to travel from Rome to Paris at a reasonable cost during morning time”
or “find the flights that fly during night only” without knowing the exact database
schema and its content. One of the benefits of issuing conceptual queries is to avoid

165

7. COOPERATIVE QUERY ANSWERING

reissuing of the set of concrete queries if the corresponding conceptual query returns
empty result.

Cooperative query answering depends on the context in which queries are issued.
The context includes the identity of the issuer, the intent or purpose of the query, the
requirements that make explicit the answers relevant to the user etc. The following
example illustrates it clearly: suppose a user issues a query asking the list of airports
that are similar to “Venice Marcopolo” airport. Different contexts define the meaning of
“similarity between airports” differently. For instance, to any surveyor “similarity” may
refer in terms of the size and facilities provided in the airport, whereas to any flight
company “similarity” may refer in terms of business point of view i.e. flight landing
charges or other relevant taxes.

In chapter 3, we introduced the Abstract Interpretation framework to the field of
database query languages as a way to provide sound approximation of the query
languages. In this chapter, we extend this to the field of cooperative query answering
system: we propose a cooperative query answering scheme based on the Abstract
Interpretation framework that consists of three phases - transformation of the whole
query system by using abstract representation of the data values, cooperative query
evaluation over the abstract domain, and concretization of the cooperative abstract
result. The main contributions in this chapter are: (i) we express the cooperative query
evaluation by abstract databases, (ii) we express how to deal with cooperative query
evaluation in presence of aggregate and negation operations, (iii) we address three key
issues: soundness, relevancy and optimality of the cooperative answers.

The structure of this chapter is as follows: Section 7.1 discusses related work in
the literature and motivation of our work. Section 7.2 describes the key issues in
the context of cooperative query answering. In Section 7.3, we discuss our proposed
scheme and we show how our proposal is able to address the key issues.

7.1 Related Work and Motivation

Several techniques have been proposed in the literature based on logic model, semantic
distance, fuzzy set theory, abstraction, and so on. The logic-based models (26, 61) use
first-order predicate logic to represent the database, the knowledge-base, and the
users’ queries. Content of the knowledge base helps in guiding query reformulation
into more flexible and generalized query that provides relaxed, intelligent cooperative
answers. However, these approaches have limitations in guiding the query relaxation
process and the less intuitive query answering process due to lack of its expressiveness.

166

7.2 Key Issues

The semantic distance-based approaches (106, 157) use the notion of semantic
distance to represent the degree of similarity between data values, and provide ranked
cooperative results sorted according to their semantic distances. For categorical data,
distances between data values are stored in a table. However, since every pair is
supposed to have semantic distances, in realistic application domain these approaches
are inefficient as the table size gets extremely larger and becomes harder to maintain
the consistency of the distance measures.

In (76), the initial queries are transformed into flexible form based on knowledge
base and fuzzy set theory. Finally, these queries are rewritten into boolean queries and
evaluated to the traditional database.

In abstraction-based models (35, 36), the data are organized into multilevel ab-
straction hierarchies where nodes at higher level are the abstract representation of the
nodes at lower level. The cooperative query answering is accomplished by generating
a set of refined concrete queries by performing query abstraction and query refine-
ment process by moving upward or downward through the hierarchy. Finally, the
refined queries are issued to the database that provide additional useful information.
These approaches suffer from high overhead when the degree of relaxation for a query
is large, as the query abstraction-refinement process produces a large set of concrete
queries to be issued to the database. To remedy this, fuzzy set theory or semantic dis-
tance approach is combined with abstraction hierarchy (34, 105, 115) in order to control
the abstraction-refinement process and to provide a measure of nearness between exact
and approximate answers.

However, all the schemes mentioned above do not provide any formal framework
to cooperative query answering system. In addition, none of these schemes enlightens
the key issues: soundness, relevancy and optimality in the context of cooperativeness
of the query answers. Most of the existing techniques (34, 35, 36, 105, 115) suffer from
the problem of soundness when query contains set operations UNION, INTERSECT,
MINUS. In case of conceptual or approximate queries where approximate results are
desirable, none of the schemes focuses on the way to compute aggregate functions
when appearing in a query so as to preserve the soundness.

7.2 Key Issues: Soundness, Relevancy, Optimality

Any cooperative query answering scheme should respect three key issues: soundness,
relevancy, and optimality. Intuitively, a cooperative query answer is sound if it is equal
to or it is a superset of the corresponding extensional query answer. The relevancy of

167

7. COOPERATIVE QUERY ANSWERING

the answers w.r.t. the context concerns with avoiding the tuples that have no value
to the user: all the information in the cooperative answer should have relevancy to
the user. The third criterion optimality implies that the system should return as much
information as possible, while satisfying the first two properties. Since there exist
many cooperative answers corresponding to a given query under given context, the
optimality describes the “preferability” of the query answers to the user.

Given a cooperative query processing system B, a database dB, a context C, and a
query Q, the result obtained by the cooperative system is R = B(dB,C,Q).

Definition 16 (Soundness) Given a database dB, a query Q, and a context C. Let R be
the extensional query answer obtained by processing Q on dB. The cooperative answer R′ =

B(dB,C,Q) is sound if R′ ⊇ R.

The relevancy of the information to a user depends on his interests. These interests
can be expressed in terms of constraints represented by well-formed formulas in first
order logic. If the information provided by a cooperative system satisfies the set of
constraints representing user’s interests, it is treated as relevant. For instance, “flight
duration in the result set must be less than 3 hours” can be used as a constraint that
determines the relevancy of the information in the cooperative answer.

Definition 17 (Relevancy) Given a database dB, a query Q, and a context C. Let S(Q) be the
set of constraints represented by well-formed formulas in first order logic that make explicit the
answers relevant to the user. The cooperative answer R = B(dB,C,Q) respects the relevancy if
∀x ∈ R : x |= S(Q).

It is worthwhile to mention that the system relaxes users’ queries to obtain neighboring
and conceptually related answers in addition to the exact answer. However, the
formulas appearing in the pre-condition φ of the query Q is different from the set of
constraints appearing in S(Q) that determines the relevancy of the cooperative answers.
The constraints in S(Q), in contrast to φ, is strict in the sense that there is no question
of relaxing them, and violation of any of these constraints by the information in the
cooperative answer will be treated as irrelevant.

A cooperative system may return different cooperative answers to a user in a given
context. However, it is sensible to define a measure that describes the “preferability”
of each answer. A cooperative answer is called more optimal than another answer if it
is more preferable to the user in the given context than the other.

Definition 18 (Optimality) Given a database dB, a query Q, a context C, and a set of
constraints S(Q) expressing user’s requirements. The cooperative answer R = B(dB,C,Q) is

168

7.3 Proposed Scheme

more optimal than R′ = B′(dB,C,Q) if

{x ∈ R : x |= S(Q)} ⊇ {x ∈ R′ : x |= S(Q)} and {y ∈ R : y 6|= S(Q)} ⊆ {y ∈ R′ : y 6|= S(Q)}

In other words, a cooperative answer is called more optimal than another answer when
it contains more relevant information and less irrelevant information w.r.t. S(Q) than
the other.

7.3 Proposed Scheme

Our proposal consists of three phases: (i) Transforming the databases and its query
languages by using abstract representation of the data values, (ii) Cooperative query
evaluation over the abstract domain, and finally, (iii) Concretization of the cooperative
abstract result.

7.3.1 Transforming from Concrete to Abstract Domain

Given a concrete database dB, we transform it into an abstract database by using the
Galois Connection (℘(Dcon

x), αx, γx,Dabs
x), where ℘(Dcon

x) and Dabs
x represent the pow-

erset of concrete domain of x and the abstract domain of x respectively, whereas αx

and γx represent the corresponding abstraction and concretization functions (denoted
αx : ℘(Dcon

x) → Dabs
x and γx : Dabs

x → ℘(Dcon
x)) respectively. In case of partial ab-

stract databases, for some attributes x the abstraction and concretization functions are
identity functions id, and thus, use the Galois Connection (℘(Dcon

x), id, id, ℘(Dcon
x)).

The level of approximation of the database information obtained by abstraction
gives a measure of the “preferability” of the cooperative answers and depends on the
context in which queries are issued. The best correct approximation (64) of the database
information according to the context provides the optimal cooperative answers to the
end-users.

Example 17 The database in Table 7.1(a) consists of concrete table “ f light” that provides
available flight information to the end-users of a travel agent application. The corresponding
abstract table “ f light]” is shown in Table 7.1(b) where source and destination airports are
abstracted by the provinces they belong, the numerical values of the cost attribute are abstracted
by the elements from the domain of intervals, the values of the start-time/reach-time attributes
are abstracted by the periods from the abstract domain PERIOD = {⊥, morning, a f ternoon,
evening, night, >} where > represents “anytime” and ⊥ represents “don’t know”, the flight
no. and availability attributes are abstracted by the topmost element > of their corresponding

169

7. COOPERATIVE QUERY ANSWERING

abstract lattices. Observe that the number of abstract tuples in an abstract database may be
less than that in the corresponding concrete database.

Table 7.1: A concrete and its corresponding Abstract Database

(a) Database containing concrete table “ f light”

flight no. source destination cost ($) start-time reach-time availability
F001 Fiumicino

(FCO)
Orly (ORY) 210.57 8.05 10.45 N

F002 Marcopolo
(VCE)

Orly (ORY) 410.30 18.30 21.00 Y

F003 Ciampino (CIA) Roissy Charles de
Gaulle (CDG)

300.00 6.30 8.30 Y

F004 Urbe (LIRU) Lyon-Saint Exupéry
(LYS)

128.28 22.05 23.40 N

F005 Treviso (TSF) Granby-Grand
County (GNB)

200.15 16.00 17.20 Y

F006 Viterbo (LIRV) Beauvais (BVA) 310.30 7.20 9.30 Y

(b) Abstract database containing abstract table “ f light]”

flight no.] source] destination] cost] start-time] reach-time] availability]

> Rome Paris [200.00-249.99] morning morning >

> Venice Paris [400.00-449.99] evening night >

> Rome Paris [300.00-349.99] morning morning >

> Rome Lyon [100.00-149.99] night night >

> Venice Lyon [200.00-249.99] afternoon evening >

7.3.2 Cooperative Query Evaluation

The cooperative query evaluation is performed over (partial) abstract database dB] in
an abstract domain of interest. Given a query Q, the proposed cooperative system
generates its abstract version Q] and executes it on the abstract database dB]. The
abstract query evaluation in an abstract domain of interest is described in detail in
chapter 3. The cooperative system follows the same to execute users’ queries by
transforming them into the corresponding abstract versions.

Example 18 Consider an online booking application interacting with the concrete database
depicted in Table 7.1(a). Suppose a user wants to travel from Rome Fiumicino airport to Paris
Orly airport by a flight such that flight cost is less than or equal to 300 USD. So the following
query satisfying the required criterion can be issued:

Q1 =SELECT * FROM f light WHERE source = ”Fiumicino” AND destination = ”Orly” AND

cost ≤ 300.00 AND availability = Y;

170

7.3 Proposed Scheme

Observe that the result ξ1 of the query Q1 is empty i.e. ξ1 = ∅, because seats are not available
in the flight from Rome Fiumicino to Paris Orly airport.

To obtain cooperative answers, we lift the whole query system from concrete to the abstract
domain of interests by abstracting the database information and the associated query languages.
The abstract database corresponding to the concrete database (Table 7.1(a)) is depicted in Table
7.1(b), and the abstract query corresponding to the concrete query Q1 is shown below:

Q]
1 =SELECT] * FROM flight] WHERE source] =] ”Rome”AND destination] =] ”Paris” AND

cost] ≤] [300.00, 349.99] AND availability] =] >;

where the abstract operation ≤] for intervals is defined as follows:

[li, hi] ≤] [l j, h j] ,


true if hi ≤ l j

f alse if li > h j

> otherwise

and the abstract equality =] is defined as usual.
When the imprecise abstract query Q]

1 is executed over the abstract database (Table 7.1(b)),
it returns the flight information depicted in Table 7.2. This way, the abstraction of the databases
and its query languages helps in obtaining additional information in the result.

Table 7.2: ξ]1: Result of Q]
1

flight no.] source] destination] cost] start-time] reach-time] availability]

> Rome Paris [200.00-249.99] morning morning >

> Rome Paris [300.00-349.99] morning morning >

The cooperative query evaluation in presence of aggregate functions and set opera-
tions is similar as defined in chapter 3. Observe that soundness is preserved as the
concretization of the abstract queries always results into a sound approximation of the
corresponding concrete queries.

7.3.3 Concretization of the cooperative abstract result

Given a concrete and the corresponding abstract databases dB and dB] respectively,
let ξ] be the abstract answer obtained by executing the abstract query Q] on dB]. The
cooperative answer R = B(dB,C,Q) returned to the user is obtained by: R = γ(ξ])∩dB.
That is, the cooperative answer is obtained by mapping the abstract result into its
concrete counterpart. For instance, after mapping ξ]1 (Table 7.2), the user gets its
concrete counterpart R1 shown in Table 7.3.

171

7. COOPERATIVE QUERY ANSWERING

Table 7.3: R1: Concrete Result obtained by concretizing the abstract result ξ]1

flight no. source destination cost ($) start-time reach-time availability
F001 Fiumicino

(FCO)
Orly (ORY) 210.57 8.05 10.45 N

F003 Ciampino (CIA) Roissy Charles de
Gaulle (CDG)

300.00 6.30 8.30 Y

F006 Viterbo (LIRV) Beauvais (BVA) 310.30 7.20 9.30 Y

7.3.4 Soundness, Relevancy, and Optimality of the Result

Suppose, dB and dB] represent a concrete database and its abstract version respectively.
If Q and Q] are representing the queries on concrete and abstract domain respectively,
let ξ and ξ] be the results of applying Q and Q] on the dB and dB] respectively.

Definition 19 Let dB] be an abstract table and Q] be an abstract query. Q] is sound iff
∀dB ∈ γ(dB]). ∀Q ∈ γ(Q]) : Q(dB) ∈ γ(Q](dB])).

Let us denote by the notation B�Dabs the fact that the cooperative system B uses the
abstract domain Dabs, and by Dabs

1 w Dabs
2 the fact that the abstract domain Dabs

1 is an
abstraction of Dabs

2 .

Definition 20 Given two abstract domain Dabs
1 and Dabs

2 . The domain Dabs
1 is an abstraction

of Dabs
2 (denoted Dabs

1 w Dabs
2) if ∀X]

∈ Dabs
2 , ∀x ∈ γ2(X]), ∃! l ∈ Dabs

1 : α1(x) = l, where
α1 is the abstraction function corresponding to Dabs

1 , and γ2 is the concretization functions
corresponding to Dabs

2 .

The extensional query answering system uses zero level abstraction and it returns only
the exact answer if available. More relaxation of the query indicates more abstraction
used by the cooperative system, returning more cooperative information to the users.
Thus whenever we tune the level of abstraction from lower to higher, the system
returns monotonically increasing answer set, i.e.

If (B�Dabs
1) and (B′ �Dabs

2) and (Dabs
1 w Dabs

2), then B(dB,C,Q) ⊇ B′(dB,C,Q)

When the term “relevancy” comes into the context, the tuning of abstraction must end
at a particular point, after which the system returns irrelevant additional information
that does not satisfy the constraints in S(Q), where S(Q) is the set of constraints that
make explicit the answers relevant to the user. We call the abstraction used at that
point as the best correct approximation of the database information. Best correct
approximation, thus, depends on the context that defines S(Q). More abstraction
beyond the best correct approximation level makes the answer partially relevant as it
includes additional irrelevant information w.r.t. S(Q).

172

7.3 Proposed Scheme

Example 19 The cooperative answer R1 of the query Q1 in Example 18 is shown in Table 7.3.
Let the constraint set be S(Q)={flights must be destined in the airport ORY/BVA/CDG/LYS,
flight duration must be less than 3 hours}. Observe that the cooperative answer in Table 7.3
is completely relevant as all tuples in the answer satisfy S(Q). If we use an higher level of
abstraction, for instance, if the source and destination airports in Table 7.1(a) are abstracted
by the nations they belong (in our example, Italy and France), the corresponding cooperative
answer R′1 of the query Q1 will contain all tuples of the concrete Table 7.1(a) except the tuple
with flight no. F002. The answer R′1 is partially relevant because one tuple among them (flight
no. equal to F005) does not satisfy S(Q).

Our system can work together with a filtering system that can filter out those tuples
from the partially relevant results that do not satisfy S(Q), and ranks the results based
on the satisfiability of tuples w.r.t. S(Q). However, the level of abstraction determines
the efficiency of the system with respect to the processing time.

Partial Order between Cooperative Answers

Given a database dB, a query Q, and a context C, the cooperative system may return
different cooperative answers to the user under context C depending on the level of
abstraction of the abstract domain which is used. We define a partial order between
any two cooperative answers: a cooperative answer R = B(dB,C,Q) is said to be better
than another answer R′ = B′(dB,C,Q) (denoted R ≤ R′) if R is more optimal than R′

(see definition 18). The partial-ordered set of all cooperative answers for a given query
under given context forms a lattice. The bottom most element R0 determines worst
cooperative answer which is completely irrelevant w.r.t. S(Q), whereas the top most
element Rn is the best cooperative answer which is completely relevant w.r.t. S(Q).

Example 20 The cooperative answer R1 of the query Q1 in Example 18 is shown in Table 7.3.
When we abstract the airports in Table 7.1(a) by the nations they belong, the corresponding
cooperative answer R′1 of the query Q1 will contain all tuples of the concrete Table 7.1(a) except
the tuple with flight no. F002. Since R′1 contains one irrelevant tuple (tuple with flight no.
F005) w.r.t. S(Q) as depicted in Example 19, after filtering out the irrelevant tuple we get the
result R2 shown in Table 7.4. Observe that R2 is better than the result R1 (i.e. R2 < R1) since
R2 is more optimal than R1 according to definition 18.

There exists a wide variety of abstract domains with different expressiveness and
complexity that focus on the linear relationship among program variables, such as
Interval Polyhedra (31, 32) to infer interval linear relationship, or Difference-Bound

173

7. COOPERATIVE QUERY ANSWERING

Table 7.4: R2: Cooperative result of Q1 while using more abstraction

flight no. source destination cost ($) start-time reach-time availability
F001 Fiumicino

(FCO)
Orly (ORY) 210.57 8.05 10.45 N

F003 Ciampino (CIA) Roissy Charles de
Gaulle (CDG)

300.00 6.30 8.30 Y

F004 Urbe (LIRU) Lyon-Saint Exupéry
(LYS)

128.28 22.05 23.40 N

F006 Viterbo (LIRV) Beauvais (BVA) 310.30 7.20 9.30 Y

Matrices (145) representing the constraints of the form x − y ≤ c and ±x ≤ c where x,
y are program variables and c is constant. We can exploit such abstract domains by
focusing on the set of constraint S(Q) that make the answers relevant to the users.

Our new cooperative query answering scheme needs to be further refined, in
particular, by investigating its application to more sophisticated scenarios on different
abstract domains, in order to properly address the tradeoff between accuracy and
efficiency.

7.4 Intensional Query Answering

Recently, there have been several independent efforts aimed at enhancing interfaces
to conventional databases with yet another feature, which we shall refer to as the
ability to compute intensional answers (148). Instead of always responding to a query
with a substitution for the variables in the query, it is sometimes more appropriate to
provide the users with an intensional answer. An intensional answer is a complement
of the conventional answer, comprising either a terse description of the answer or
various useful statements that concern the answer. It teaches users about the structure
of the databases and of the domain and help to clear up the misconception. For
instance, consider a query asking “Which students are enrolled in the university?”.
The traditional extensional answer provides the list of all students in the database,
which is really misleading. Thus, the answer “All students are enrolled.” is better and
more informative to the users.

Several works on intensional query answering for relational databases (198), de-
ductive databases (159), XML databases (141) etc have already been done. There might
be a very interesting relationship between cooperative query answering approach and
the intensional query answering one, as the later can be seen as an application of a
suitable abstraction to the result of a concrete query. This could be an interesting
direction that deserves to be further studied.

174

Chapter 8

Refinement of Abstract Program
Slicing techniques

[Part of this chapter is already published in (44, 88)]

Program slicing is a well-known decomposition technique that extracts from pro-
grams the statements which are relevant to a given behavior. It is a fundamental
operation for addressing many software-engineering problems, including program
understanding, debugging, maintenance, testing, parallelization, integration, software
measurement, etc. See, for instance, (37, 62, 63, 75, 109, 120, 123, 127, 149, 156, 160). The
notion of program slice was originally introduced by Mark Weiser (193) who defines
a static program slice as an executable subset of program statements that preserves
the original program’s behavior at a particular program point for a subset of program
variables for all program inputs. Therefore, the static slicing criterion is denoted by
〈p, v〉 where p is the program point and v is the variable of interest. This is not restric-
tive, as it can easily be extended to slicing with respect to a set of variables V, formed
from the union of the slices on each variable in V. In contrast, in dynamic slicing (119),
programmers are more interested in a slice that preserves the program’s behavior for
a specific program input rather than for all program inputs: the dependences that
occur in a specific execution of the program are taken into account. Therefore, the
slicing criterion for dynamic slicing is denoted by 〈p, v, i〉, where i represents the input
sequence of interest.

All the slicing techniques on imperative languages make use (explicitly or implic-
itly) of the notion of Program Dependence Graph (PDG) (58, 124, 156). Different forms
of PDG representation have been proposed, depending on the intended applications

175

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

(29, 95). Over the last 25 years, many PDG-based program slicing techniques have been
proposed (2, 68, 96, 150, 160, 170, 177). In general, a PDG makes explicit both the data
and control dependences for each operation in a program. Data dependences have
been used to represent only the relevant data flow relationship of a program, while
control dependences are derived from the actual control flow graph and represent only
the essential control flow relationships of a program.

The presence of SQL operations such as SELECT, INSERT, UPDATE or DELETE in
data-intensive applications that access or manipulate databases, requires the extension
of traditional Program Dependence Graphs (PDGs) into Database-Oriented Program
Dependence Graphs (DOPDGs), where two additional types of dependences, called
Program-Database (PD) Dependences and Database-Database (DD) Dependences,
need to be considered (194). A PD-Dependence arises between a SQL statement
and an imperative statement where either the database state defined by SQL state-
ment is used by the imperative statement or the database state defined by imperative
statement is used by the SQL statement. A DD-Dependence arises between two SQL
statements where the database state defined by one SQL statement is used by the other
SQL statement. The data dependences between imperative statements are similar as in
case of the traditional PDGs. Figure 8.1 depicts a pictorial view of the DOPDG-based
slicing approach for the programs embedding SQL statements. It is worthwhile to
note that the PDG/DOPDG-based slicing is somewhat restricted: a slice must be taken
w.r.t. variables that are defined or used at that program point.

Figure 8.1: DOPDG-based slicing for programs embedding SQL statements

Compute Control &

Data Dependences

Generate DOPDG Slicing Algorithm

DB
Program

Sliced

Program

Dependences

 Information

DOPDG

Slicing Criteria

DB’

Access

Manipulate Access

Manipulate

Program slicing can be defined in concrete as well as in abstract domain, where in

176

the former case we consider exact values of the program variables, while in the latter
case we consider some properties instead of their exact values. These properties are
represented as abstract domains of the variable domains in the context of Abstract
Interpretation. The notion of Abstract Program Slicing was first introduced by Hong,
Lee and Sokolsky (172). Some recent works includes semantics-based abstract pro-
gram slicing (139, 140, 200) and property-driven program slicing (18). Abstract slicing
helps in finding the statements affecting some particular properties of the variables
of interest. For instance, suppose a program variable at some point of execution is
not resulting the correct properties (represented by the domain of intervals, say) as
expected. In such case, abstract slicing can effectively be able to identify the statements
responsible for this error. Recently, Mastroeni and Nicolić (139) extended the theoret-
ical framework of slicing by Binkley (22) to an abstract domain, in order to define
abstract slicing and to represent and compare different forms of slicing in an abstract
domain. Slicing criterion in an abstract domain, thus, includes observable properties
of the variables of interest as well. For instance, static and dynamic abstract slicing
criteria are denoted by 〈p, v, ρ〉 and 〈p, v, i, ρ〉 respectively, where ρ is an observable
property of v.

A pictorial view of abstract slicing of the programs embedding SQL statements is
depicted in Figure 8.2. Observe that the sliced database dB′ on which slices perform
their computations, in both concrete and abstract slicing, is a part of the original
database dB.

Figure 8.2: Abstract DOPDG-based slicing for programs embedding SQL statements

Compute Abstract Data &

Control Dependences

Generate Abstract

DOPDG
Slicing Algorithm

DB
Program

Abstract

Sliced

Program

Abstract

Dependences

Information

Abstract DOPDG

Slicing Criteria

DB’

Access

Manipulate

Access

Property/Domain

Manipulate

In traditional dependence graphs, the notion of dependences between program

177

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

statements depends only on the syntactic presence of one variable in the definition of
another variable or in a conditional expression. Therefore, the definition of slices at
semantic level creates a gap between slicing and dependences. A first attempt to fill
this gap partially is done by Mastroeni and Zanardini by introducing the notion of
semantic data dependences (140).

This chapter provides two main contributions:

(i) The first one is the introduction of the notion of semantic relevancy of statements
w.r.t. a property. It determines whether an imperative or a SQL statement is rel-
evant w.r.t. a property of interest, and is computed over all concrete (or abstract)
states possibly reaching the statement. For instance, consider the following code
fragment: {(1) x = input; (2) x = x + 2; (3) print x; }. If we consider an abstract
domain of parity represented by PAR = {>,ODD,EVEN,⊥}, we see that the
variable x at program point 1 may have any parity from the set {ODD,EVEN},
and the execution of the statement at program point 2 does not change the parity
of x at all. Therefore, the statement at 2 is semantically irrelevant w.r.t. PAR. By
disregarding all the nodes that correspond to irrelevant statements w.r.t. concrete
(or abstract) property from a syntactic PDG/DOPDG, we obtain a more precise
semantics-based (abstract) PDG/DOPDG. Observe that the combined effort of
semantic relevancy of statements with the expression-level semantic data depen-
dences introduced by Mastroeni and Zanardini (140) guarantees a more precise
semantics-based (abstract) PDG/DOPDG.

(ii) The second contribution of this chapter is the refinement of the semantics-based
PDG/DOPDG obtained so far by applying the notion of conditional dependences
proposed by Sukumaran et al. (182). This allows us to transform a PDG or a
DOPDG into Dependence Condition Graph (DCG) or Database-Oriented De-
pendence Condition Graph (DODCG) that enables to identify the conditions for
dependences between program points. We lift the semantics of DCG/DODCG
from concrete domain to an abstract domain of interest. The satisfiability of
the conditions in DCG/DODCG by (abstract) execution traces helps to remove
semantically unrealizable dependences from them, yielding to refined semantics-
based (abstract) DCG/DODCG.

These two contributions in combination with semantic data dependences (140) lead to a
semantics-based abstract program slicing algorithm that strictly improves with respect
to the literature. The algorithm constructs a semantics-based abstract DCG/DODCG

178

8.1 Related Work

from a given program by combining these three notions: (i) semantic relevancy of
statements, (ii) semantic data dependences at expression level (140), and (iii) condi-
tional dependences (182). Slicing based on this semantics-based DCG/DODCG, both
in concrete and abstract domains, yields to more precise slices.

The structure of this chapter is organized as follows: In section 8.1, we discuss
the related works in the literature. Section 8.2 recalls some basic background. Sec-
tion 8.3 introduces the notion of semantic relevancy of imperative statements w.r.t.
concrete/abstract property. In section 8.4, we formalize an algorithm to construct
semantics-based abstract PDG from a given imperative program. In section 8.5, we lift
the semantics of DCGs from the concrete domain to an abstract domain of interest, and
we propose a refinement of syntactic DCCs into semantics-based abstract DCGs. The
proposed abstract slicing algorithm for imperative programs is formalized in section
8.6. Section 8.7 illustrates the proposed slicing technique with an example. In section
8.8, we prove the soundness and provide an overall complexity analysis of the pro-
posal. Section 8.9 discusses the strength and weakness of our proposal. In section 8.10,
we extend our proposed slicing refinement technique to the context of data-intensive
applications accessing or manipulating databases.

8.1 Related Work

The original static slicing algorithm by Mark Weiser (193) is expressed as a sequence
of data-flow analysis problems and the influence of predicates on statement execution,
while Korel and Lasky (119) extended it into the dynamic context and proposed an
iterative dynamic slicing algorithm based on dynamic data flow and control influence.
Both Weiser’s and Korel-Laski’s algorithms produce executable form (189) of slices
that are easier to fit into a theoretical framework by Binkley (22) that provides a rela-
tionship between different well-known forms of slicing by exploiting the requirements
of syntactic and semantic equivalence between the slice and the original program.
Over the last 25 years, several works on program slicing based on the Program De-
pendence Graph (PDG) representation have been done (2, 68, 96, 150, 160, 170, 177).
However, different forms of PDG representations have been proposed, depending on
the intended applications (29, 95).

The notion of Abstract Program Slicing was first introduced by Hong, Lee and
Sokolsky (172). Some recent works includes semantics-based abstract program slicing
(139, 140, 200) and property-driven program slicing (18). Mastroeni and Nicolić (139)
extended the theoretical framework of slicing proposed by Binkley (22) to an abstract

179

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

domain in order to define abstract slicing, and to represent and compare different
forms of slicing in abstract domain.

Mastroeni and Zanardini (140) first introduced the notion of semantic data depen-
dences which fills up the existing gap between syntax and semantics. The semantic
data dependences which is computed for all expressions in the program over the
states possibly reaching the associated program points, help in obtaining more pre-
cise semantics-based PDGs by removing some false dependences from the traditional
syntactic PDGs.

Sukumaran et al. (182) presented a refinement of the traditional PDGs of programs,
called Dependence Condition Graph (DCG), based on the notion of conditional de-
pendences. A DCG is built from a PDG by annotating each edge e of the PDG with
conditional information eb = 〈eR, eA

〉 under which a particular dependence actually
arises in a program execution. The first part eR is referred to as Reach Sequences which
represents the conditions that should be true for an execution to ensure that the target
e.tgt of e must be executed once the source e.src is executed for a control edge e, and
the target e.tgt is reached from the source e.src for a data edge e. The component eA is
referred to as Avoid Sequences which is only relevant for data edges (it is ∅ for control
edges) and captures the possible conditions under which the assignment at e.src can
get overwritten before it reaches e.tgt. So, the conditions in eA must not hold for an
execution to ensure that the variable defined at e.src must used at e.tgt.

All the slicing techniques mentioned above refer to imperative languages. They
do not take into account the presence of the additional forms of states associated with
programs, such as reading from the standard input stream or accessing/manipulating
data from external databases. Sivagurunathan et.al. (180) first addressed this and
introduced pseudo variables into the program to make the hidden I/O state accessible
to the slicer.

Tan and Ling (183) extended the notion of slicing to the context where various
database operations are present in the programs. They followed a similar solution and
introduced a set of implicit variables to capture the influence among I/O statements
operating on database records.

Willmor et.al. (194) introduced a variant of the program dependence graph, known
as Database-Oriented Program Dependence Graph (DOPDG), by considering two
additional types of data dependences: Program-Database Dependences (PD-Dependences)
and Database-Database Dependences (DD-Dependences). They applied Condition-Action
rules introduced by Baralis and Widom (9) that determine when an action of one rule
can affect the condition of another rule.

180

8.2 Preliminaries

In the presence of embedded DML statements, Cleve (38) proposed to construct
System Dependence Graph (SDG) to represent the control and the dataflow of both
the host language and the embedded language. The dependence pseudo-instructions
(DIRECT-MAP and INDIRECT-MAP) are used (instead of the original code) to con-
struct the SDG nodes and the data dependence edges corresponding to embedded
DML fragments. Once the full SDG has been built, program slices can be computed
using the usual algorithm.

Recently, Saha et al. (169) proposed a new key-based dynamic slicing algorithm
and two differencing techniques that use the underlying program semantics to localize
faults in the data-centric programs that use embedded database specific statements to
perform operations on in-memory and persistent data.

8.2 Preliminaries

In this section, we recall some basic backgrounds.

Static Single Assignment (SSA). The SSA form (52) of a program is a semantically
equivalent version of the program where each variable has a unique (syntactic) assign-
ment. The SSA form introduces special φ-assignments at join nodes of the program
where assignments to the same variable along multiple program paths may converge.
Each assignment to a variable is given a unique name, and all of the uses reached
by that assignment are renamed to match the assignment’s new name. Figure 8.3(a)
and 8.3(b) depict a program P and its SSA form Pssa respectively. In the rest of this

Figure 8.3: A program and its SSA form

(a) Program P

1. start
2. x = input;
3. y = input;
4. w = input;
5. z = 4;
6. i f (x == y){
7. z = 2 × (x + y) − 4 × (x) + 4;
8. x = x + 1; }
9. else { z = x + w;
10. x = x + 2; }
11. print(x, z);
12. stop

(b) Pssa: SSA f orm o f P

1. start
2. x1 = input;
3. y1 = input;
4. w = input;
5. z1 = 4;
6. i f (x1 == y1){
7. z2 = 2 × (x1 + y1) − 4 × (x1) + 4;
8. x2 = x1 + 1; }
9. else { z3 = x1 + w;
10. x3 = x1 + 2; }
φ (x4, z4) = f ((x2, z2), (x3, z3));
11. print(x4, z4);
12. stop

181

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

chapter, we use SSA form of programs due to its compact representation and easy to
compute DCG annotations as well as to define its semantics. The SSA form also helps
in improving the flow-sensitive analysis of any program (94).

Program Dependence Graph. Program Dependence Graph (PDG) (58, 124, 156, 185)
for a program is a directed graph with vertices denoting program components (start,
stop, skip, assignment, conditional or repetitive statements) and edges denoting depen-
dences between components. An edge represents either control dependence or data
dependence. The sub-graph of the PDG induced by the control dependence edges is
called control dependence graph (CDG) and the sub-graph induced by the data de-
pendence edges is called data dependence graph (DDG). The source node of a CDG
edge corresponds to either start or conditional or repetitive statement. A CDG edge
e whose source node e.src corresponds to start statement is denoted by an unlabeled
edge e = e.src→ e.tgt, meaning that the condition represented by e.src is implicitly true,
i.e., during an execution once e.src executed its target e.tgt will eventually be executed.
If the source node e.src of any CDG edge e corresponds to conditional or repetitive state-

ment it is denoted by a labeled edge e = e.src lab
−−→ e.tgt where lab ∈ {true, f alse}, meaning

that e.tgt is lab-control dependent on e.src, i.e., whenever the condition represented
by e.src is evaluated and its value matches the label lab, then its target node repre-
sented by e.tgt will be executed, if the program terminates. A DDG edge is denoted
by e = e.src x

−→ e.tgt, representing that the target node e.tgt is data dependent on the
source node e.src for a variable x. The PDG representation of the program Pssa (Figure
8.3(b)) is depicted in Figure 8.4.

Database-Oriented Program Dependence Graph (DOPDG) Willmor et al. (194)
introduced a variant of the program dependence graph, known as Database-Oriented
Program Dependence Graph (DOPDG), by considering the notion of data dependences
in the presence of database states for the programs embedding SQL statements. They
defined two additional types of data dependences: Program-Database Dependences (PD-
Dependences) and Database-Database Dependences (DD-Dependences).

A PD-Dependence arises between a SQL statement and an imperative statement
where either the database state defined by SQL statement is used by the imperative
statement or the data defined by imperative statement is used by the SQL statement.
A DD-Dependence arises between two SQL statements where the database states
defined by one SQL statement is used by the other SQL statement. The data depen-
dences between imperative statements and the control dependences are similar as in

182

8.2 Preliminaries

Figure 8.4: Gpdg: PDG of Pssa

1


q

5

2

3

12

6

7

8

T

y

x

9

4

11

T

F F

x x
x

y
x

x

z
x

x, z

10
w

z

the case of traditional PDGs. The subgraph induced by PD-Dependences is called
Program-Database Dependence Graph (PDDG), whereas the subgraph induced by
DD-Dependences is called Database-Database Dependence Graph (DDDG).

PDG/DOPDG-based Slicing. The results of the dependence graphs discussed so far
have an impact on different forms of static slicing: backward slicing (193), forward
slicing (13), and chopping (109, 165). The backward slice with respect to variable v at
program point p consists of those program points that affect v directly or indirectly.
Forward slicing is the dual of backward slicing. The forward slice with respect to
variable v at program point p consists of those program points that are affected by v.
Chopping is a combination of both backward and forward slicing. A slicing criterion
for chopping is represented by a pair 〈s, t〉where s and t denote the source and the sink
respectively. In particular, chopping of a program w.r.t. 〈s, t〉 identifies a subset of its
statements that account for all influences of source s on sink t.

The slicing based on PDGs/DOPDGs is slightly restrictive in the sense that the
dependence graph permits slicing of a program with respect to program point p and
a variable v that is defined or used at p, rather than w.r.t. arbitrary variable at p.
PDG/DOPDG-based backward program slicing is performed by walking the graph
backwards from the node of interest in linear time (156). The walk terminates at either
entry node or already visited node. In case of PDG/DOPDG-based forward slicing

183

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

technique, similarly, we traverse the graph in forward direction from the node of
interest. We can use the standard notion of chop of a program with respect to two nodes
s and t in slicing technique (109, 165): chop(s, t) is defined as the set of inter-procedurally
valid PDG/DOPDG paths from s to t where s, t are real program nodes, in contrast to φ
nodes in SSA form of the program. We define it as follows (182): AC(s, t) is defined to
be true if there exists at least one execution ψ that satisfies a valid PDG/DOPDG path
η between s and t i.e. AC(s, t) , ∃ψ : AC(s, t, ψ) and AC(s, t, ψ) , ∃η ∈ chop(s, t) : ψ ` η.
The ¬AC(s, t) implies that ∀ψ and ∀η ∈ chop(s, t) : ψ 0 η, that is, chop(s, t) is empty.

In PDG/DOPDG-based dynamic slicing (2, 68, 150) w.r.t. a variable for a given
execution history, a projection of the PDG/DOPDG w.r.t. the nodes that occur in the
execution history is obtained, and then static slicing algorithm on the projected depen-
dence graph is applied to find the desired dynamic slice. Agrawal and Horgan (2) also
introduced a variant of it based on the graph-reachability framework, called Dynamic
Dependence Graph and Reduced Dynamic Dependence Graph, to obtain more precise
dynamic slice.

In general, there exist many different slices for a given program w.r.t. a slicing
criterion where one can be more precise than the other, as defined in Definition 21.

Definition 21 (Precision of Slicing) Given two programs P′ and P′′ such that both P′ and
P′′ are slice of P w.r.t. a criterion C. P′ is more precise than P′′ if P′ (, P′′) is a slice of P′′

w.r.t. C.

Abstract Interpretation and Program Slicing. A first attempt to combine Abstract
Interpretation with program slicing is done by Mastroeni and Zanardini in (140). In
traditional PDGs, the notion of dependences between statements is based on syntactic
presence of a variable in the definition of another variable or in a conditional expression.
Therefore, the definition of slices at semantic level creates a gap between slicing and
dependences. Mastroeni and Zanardini (140) introduced the notion of semantic data
dependences which fills up the existing gap between syntax and semantics. For
instance, although the expression “e = x2 + 4w mod 2 + z” syntactically depends on
w, but semantically there is no dependence as the evaluation of “4w mod 2” is always
zero. This can also be lifted to an abstract setting where dependences are computed
with respect to some specific properties of interest rather than concrete values. For
instance, if we consider the abstract domain SIGN = {>, pos,neg,⊥}, the expression e
does not semantically depend on x w.r.t. SIGN, as the abstract evaluation of x2 always
yields to pos for all atomic values of x ∈ {pos,neg}. This is the basis to design abstract
semantics-based slicing algorithms aimed at identifying the part of the programs which

184

8.3 Semantic Relevancy of Statements

is relevant with respect to a property (not necessarily the exact values) of the variables
at a given program point.

Abstract Semantics: Expressions and Statements. Consider the IMP language (195).
The statements of a program P act on a set of constantsC = const(P) and a set of variables
VAR = var(P). A program variable x ∈ VAR takes its values from the semantic domain
V = Z0 where, 0 represents an undefined or uninitialized value and Z is the set of
integers. The arithmetic expressions e ∈ Aexp and boolean expressions b ∈ Bexp are
defined by standard operators on constants and variables. The set of states Σ consists
of functions σ : VAR → V which map the variables to their values. For the program
with k variables x1, . . . , xk, the state is denoted by k-tuples: σ = 〈v1, . . . , vk〉, where
vi ∈ V, i = 1, ..., k and hence, the set of states Σ = (V)k. Given a state σ ∈ Σ, v ∈ V, and
x ∈ VAR: σ[x← v] denotes a state obtained from σ by replacing its contents in x by v,
i.e. define

σ[x← v](y) =

v i f x = y

σ(y) i f x , y

The semantics of arithmetic expression e ∈ Aexp over the state σ is denoted by
E[[e]](σ) where, the function E is of the type Aexp→ (σ→ V). Similarly, B[[b]](σ) denotes
the semantics of boolean expression b ∈ Bexp over the state σ of type Bexp → (σ → T)
where T ∈ {true, f alse}.

The Semantics of statement s is defined as a partial function on states and is denoted
by S[[s]](σ) which defines the effect of executing s in σ.

Consider an abstract domain ρ on values. The set of abstract states is denoted by
Σρ , ρ(℘(V))k. The abstract semantics E[[e]]ρ(ε) of expression e is defined as the best
correct approximation of E[[e]]: let σ = 〈v1, . . . , vk〉 ∈ Σ and ε = 〈ρ(v1), . . . , ρ(vk)〉 ∈ Σρ :
E[[e]]ρ(ε) = ρ({E[[e]](〈u1, . . . ,uk〉) | ∀i. ui ∈ ρ(vi)}).

The syntax and semantics of programs embedding SQL statements, in both concrete
and abstract domains, are described in chapter 3.

8.3 Semantic Relevancy of Statements

In this section, we introduce the notion of semantic relevancy of imperative statements
in both concrete and abstract domains. The motive behind this is to determine whether
the execution of a statement affects a concrete/abstract property of the variables of
interest.

185

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

Definition 22 (Concrete Semantic Relevancy) Given a program P and a concrete property
ω on states, the statement s at program point p in P is semantically relevant w.r.t. ω if:

∃σ ∈ Σp : S[[s]](σ) = σ′ ∧ ω(σ) , ω(σ′)

where Σp are the set of states that can possibly reach the program point p.

In other words, the statement s at program point p is semantically irrelevant w.r.t. a
concrete property ω if the execution of s over any state σ ∈ Σp yields to a state that is
equivalent to σ w.r.t. ω.

In particular, whenever ω distributes over program variables, we may use the
Definition 23.

Definition 23 (Concrete Semantic Relevancy for a Set of Variables) Given a program
P and a concrete propertyω that distributes over program variables, the statement s at program
point p in P is semantically relevant w.r.t. ω for a subset of variables U if

∃σ = 〈σ(v1), σ(v2), . . . , σ(vk)〉 ∈ Σp and ∃vi ∈ U such that ω(πi(S[[s]]σ)) , ω(πi(σ))

where πi(〈σ(v1), σ(v2), . . . , σ(vk)〉) = σ(vi).

Example 21 Consider the concrete property ω(x,4) : Σ→ {true, f alse}, which is true in state
σ iff σ(x) , 4. The statement x = y + 1 is semantically relevant w.r.t. ω(x,4) only if ∃σ ∈ Σp

such that σ(y) = 3 and σ(x) , 4.

Example 22 Consider the program Pssa in Figure 8.3(b). The statement at program point 7
is semantically irrelevant w.r.t. all concrete properties, as the execution of this statement over
any state possibly reaching program point 7 does not change the state. That is, ∀σ ∈ Σ7 where
σ(x) = σ(y) and σ(z) = 4, the execution of the statement over σ does not modify the value of z.

Example 23 Consider the program Pssa in Figure 8.3(b) and the property defined by ω ,
#{x ∈ VAR : [[x]]σ ∈ EVEN} = #{x ∈ VAR : [[x]]σ ∈ ODD} where VAR is the set of program
variables, σ ∈ Σ, EVEN represents {y ∈ Z : y is even}, ODD represents {y ∈ Z : y is odd},
Z is the set of integers, and # denotes the cardinality of set. The statement s , x = x + 1 at
program point 8 is relevant w.r.t. ω, since the execution of s over any state σ ∈ Σ8 with equal
number of variable values belonging to both ODD and EVEN sets, yields to a state σ′ where
the value of x moves from one set to another. Observe that the statement at program point 10,
on the other hand, is irrelevant w.r.t. ω.

186

8.3 Semantic Relevancy of Statements

We can lift the notion of semantic relevancy in an abstract domain of interest.
The abstract semantic relevancy can be defined in relational as well as non-relational
abstract domains.

Definition 24 (Abstract Semantic Relevancy) Let P be a program and ρ be a closure oper-
ator over ℘(V), the statement s at program point p in P is semantically relevant w.r.t. abstract
property ρ if

∃ε ∈ Σ
ρ
p : S[[s]]ρ(ε) , ε

where Σ
ρ
p are the set of abstract states that can possibly reach the program point p.

In other words, the statement s at program point p is semantically irrelevant w.r.t. an
abstract property ρ if no changes take place in the abstract states ε ∈ Σ

ρ
p , when s is

executed over ε.

Example 24 Consider the statement s , x = x + 2 at program point 10 of the program Pssa

depicted in Figure 8.3(b). The statement s is semantically relevant w.r.t. ρ = SIGN, because
∃ε = 〈ρ(x), ρ(y), ρ(w), ρ(z)〉 = 〈−, +, +, + 〉 ∈ ΣSIGN

10 : S[[s]]ρ(〈−, +, +, +〉) = 〈>, +, +, + 〉.
On the other hand, if we consider the abstract domain ρ = PAR, we see that s is semantically
irrelevant w.r.t. PAR because ∀ε ∈ ΣPAR

10 : S[[s]]ρ(ε) does not change the parity of x.

Definition 24 is not parametric on variables. Below we provide a parametric defi-
nition for the abstract statements relevancy. This definition may be useful, combined
with independence analysis, to further refine the slicing when focussing just on a
proper subset of program variables in the slicing criteria.

Definition 25 (Abstract Semantic Relevancy for a Set of Variables) Let P be a program
and ρ be a closure operator over ℘(V), the statement s at program point p in P is semantically
relevant w.r.t. abstract property ρ for a subset of variables U if

∃ε = 〈ρ(v1), ρ(v2), . . . , ρ(vk)〉 ∈ Σ
ρ
p and ∃vi ∈ U such that πi(S[[s]]ρ(ε)) , πi(ε)

where πi(〈ρ(v1), ρ(v2), . . . , ρ(vk)〉) = ρ(vi).

Intuitively, the semantic relevancy of statements just says that an assertion remains
true over the states possibly reaching the corresponding program points. Observe that
if we consider the predicate ω as an abstraction on the concrete states, Definition 24 is
just a rephrasing of Definition 22.

The well-known collecting semantics (also known as static semantics) (47) of pro-
grams obtains the set of states possibly reaching each program point in the program.

187

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

The relevancy computation of a statement s at p w.r.t. a concrete/abstract property is,
thus, performed by simply checking whether the execution of s changing the property
of any of the states at p generated from the collecting semantics. Note that the only
statements that can affect the property of states are the “assignment” statements of the
form v = e, where v is a variable and e is an arithmetic expression.

The notion of statements relevancy have many interesting application areas. For
instance, if we are analyzing a speed control engine and we are just interested on the
portion of program that may lead to a totally unexpected negative value of a speed
variable (yielding to a crash-prone situation), then every statement that does not affect
neither directly nor indirectly its sign can immediately be disregarded.

Figure 8.5: Gr
pdg : PDG after relevancy computation of Pssa w.r.t. PAR

1


q

2

3

12

6

8

9

4

11

T

F

x

x
x

y

x

x

z

x, z

w

5

z

Given a program and its syntactic PDG, we can obtain a more precise semantics-
based (abstract) PDG by disregarding from the syntactic PDG all the nodes that cor-
responds to irrelevant statements w.r.t. a concrete/abstract property of interest. For
instance, Figure 8.5 depicts the semantics-based abstract PDG Gr

pdg which is obtained
by disregarding from the graph Gpdg (Figure 8.4) the two nodes corresponding to the
irrelevant statements 7 and 10 w.r.t. PAR.

It is worthwhile to mention that the computation above can be optimized in par-
ticular cases by applying slicing on the syntactic PDG first, and then, computing
statements relevancy and semantic data dependences on this sliced program.

188

8.3 Semantic Relevancy of Statements

8.3.1 Semantic Relevancy of Blocks

In the previous section, we defined the semantic relevancy of statements w.r.t. con-
crete/abstract property. Now we define semantic relevancy of blocks w.r.t. con-
crete/abstract property, where by block we mean a set of statements S = {s1, . . . , sn}. Let
us denote a block of a set of statements S by blkS.

Definition 26 blkS is semantically irrelevant w.r.t. a concrete propertyω (or abstract property
ρ) if

∀si ∈ blkS, i ∈ [1..n] : si is semantically irrelevant w.r.t. ω (or ρ)

Definition 27 blkS is partially relevant w.r.t. a concrete property ω (or abstract property ρ) if

∃si, s j ∈ blkS ∧ i, j ∈ [1..n] ∧ i , j : si is semantically relevant w.r.t. ω (or ρ) and

s j is semantically irrelevant w.r.t. ω (or ρ)

Definition 28 blkS is completely relevant w.r.t. a concrete property ω (or abstract property ρ)
if

∀si ∈ blkS, i ∈ [1..n] : si is semantically relevant w.r.t. ω (or ρ)

Observe that we can convert any partially relevant block w.r.t. ω (or ρ) into a corre-
sponding completely relevant block by removing all the irrelevant statements w.r.t. ω
(or ρ) present in that block.

8.3.2 Treating Relevancy of Control Statements

In this section, we consider the conditional statements “i f ”, “i f -else” and the repeti-
tive statement “while”, and we define their relevancy w.r.t. a concrete property ω (or
abstract property ρ).

The “i f ” statement can be expressed as

i f (cond) then blki f

The “i f -else” statement can be expressed as

i f (cond) then blki f else blkelse

189

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

Similarly, the repetitive statement “while” can be expressed as

while(cond) blkwhile

The semantic relevancy of the “i f ” and “while” statements solely depend on the rel-
evancy of their corresponding blocks blki f and blkwhile respectively. As an example,
the semantic irrelevancy of a repetitive statement “while” w.r.t. PAR is illustrated in
Example 25.

Example 25 Consider a program depicted in Figure 8.6(a) and the abstract domain PAR. Its
traditional syntactic PDG is shown in Figure 8.6(b). Consider the repetitive statement “while”
and the corresponding block blkwhile that contains two statements at program points 5 and 6.
At program point 2 and 3, the parity of x and y are odd and even respectively. These properties
of x and y remain unchanged during the execution of the while loop. Statements 5 and 6,
therefore, are not semantically relevant w.r.t. PAR. In fact, at 5 the parity of x2 is not affected
as its value is not changed by the assignment, and the parity of x3 is preserved by adding an
even value like the constant 2. Similar in case of statement at 6. Therefore, the while-block
blkwhile is irrelevant w.r.t. PAR since all the statements (statements 5 and 6) in the block are
irrelevant, and we replace statements 5 and 6 by a skip statement q, yielding to a more precise
PDG depicted in Figure 8.6(c).

The relevancy of “i f -else” statement, i.e., “i f (cond) then blki f else blkelse” w.r.t. a concrete
property ω (or abstract property ρ) can be defined as follows:

1. An “i f -else” statement “i f (cond) then blki f else blkelse” is semantically irrelevant
w.r.t. ω (or ρ) if both blki f and blkelse are semantically irrelevant w.r.t. ω (or ρ).

2. If any or both of the blocks blki f and blkelse in “i f -else” statement are partially
relevant w.r.t. ω (or ρ), we say that the “i f -else” statement is partially relevant
w.r.t. ω (or ρ). The partial relevancy of the “i f -else” statement can be converted
into complete relevancy by converting the corresponding partial relevant blocks
into completely relevant blocks.

3. If blkelse in “i f -else” statement is semantically irrelevant w.r.t. ω (or ρ), then the
relevancy of the “i f -else” statement is equivalent to the relevancy of the statement
“i f (cond) then blki f ” w.r.t. ω (or ρ).

4. If blki f in “i f -else” statement is semantically irrelevant w.r.t. ω (or ρ), then the
relevancy of the “i f -else” statement is equivalent to the relevancy of the statement
“i f (cond) then skip else blkelse” w.r.t. ω (or ρ).

190

8.3 Semantic Relevancy of Statements

Figure 8.6: Treating “while” block

(a) Program Pwhile

1. start
2. x1 = 1;
3. y1 = 2 × x1;

while(
φ (x2, y2) = f ((x1, y1), (x3, y3))
4. x2 < 20){
5. x3 = x2 + 2;
6. y3 = y2 + 2 × x2

3; }
7. print(x2, y2);
8. stop

(b) Syntactic PDG of Pwhile

2

3

6

7

y

x

y

x

x,y

T
T

8

F

x

y x
x

F

x



1

4

5

(c) PDG after relevancy computation
of Pwhile w.r.t. PAR

2 3

q
7

y

T

8

F

x

x

F

1

4

x

Example 26 Consider the program in Figure 8.7(a). Observe that the statements 6 and 7 in the
“i f ” block blki f and the statement 8 in the “else” block blkelse are semantically irrelevant w.r.t.
the sign property of the variables. The execution of the statements 6, 7, and 8 over all possible
abstract states reaching these program points does not change the sign of y and z. Thus, the
“i f ” block blki f is completely irrelevant, whereas the “else” block blkelse is partially relevant as
it contains one relevant statement 9 w.r.t. the sign property. According to the rules discussed
above, we can’t remove blki f . Hence, we replace blki f with the statement “skip” (denoted
by label “q”). The corresponding semantics-based form of the program and semantics-based
abstract PDG w.r.t. the sign property are shown in Figure 8.7(b) and 8.7(c) respectively.

191

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

Figure 8.7: Treating “i f -else” block

(a) Program Pi f else

1. start
2. x1 = input;
3. y1 = 5;
4. z1 = 2;
5. i f (x1 ≥ 0){
6. y2 = y1 + 2;
7. z2 = y2 + x1; }

else{
8. y3 = y1 + 5;
9. z3 = y3 + x1};
φ. (y4, z4) = f ((y2, z2), (y3, z3));
10. print(y4, z4);
11. stop

(b) Prel
i f else: after relevancy

computation of Pi f else w.r.t.
SIGN

1. start
2. x1 = input;
3. y1 = 5;
4. z1 = 2;
5. i f (x1 ≥ 0)
q. skip;

else{
9. z3 = y1 + x1};
φ. (y4, z4) = f ((y1, z1), (y1, z3));
10. print(y4, z4);
11. stop

(c) PDG of Prel
i f else

1

4

2

5

3

q

9

F

T

10
11

x

x

y

z

y

z

y,z



192

8.4 Algorithm for Semantics-based Abstract PDG

8.4 Algorithm for Semantics-based Abstract PDG

We are now in position to formalize a new algorithm to construct semantics-based
abstract PDG Gr,d

pdg of a program P w.r.t. an abstract property ρ as depicted in Figure
8.8. In this proposed algorithm, we combine (i) the notion of semantic relevancy of
statements, and (ii) the notion of semantic data dependences of expressions.

We use the notation εi j to denote the jth abstract state w.r.t. ρ possibly reaching
program point pi. The input of the algorithm is a program P and output is the semantics-
based abstract PDG Gr,d

pdg of P w.r.t. ρ.

Step 2 computes the semantic relevancy of all “assignment” statements in the pro-
gram P w.r.t. ρ, and thus at step 4, Prel contains only the relevant non-control statements
along with all the control statements from P. Steps 5 computes the relevancy of con-
trol statements in Prel w.r.t. ρ. Step 6 deals with the repetitive statement “while(cond)
then blkwhile”, step 7 deals with the conditional statement “i f (cond) then blki f ” and step 8
deals with the conditional statement “i f (cond) then blki f else blkelse”, where we denote by
blkS a block of a set of statements S. Observe that steps 7 and 9 disregard the irrelevant
control statements from Prel, whereas steps 6, 10 and 11 replace the control statements
by another form with equivalent relevancy w.r.t. ρ. In step 13, we compute abstract
semantic data dependences for all expressions in Prel by following the algorithm of
Mastroeni and Zanardini (140). Finally, in step 14, we construct PDG from Prel that
contains only the relevant statements and the relevant data dependences w.r.t. ρ.

The idea to obtain a semantics-based abstract PDG is to unfold the program into
an equivalent program where only statements that have an impact w.r.t. the abstract
domain are combined with the semantic data flow w.r.t. the same domain.

8.5 Dependence Condition Graph (DCG)

In this section, we extend the semantics-based abstract PDGs obtained so far into
semantics-based abstract Dependence Condition Graphs (DCGs).

The notion of Dependence Condition Graphs (DCGs) is introduced by Sukumaran
et al. in (182). A DCG is built from the PDG by annotating each edge e = e.src→ e.tgt
in the PDG with information eb = 〈eR, eA

〉 that captures the conditions under which
the dependence represented by that edge is manifest. The first component eR refers
to Reach Sequences, whereas the second component eA refers to Avoid Sequences. The
informal interpretation of eR is that the conditions represented by it should be true for
an execution to ensure that e.tgt is reached from e.src. The Avoid Sequences eA captures

193

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

Figure 8.8: Algorithm to generate Semantics-based Abstract PDG

Algorithm 7: REFINE-PDG

Input: Program P and an abstract domain ρ
Output: Semantics-based Abstract PDG Gr,d

pdg of P w.r.t. ρ

1. FOR each assignment-statement s at program point pi in P DO
2. ∀εi j ∈ Σ

ρ
pi

: execute s on εi j and determine its relevancy;
3. END FOR

4. Disregard all the irrelevant assignment-statements from P and generate its relevant
version Prel;

5. FOR each control-statement in Prel DO

6. Case 1: Repetitive statement “while(cond) then blkwhile”:
If the block blkwhile is semantically irrelevant w.r.t. ρ, replace “while(cond)
then blkwhile” in Prel by the statement “while(cond) then skip”;

7. Case 2: Conditional statement “i f (cond) then blki f ”:
If the block blki f is semantically irrelevant w.r.t. ρ, disregard “i f (cond) then
blki f ” from Prel;

8. Case 3: Conditional statement “i f (cond) then blki f else blkelse”:
9. Case 3a: Both blki f and blkelse are semantically irrelevant w.r.t. ρ:

Disregard the statement “i f (cond) then blki f else blkelse” from Prel;
10. Case 3b: Only blkelse is semantically irrelevant w.r.t. ρ:

Replace the statement “i f (cond) then blki f else blkelse” in Prel by the
statement “i f (cond) then blki f ”;

11. Case 3c: Only blki f is semantically irrelevant w.r.t. ρ:
Replace the statement “i f (cond) then blki f else blkelse” in Prel by the
statement “i f (cond) then skip else blkelse”;

12. END FOR

13. Compute abstract semantic data dependences for all expressions in Prel w.r.t. ρ by
following the algorithm of Mastroeni and Zanardini;

14. Construct PDG from Prel by using only the relevant statements and relevant data
dependences w.r.t. ρ, as obtained in previous steps;

the possible conditions under which the assignment at e.src can get over-written before
it reaches e.tgt. The interpretation of eA is that the conditions represented by it must
not hold in an execution to ensure that the variable being assigned at e.src is used at
e.tgt. It is worthwhile to note that eA is relevant only for DDG edges and it is ∅ for CDG
edges. Example 27 illustrates briefly how to compute annotations over the edges in a
PDG.

194

8.5 Dependence Condition Graph (DCG)

Example 27 Consider the edge 2 x
−→ 8 in the semantics-based abstract PDG of Figure 8.5. For

this edge, we see that node 8 does not post-dominate the node 2. Thus, the reach sequence for
the edge is (2 x

−→ 8)R = {1 true
−−→ 6 true

−−→ 8}. This means that the condition at 6 must be true in the
execution trace to ensure that both 2 and 8 are executed, and the data x assigned at 2 can reach
8. For the edge 2 x

−→ φ, the reach sequence (2 x
−→ φ)R is empty, meaning that no condition has

to satisfy for the x assigned at 2 to reach φ, because φ post-dominates 2 and once 2 is executed
φ is also executed. To compute the avoid sequences for the edge 2 x

−→ φ, we consider two data
dependence edges e1 = 2 x

−→ φ and e2 = 8 x
−→ φ with φ as target. By following the algorithm

of (182), we get the avoid sequences (2 x
−→ φ)A = {1 true

−−→ 6 true
−−→ 8}. This reflects the fact that

the “i f ” condition at 6 must be f alse in order to guarantee that the definition of x at 2 is not
re-defined at 8 and can reach φ. Table 8.1 depicts the DCG annotations for all DDG edges of
the semantics-based abstract PDG in Figure 8.5.

Table 8.1: DCG annotations 〈eR, eA
〉 for DDG edges e of Gr

pdg

e eR eA

2 x
−→ 6 ∅ ∅

3
y
−→ 6 ∅ ∅

2 x
−→ 8 1 true

−−−→ 6 true
−−−→ 8 ∅

2 x
−→ 9 1 true

−−−→ 6
f alse
−−−→ 9 ∅

4 w
−→ 9 1 true

−−−→ 6
f alse
−−−→ 9 ∅

2 x
−→ φ ∅ 1 true

−−−→ 6 true
−−−→ 8

8 x
−→ φ ∅ ∅

5 z
−→ φ ∅ 1 true

−−−→ 6
f alse
−−−→ 9

9 z
−→ φ ∅ ∅

φ
x,z
−−→ 11 ∅ ∅

Sukumaran et al. (182) described the semantics of DCG annotations in terms of
execution semantics of the program over concrete domain.

Below, we first define the abstract semantics of DCG annotations in an abstract do-
main of interest. Then, we propose a refinement of the DCGs by removing semantically
unrealizable dependences from them under their abstract semantics.

Abstract Semantics of eb , 〈eR, eA
〉

The program executions are recorded in finite or infinite sequences of states over a
given set of commands, called traces. An execution trace ψ of a program P over an
abstract domain ρ is a (possibly infinite) sequence 〈(pi, εpi)〉i≥0 where εpi represents the
abstract data state at the entry of the statement at program point pi in P. We use the

195

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

notion “ι : (pi, εpi)” to denote that (pi, εpi) is the ι-th element in the sequence ψ. The
trace ψ holds the following conditions:

1. The first abstract state in the sequence is (p0, εp0) where p0 = “start” and εp0 is the
initial abstract data state.

2. Each state (pi, εpi), i = 1, 2, 3, . . . is the successor of the previous state (pi−1, εpi−1).

3. The last abstract state in the sequence ψ of length #ψ = m, if it exists, is (pm, εpm)
where pm=“stop”.

Note that the DCG nodes corresponding to the statements at program points pi

are labeled by pi. We denote the control dependence edge (CDG edge) in DCG by

e = pi
lab
−−→ p j, where the node pi corresponds to the conditional or repetitive statement

containing the condition pi.cond and the label e.lab associated with e represents the
truth value (either true or f alse). We denote the data dependence edge (DDG edge) in
DCG by e = pi

x
−→ p j, where x is the data defined by the statement corresponding to the

node pi.
We now define the semantics of the annotations eb , (eR, eA) on dependence edges

e in DCG in terms of the execution traces ψ over an abstract domain ρ.

Definition 29 (Execution satisfying eb for a CDG edge e at index ι) An execution trace

ψ over an abstract domain ρ is said to satisfy eb at index ι for a CDG edge e = pi
lab
−−→ p j (written

as ψ `ρι e) if the following conditions hold:

• eb , 〈eR, eA
〉 = 〈{e}, ∅〉, and

• ψ contains ι : (pi, εpi) such that [[pi.cond = e.lab]](εpi) yields either to “true” or to the
logic value “unknown” (meaning possibly true or possibly false).

Definition 30 (Execution satisfying eb for a CDG edge e) An execution trace ψ over an

abstract domain ρ satisfying eb for a CDG edge e = pi
lab
−−→ p j (written as ψ `ρ e) is defined as:

ψ `ρ e , ∃ι ≥ 0 : ψ `ρι e

Definition 31 (Execution satisfying eR for a DDG edge e at ι) An execution traceψ over
an abstract domain ρ is said to satisfy eR at index ι for a DDG edge e = pi

x
−→ p j (written as

ψ `R
ι e) if the following conditions hold:

• The trace ψ contains ι : (pi, εpi), and

196

8.5 Dependence Condition Graph (DCG)

• Either eR = ∅ or for each (ps1

labs1
−−−→ ps2

labs2
−−−→ . . . psn

labsn
−−−→ p j) ∈ eR where ps1 , ps2 , . . . , psn

correspond to conditional statements, the trace ψ contains ιk : (psk , εpsk
) for k = 1, . . . ,n

and ι1 < ι < ι2 < · · · < ιn and
∧

1≤k≤n [[psk .cond = labsk]](εpsk
) yields to “true” or

“unknown”.

Definition 32 (Execution satisfying eA for a DDG edge e at ι) An execution traceψ over
an abstract domain ρ is said to satisfy eA at index ι for a DDG edge e = pi

x
−→ p j (written as

ψ `A
ι e) if ψ contains ι : (pi, εpi), and for each (ps1

labs1
−−−→ ps2

labs2
−−−→ . . . psn

labsn
−−−→ p′) ∈ eA the

subtrace ψ′ of ψ from the index ι to the next occurrence of (p j, εp j) (or, if (p j, εp j) does not occur
then ψ′ is the suffix of ψ starting from ι), satisfies exactly one of the following conditions:

• ψ′ does not contain (psk , εpsk
) for 1 ≤ k ≤ n, or

• ∃ k : 1 ≤ k ≤ n: ψ′ contains (psk , εpsk
) such that [[psk .cond = labsk]](εpsk

) yields to false.

Definition 33 (Execution satisfying eb for a DDG edge e at ι) An execution traceψ over
an abstract domain ρ satisfying eb at index ι for a DDG edge e = pi

x
−→ p j (written as ψ `ρι e)

is defined as
ψ `

ρ
ι e , (ψ `R

ι e) ∧ (ψ `A
ι e)

Definition 34 (Execution satisfying eb for a DDG edge e) An execution trace ψ over an
abstract domain ρ satisfying eb for a DDG edge e = pi

x
−→ p j (written as ψ `ρ e) is defined as

ψ `ρ e , ∃ι ≥ 0 : ψ `ρι e

Theorem 2 Given a DDG edge e = pi
x
−→ p j and an execution trace ψ over an abstract domain

ρ, the trace ψ satisfies eb for e (denoted ψ `ρ e) iff the abstract value of x computed at pi reaches
the next occurrence of p j in ψ.

Proof Since the execution trace ψ over an abstract domain ρ satisfies eb for e = pi
x
−→ p j, we

have

ψ `ρ e , ∃ι ≥ 0 : ψ `ρι e

, ∃ι ≥ 0 : (ψ `R
ι e) ∧ (ψ `A

ι e)

This means that ψ satisfies both the Reach Sequences eR and the Avoid Sequences eA for e at
some index ι in ψ.

197

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

The trace ψ satisfies eR at some index ι meaning that ψ contains ι : (pi, εpi), and ψ satisfies
all the conditions in eR which ensures that p j is reached from pi i.e. the abstract value of x
computed at pi can reach p j. At the same time, the trace ψ satisfies eA at ι meaning that
ψ avoids the execution of all the other possibilities (if exists) so that the abstract value of x
computed at pi can not be overwritten by any other intermediate statements that also define x.
Thus, ψ `ρ e implies that the abstract value of x computed at pi reaches the next occurrence of
p j in ψ.

On the other side, we should also prove that if the abstract value of x computed at pi reaches
the next occurrence of p j in ψ, then ψ `ρ e where e = pi

x
−→ p j.

Since the abstract value of x computed at pi reaches to the next occurrence of p j, we can say
that there is entries ι : (pi, εpi) and ι′ : (p j, εp j) in ψ where ι′ is the smallest index greater than
ι and the statements corresponding to both pi and p j are executed in ψ (i.e. ψ satisfies Reach
Sequences eR), and at the same time it avoids the execution of all other intermediate statements
which can overwrite the abstract value of x coming from pi (i.e. ψ satisfies Avoid Conditions
eA). Thus, ∃ι ≥ 0 : (ψ `R

ι e) ∧ (ψ `A
ι e) i.e. ψ `ρ e.

Example 28 Consider the program P and its PDG depicted in Figure 8.9(a) and 8.9(b) re-
spectively. The set of program variables in P is VAR = {x, y}. Consider the DDG edge
e = 2 x

−→ φ. By following the algorithm in (182), we get eR = {1 true
−−→ 4 true

−−→ φ} and
eA = {1 true

−−→ 4 true
−−→ 5 true

−−→ 6}. The DCG annotations over the DDG edges are shown in Figure
8.9(c).

Consider the abstract domain SIGN. The initial state of P is defined by 〈start, εstart〉 =

〈start, (⊥,⊥)〉 where εstart = (⊥,⊥) are the initial abstract values for x, y ∈ VAR respectively.
Consider the execution trace

ψ = ι1 : 〈1, (⊥,⊥)〉 ι2 : 〈2, (⊥,⊥)〉 ι3 : 〈3, (+,⊥)〉 ι4 : 〈4, (+,−)〉 ι5 : 〈5, (+,−)〉 ιφ : 〈φ, (+,−)〉
ι7 : 〈7, (+,−)〉 ι8 : 〈8, (+,−)〉

where in each state of ψ the first component represents program point of the correspond-
ing statement and the other component represents abstract values of x and y respectively. Note
that the condition from the statement at program point 1 to 4 is implicitly “true” irrespective
of the states at 1. We have ψ `R

ι2 (2 x
−→ φ) because

• ψ contains the entry ι2 : 〈2, (⊥,⊥)〉 corresponding to the statement 2 at index ι2, and

• ψ is of the form ψ = ι1 : 〈1, (⊥,⊥)〉 ι2 : 〈2, (⊥,⊥)〉 . . . ι4 : 〈4, (+,−)〉 . . . ιφ :

〈φ, (+,−)〉 . . . for 1 true
−−→ 4 true

−−→ φ ∈ (2 x
−→ φ)R such that [[1.cond = true]](⊥,⊥)

and [[4.cond = true]](+,−) are evaluated to “true”.

198

8.5 Dependence Condition Graph (DCG)

Figure 8.9: A program and its DCG annotations

(a) Program P

1. start
2. x1 = input;
3. y = input;
4. i f (x1 > 0){
5. i f (y == 5)
6. x2 = x1 × 2;
φ. x3 = f (x1, x2);
7. print(x3); }
8. stop

(b) Gpdg : PDG of P

1


q

4

3

2

8

5
6

7

T

T

T

x

y

x

x

x

T

x

(c) DCG annotations 〈eR, eA
〉 for DDG edges e of Gpdg

e eR eA

2 x
−→ 6 1 true

−−−→ 4 true
−−−→ 5 true

−−−→ 6 ∅

2 x
−→ 4 ∅ ∅

2 x
−→ φ 1 true

−−−→ 4 true
−−−→ φ 1 true

−−−→ 4 true
−−−→ 5 true

−−−→ 6

3
y
−→ 5 1 true

−−−→ 4 true
−−−→ 5 ∅

6 x
−→ φ ∅ ∅

φ
x
−→ 7 ∅ ∅

Similarly, ψ `A
ι2 (2 x

−→ φ), because for 1 true
−−→ 4 true

−−→ 5 true
−−→ 6 ∈ (2 x

−→ φ)A the sub-trace of ψ
contains the entry ι5 : 〈5, (+,−)〉 such that [[5.cond = true]](+,−) is “false”.

As ψ `R
ι2 (2 x

−→ φ) and ψ `A
ι2 (2 x

−→ φ), we can say ψ `SIGN
ι2 (2 x

−→ φ) meaning that in ψ
the sign of x defined at program point 2 reaches program point φ, and it is not changed or
overwritten by the intermediate statement 6.

Abstract Semantics of Dependence Paths in DCGs

The final step, in order to combine Dependence Condition Graphs with abstract
semantics-based Program Dependence Graphs, is to define the abstract semantics
of the dependence paths in a Dependence Condition Graph.

Given a program P and its DCG, we consider dependence paths in this graph.
First we define the φ-sequence and then the semantics of a dependence path over an
abstract domain ρ.

199

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

Definition 35 (PhiSeqs) A φ-sequence ηφ is a DDG path of the form: n1 → φ1 → φ2 →

· · · → φk → n2, where n1 and n2 are nodes of the program and all the φi (1 ≤ i ≤ k) are
φ-nodes (that correspond to assignments to the same variable along different paths). Observe
that all edges on a φ-sequence will be labeled with the same variable.

Consider an arbitrary dependence path η = e1e2 . . . en in DCG representing a chain
of dependences. To satisfy η by an execution trace ψ over an abstract domain ρ, we
need to satisfy the annotations eb of each edge ei, i ∈ [1..n], at some ιi (i.e., ψ `ριi ei) such
that the execution sub-traces of ψ corresponding to the ei are contiguous.

Definition 36 (Evidence) For an execution trace ψ over an abstract domain ρ and a depen-
dence edge e, s.t. ψ `ρι e, evidence(ψ, e, ι) = ι′ where ι′ is the index of the first occurrence of
(e.tgt,−) in ψ from index ι.

Definition 37 (Execution satisfying a dependence path) A series of program dependences
represented by a dependence path η = e1e2 . . . en is said to be satisfied by an execution ψ over
an abstract domain ρ (written as ψ `ρ η) if∧

1≤i≤n

ψ `
ρ
ιi ei ∧ (∀1 ≤ i ≤ n : evidence(ψ, ei, ιi) = ιi+1)

Theorem 3 Given a φ-sequence ηφ = e1e2 . . . en and the execution trace ψ over an abstract
domain ρ, the trace ψ satisfies ηφ (denoted ψ `ρ ηφ) iff the abstract value computed at e1.src
reaches en.tgt in ψ along the execution path that satisfies ηφ.

Proof Since ψ `ρ η, we have∧
1≤i≤n

ψ `
ρ
ιi ei ∧ (∀1 ≤ i ≤ n : evidence(ψ, ei, ιi) = ιi+1)

This means that the sub-traces ψi of ψ satisfying the annotations of ei of η, where i = 1, . . . ,n,
are contiguous. Observe that all the edges ei of η are labeled with the same variable x. Consider
any two consecutive edges ei = pr

x
−→ ps and ei+1 = ps

x
−→ pt in η where 1 ≤ i < i + 1 ≤ n and

the corresponding contiguous sub-traces ψi and ψi+1 that satisfy ei and ei+1 respectively. From
Theorem 2, we can say that the abstract value of x can reach from pr to ps and from ps to pt in
ψi and ψi+1 respectively. If the intermediate node ps is a φ node (which does not recompute
the value but only pass through), then this transitivity implies that the abstract value of x can
reach from pr to pt in ψq where ψq is the concatenation of ψi and ψi+1. Since in a φ-sequence
all the intermediate nodes are φ nodes, we can extend this transitivity for all i from 1 to n,
and we can say that the abstract value of x can reach from e1.src to en.tgt in ψ where ψ is the
concatenation of all subtraces ψi, i = 1, . . . ,n. Observe that in a φ-sequence the starting and

200

8.5 Dependence Condition Graph (DCG)

end nodes are not φ nodes, and the datum is computed at starting node and is used by the end
node. Thus, the abstract value computed at e1.src reaches en.tgt in ψ.

Let us now prove the “only if” part of the theorem: given a φ-sequence η = e1e2 . . . en and
an execution trace ψ over an abstract domain ρ, if the abstract value at e1.src reaches en.tgt in
ψ, then ψ `ρ η.

Since inφ-sequence η = e1e2 . . . en all the intermediate nodes areφ nodes except the starting
and end ones, and the datum computed at e1.src reaches en.tgt in ψ, from Theorem 2 we can
say that ∀i, 1 ≤ i ≤ n: ψ `ριi ei where ιi is the index of (ei.src,−) in ψ. Now we show that
evidence(ψ, ei, ιi) = ιi+1 for all i, 1 ≤ i ≤ n. Consider two consecutive edges ei = pr

x
−→ ps and

ei+1 = ps
x
−→ pt in ηwhere 1 ≤ i < i + 1 ≤ n. Since ψ `ριi ei and ψ `ριi+1

ei+1, the trace ψ contains
ιi : (pr, εpr) and ιi+1 : (ps, εps). Thus, we have evidence(ψ, ei, ιi) = ιi+1 because ιi+1 is the index
of the first occurrence of (ei.tgt,−) i.e. (ps, εps) in ψ from the index ιi. Therefore, we have∧

1≤i≤n

ψ `
ρ
ιi ei ∧ (∀1 ≤ i ≤ n : evidence(ψ, ei, ιi) = ιi+1)

That is,
ψ `ρ η.

Example 29 Consider the dependence path η = 2 x
−→ 6 x

−→ φ
x
−→ 7 in the graph of Figure 8.9,

and the following execution trace over the abstract domain SIGN:

ψ = ι1 : 〈1, (⊥,⊥)〉 ι2 : 〈2, (⊥,⊥)〉 ι3 : 〈3, (+,⊥)〉 ι4 : 〈4, (+,+)〉 ι5 : 〈5, (+,+)〉 ι6 : 〈6, (+,+)〉
ι7 : 〈φ, (+,+)〉 ι8 : 〈7, (+,+)〉 ι9 : 〈8, (+,+)〉

The trace ψ satisfies eb for all the edges 2 x
−→ 6, 6 x

−→ φ and φ x
−→ 7 of η, and the sub-traces of ψ

that satisfy these edges are contiguous, that is,

• ψ `SIGN
ι2 (2 x

−→ 6) and evidence(ψ, 2 x
−→ 6, ι2) = ι6,

where 1 true
−−→ 4 true

−−→ 5 true
−−→ 6 ∈ (2 x

−→ 6)R and (2 x
−→ 6)A = ∅ and ψ is of the form

ι1 : 〈1, (⊥,⊥)〉 ι2 : 〈2, (⊥,⊥)〉 . . . ι4 : 〈4, (+,+)〉 ι5 : 〈5, (+,+)〉 ι6 : 〈6, (+,+)〉 . . .
such that [[1.cond = true]](⊥,⊥), [[4.cond = true]](+,+) are evaluated to “true” and
[[5.cond = true]](+,+) is evaluated to “unknown”.

• ψ `SIGN
ι6 (6 x

−→ φ) and evidence(ψ, 6 x
−→ φ, ι6) = ι7,

where (6 x
−→ φ)R = ∅ and (6 x

−→ φ)A = ∅ and ψ is of the form . . . ι6 : 〈6, (+,+)〉
ι7 : 〈φ, (+,+)〉

201

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

• ψ `SIGN
ι7 (φ x

−→ 7) and evidence(ψ,φ x
−→ 7, ι7) = ι8,

where (φ x
−→ 7)R = ∅ and (φ x

−→ 7)A = ∅ and ψ is of the form . . . ι7 : 〈φ, (+,+)〉
ι8 : 〈7, (+,+)〉

Thus, we can say that the dependence path η is satisfied by ψ over the abstract domain SIGN
i.e. ψ `SIGN η.

Satisfiability of dependence paths combined with semantic relevancy com-
putation

Let η be a dependence path in a DCG. Suppose an execution trace ψ over an abstract
domain ρ satisfies η (denoted ψ `ρ η). If we compute semantic relevancy w.r.t. ρ and
we disregard the irrelevant entries from both η and ψ, we see that the satisfiability of
the refined path is also preserved, as depicted in Theorem 4.

Theorem 4 Given a program P and its DCG Gdcg. Let ψ be an execution trace of P over an
abstract domain ρ, and η = e1e2 . . . elel+1 . . . eh be a dependence path in Gdcg where el : pi

x
−→ p j

and el+1 : p j
x
−→ pk (el and el+1 are contiguous). Suppose removal of the element corresponding to

irrelevant statement at p j w.r.t. ρ from η andψ yield to a dependence path η′ = e1e2 . . . eq . . . eh,
where eq : pi

x
−→ pk, and a trace ψ′ respectively. Then,

i fψ `ρ η, then ψ′ `ρ η′

.

Proof Since ψ `ρ η, we can say that for the edges el : pi
x
−→ p j and el+1 : p j

x
−→ pk in η:

• ψ `R
ιi el ∧ ψ `

A
ιi el ∧ evidence(ψ, el, ιi) = ι j, and

• ψ `R
ι j el+1 ∧ ψ `

A
ι j el+1 ∧ evidence(ψ, el+1, ι j) = ιk

where, ιi, ι j and ιk are the indexes where (pi, εpi), (p j, εp j) and (pk, εpk) occur respectively in ψ.
We already know that the dependence edges e in DCG are annotated by the Reach Sequences

eR and the Avoid Sequences eA. The Reach Sequences eR for the edge e : e.src x
−→ e.tgt represents

the conditions that need to be satisfied by the execution trace ψ to reach the data x from e.src to
e.tgt. If eR = ∅, it means that e.tgt post-dominates e.src and thus, the execution trace should
contain e.src, and once e.src is executed e.tgt will also be executed which yield x to reach from
e.src to e.tgt. When eR , ∅, e.tgt does not post-dominate e.src and thus, the conditions in eR

need to be satisfied by the trace ψ so that e.tgt executes, and since ψ also contains e.src the data
x must reach from e.src to e.tgt. Therefore, we have ψ as follows under the four different cases
of Reach Sequences:

202

8.5 Dependence Condition Graph (DCG)

r1: eR
l = eR

l+1 = ∅: pi is post-dominated by p j and p j is post-dominated by pk, and ψ contains
ιi : (pi, εpi), ι j : (p j, εp j) and ιk : (pk, εpk) where ιi < ι j < ιk.

r2: eR
l , ∅ and eR

l+1 = ∅: ψ contains ιi : (pi, εpi), ι j : (p j, εp j) and ιk : (pk, εpk) where ιi < ι j < ιk.

For each (ps1

labs1
−−−→ ps2

labs2
−−−→ . . . psn

labsn
−−−→ p j) ∈ eR

l , ψ contains ιm : (psm , εpsm
) for

m = 1, . . . ,n and ι1 < ιi < ι2 < · · · < ιn < ι j < ιk and
∧

1≤m≤n [[psm .cond = labsm]](εpsm
)

yields to “true” or “unknown”, and p j is post-dominated by pk.

r3: eR
l = ∅ and eR

l+1 , ∅: pi is post-dominated by p j and ψ contains ιi : (pi, εpi), ι j : (p j, εp j)

and ιk : (pk, εpk) where ιi < ι j < ιk. For each (ps1

labs1
−−−→ ps2

labs2
−−−→ . . . psn

labsn
−−−→ pk) ∈ eR

l+1,
ψ contains ιm : (psm , εpsm

) for m = 1, . . . ,n and ι1 < ιi < ι j < ι2 < · · · < ιn < ιk and∧
1≤m≤n [[psm .cond = labsm]](εpsm

) yields to “true” or “unknown”.

r4: eR
2 , ∅ and eR

3 , ∅: ψ contains ιi : (pi, εpi), ι j : (p j, εp j) and ιk : (pk, εpk) where ιi < ι j < ιk.

For each (ps1

labs1
−−−→ ps2

labs2
−−−→ . . . psn

labsn
−−−→ p j) ∈ eR

l and (psn

labsn
−−−→ psn+1

labsn+1
−−−−→ . . . psr

labsr
−−−→

pk) ∈ eR
l+1, ψ contains ιm : (psm , εpsm

) for m = 1, . . . , r and ι1 < ιi < ι2 < · · · < ιn <

ι j < ιn+1 < · · · < ιr < ιk and
∧

1≤m≤r [[psm .cond = labsm]](εpsm
) yields to “true” or

“unknown”.

We know that after computing semantic relevancy w.r.t. ρ and after removing the irrelevant
element corresponding to p j from η and ψ, we get η′ = e1e2 . . . eq . . . eh where eq : pi

x
−→ pk and

the execution trace ψ′. Now we have to show that ψ′ `ρ η′. That is ψ′ `R
ιi eq ∧ ψ′ `A

ιi eq and
evidence(ψ, eq, ιi) = ιk.

Corresponding to the above four cases r1, r2, r3 and r4, we have the following four cases:

r′1: [eR
l = ∅, eR

l+1 = ∅] eR
q = ∅: Since pi is post-dominated by p j and p j is post-dominated by pk,

after removing the irrelevant entry corresponding to p j, we have that pi is post-dominated
by pk. Since the trace ψ′ contains ιi : (pi, εpi) and ιk : (pk, εpk) where ιi < ιk, we get
ψ′ `R

ιi eq.

r′2: [eR
l , ∅, eR

l+1 = ∅]:

• eR
q = ∅: Since pi is not dominated by p j and p j is post-dominated by pk, after

removing the irrelevant element corresponding to p j, it may happen that pi is post-
dominated by pk. Since ψ′ contains ιi : (pi, εpi) and ιk : (pk, εpk) where ιi < ιk, we
get ψ′ `R

ιi eq.

• eR
q , ∅: After removing the irrelevant element corresponding to p j, we have that

pi is not post-dominated by pk. In such case, the trace ψ′ contains ιi : (pi, εpi) and

203

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

ιk : (pk, εpk) where ιi < ιk and for each (ps1

labs1
−−−→ ps2

labs2
−−−→ . . . pst

labst
−−−→ pk) ∈ eR

q

where t ∈ [2...n], the trace ψ′ contains ιm : (psm , εpsm
) for m = 1, . . . , t and

ι1 < ιi < ι2 < · · · < ιt < ιk and
∧

1≤m≤t [[psm .cond = labsm]](εpsm
) yields to “true”

or “unknown”. Thus, ψ′ `R
ιi eq.

r′3: [eR
l = ∅, eR

l+1 , ∅] eR
q , ∅: Here removal of irrelevant element corresponding to p j, we

have that pi is not post-dominated by pk. In such case ψ′ contains ιi : (pi, εpi) and

ιk : (pk, εpk) where ιi < ιk and for each (ps1

labs1
−−−→ ps2

labs2
−−−→ . . . psn

labsn
−−−→ pk) ∈ eR

l+1, ψ′

contains ιm : (psm , εpsm
) for m = 1, . . . ,n and ι1 < ιi < ι2 < · · · < ιn < ιk and

∧
1≤m≤n

[[psm .cond = labsm]](εpsm
) yields to “true” or “unknown”. Thus, ψ′ `R

ιi eq.

r′4: [eR
l , ∅, eR

l+1 , ∅] eR
q , ∅: Since pi is not post-dominated by p j and p j is not post-dominated

by pk, the removal of element corresponding to p j results that pi is never post-dominated by
pk. In such case the traceψ′ contains ιi : (pi, εpi) and ιk : (pk, εpk) where ιi < ιk and for each

(ps1

labs1
−−−→ ps2

labs2
−−−→ . . . pst

labst
−−−→ pst+1

labst+1
−−−−→ . . . psr

labsr
−−−→ pk) ∈ eR

q where t ∈ [1...n], ψ′

contains ιm : (psm , εpsm
) for m = 1, . . . , r and ι1 < ιi < ι2 < · · · < ιt < ιt+1 < · · · < ιr < ιk

and
∧

1≤m≤r [[psm .cond = labsm]](εpsm
) yields to “true” or “unknown”.

Similarly, we can prove that ψ′ `A
ι1 eq.

Thus, for any syntax-based dependence path η = e1e2 . . . elel+1 . . . eh where el : pi
x
−→ p j and

el+1 : p j
x
−→ pk, and an execution trace ψ over an abstract domain ρ: if ψ `ρ η then ψ′ `ρ η′,

where η′ = e1e2 . . . eq . . . eh (where eq = pi
x
−→ pk) and ψ′ are the semantics-based dependence

path and semantics-based execution trace corresponding to η and ψ respectively obtained after
computing semantic relevancy w.r.t. ρ .

Example 30 Look at Figure 8.9 and consider the dependence path η = 2 x
−→ 6 x

−→ φ
x
−→ 7 and

the following execution trace over the abstract domain SIGN:

ψ = ι1 : 〈1, (⊥,⊥)〉 ι2 : 〈2, (⊥,⊥)〉 ι3 : 〈3, (+,⊥)〉 ι4 : 〈4, (+,+)〉 ι5 : 〈5, (+,+)〉 ι6 : 〈6, (+,+)〉
ι7 : 〈φ, (+,+)〉 ι8 : 〈7, (+,+)〉 ι9 : 〈8, (+,+)〉

Note that ψ `SIGN η, as already shown in Example 29. Figure 8.10(a) and 8.10(b) depict
the program Prel and its PDG Grel

pdg which are obtained after computing semantic relevancy
w.r.t. SIGN. Observe that in P (Figure 8.9(a)) the statement at program point 6 is irrelevant
w.r.t. SIGN. Therefore, we can remove the conditional statement at 5 and the φ statement, be-
cause after removing statement 6 the corresponding “i f ” block becomes semantically irrelevant
and the SSA function f is not necessary anymore, as x has just a single definition. The DCG
annotations over the DDG edges of Grel

pdg are shown in Figure 8.10(c).

204

8.5 Dependence Condition Graph (DCG)

Figure 8.10: A program and satisfiability of its DCG after relevancy computation

(a) Prel: Program
after relevancy
computation of P
w.r.t. SIGN

1. start
2. x = input;
3. y = input;
4. i f (x > 0){
7. print(x); }
8. stop

(b) Grel
pdg: PDG of Prel

1

4

8 7

T

x
x

3

2

(c) DCG annotations for
the edges of Grel

pdg

e eR eA

2 x
−→ 7 1 true

−−−→ 4 true
−−−→ 7 ∅

2 x
−→ 4 ∅ ∅

After removing the irrelevant entries from η andψ, we get the dependence path η′ = 2 x
−→ 7,

and the execution trace ψ′ as follows:

ψ′ = ι1 : 〈1, (⊥,⊥)〉 ι2 : 〈2, (⊥,⊥)〉 ι3 : 〈3, (+,⊥)〉 ι4 : 〈4, (+,+)〉 ι8 : 〈7, (+,+)〉 ι9 : 〈8, (+,+)〉

Now, let us show that ψ′ `SIGN η′.
In η′, for the edge 2 x

−→ 7, the statement at 7 does not post-dominate the statement at 2. The
Reach Sequences and the Avoid Sequences for the edge e = 2 x

−→ 7 are (2 x
−→ 7)R = {1 true

−−→ 4 true
−−→

7} and (2 x
−→ 7)A = ∅ respectively. For 1 true

−−→ 4 true
−−→ 7 ∈ (2 x

−→ 7)R : [[1.cond = true]](⊥,⊥)
and [[4.cond = true]](+,+) yields to true. Thus, ψ′ `R

ι1 (2 x
−→ 7).

The Avoid Sequence behaves similarly, yielding to ψ′ `SIGN η′.

8.5.1 Refinement into Semantics-based Abstract DCG

Given a DCG, we can refine it into more precise semantics-based abstract DCG by
removing from it all the semantically unrealizable dependences where conditions for
a control dependence never be satisfiable or data defined at a source node can never
be reachable to a target node in all possible abstract execution traces. The notion of
semantically unrealizable dependence path is defined in Definition 38.

Definition 38 (Semantically Unrealizable Dependence Path) Given a DCG Gdcg and
an abstract domain ρ. A dependence path η ∈ Gdcg is called semantically unrealizable in the

205

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

abstract domain ρ if ∀ψ: ψ 0ρ η, where ψ is an abstract execution trace.

Figure 8.11: Algorithm to generate Semantics-based Abstract DCG

Algorithm 8: REFINE-DCG

Input: Syntactic DCG Gdcg and an abstract domain ρ
Output: Semantics-based abstract DCG Gs

dcg w.r.t. ρ

1. FOR each nodes q ∈ Gdcg DO

2. If ∀ψ: ψ 0ρ (p lab
−−→ q) where lab ∈ {true, f alse} THEN

3. Remove from Gdcg the node q and all its associated dependences. If q is a
control node, the removal of q also removes all the nodes transitively control-
dependent on it. Data dependences have to be re-adjusted accordingly;

4. END IF

5. FOR each data dependence edge e = (q x
−→ pi) DO

6. IF ∀ψ: ψ 0ρ e THEN
7. Remove e from Gdcg and re-adjust the data dependence of pi for the data x;
8. END IF

9. END FOR

10. FLAG:=true;
11. FOR each φ-sequences ηφ = (q x

−→ φ1
x
−→ . . .

x
−→ φ j

x
−→ pi) starting from q DO

12. IF ∃ψ: ψ `ρ ηφ THEN
13. FLAG:=false;
14. BREAK;
15. END IF

16. END FOR

17. IF FLAG==true THEN
18. Remove the edge q x

−→ φ1;
19. END IF

20. END FOR

The refinement algorithm of a DCG from syntactic to semantic one is depicted in
Figure 8.11. Step 2 says that if the condition on which a node q is control-dependent,
never be satisfied by any of the execution traces, then the node and all its associated
dependences are removed. In that case, if q is a control node, we remove all the nodes
transitively control-dependent on q. If any DDG edge with q as source is semantically
unrealizable under its abstract semantics, the corresponding DDG edge is removed in
step 5. If all the φ-sequences emerging from q are semantically unrealizable under its
abstract semantics, we remove the dependence of the φ-sequences on q in step 11.

206

8.6 Slicing Algorithm

Figure 8.12: Slicing Algorithm

Algorithm 9: GEN-SLICE

Input: Program P and an abstract slicing criterion 〈p, v, ρ〉
Output: Abstract Slice w.r.t. 〈p, v, ρ〉

1. Generate a semantics-based abstract PDG Gr,d
pdg from the program P by following

the algorithm REFINE-PDG.

2. Convert Gr,d
pdg into the corresponding DCG Gdcg by computing annotations over all

the data/control edges of it.

3. Generate a semantics-based abstract DCG Gs
dcg from Gdcg by following the algorithm

REFINE-DCG.

4. Apply the criterion 〈p, v〉 on Gs
dcg by following PDG-based slicing techniques (156)

and generate a sub-DCG Gsdcg that includes the node corresponding to the program
point p as well.

5. Refine Gsdcg into more precise one G′sdcg by performing the following operation for
all nodes q ∈ Gsdcg:

∀ηφ = (q x
−→ φ1

x
−→ . . .

x
−→ φ j

x
−→ pi) and ∀ψ: if ψ 0ρ ηφ, then remove the edge q x

−→ φ1

from Gsdcg.

6. Apply again the criterion 〈p, v〉 on G′sdcg that results into the desired slice.

Observe that in case of static slicing the satisfiability of the dependence paths are
checked against all possible traces of the program, whereas in case of dynamic slicing
or other forms of slicing the checking is performed against the traces generated only
for the inputs of interest.

8.6 Slicing Algorithm

We are now in position to formalize our proposed slicing algorithm, depicted in Figure
8.12, that takes a program P and an abstract slicing criterion 〈p, v, ρ〉 as inputs, and
produces an abstract slice w.r.t. 〈p, v, ρ〉 as output. The proposed slicing algorithm
make use of the semantics-based abstract DCG of the program that is obtained in two
steps: first by generating semantics based abstract PDG by following the algorithm
REFINE-PDG (Figure 8.8), and then by converting it into semantics-based abstract DCG

207

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

Figure 8.13: Refinement of sub-DCG during slicing

(a) A part of a DCG containing three φ-sequences

3

4

2

5

6

3

2

1 1

7

y

y y

y

y
y

y

y

y

T

(b) Sub-DCG after applying Slicing Criterion C

3

4

2

5

6
2

1 1

7

y y

y

y
y

y

y

y

T

(c) Refiement of Sub-DCG

3

4

2

5

6
2

1 1

7

y

y

y
y

y

y

y

T

by following the algorithm REFINE-DCG (Figure 8.11).
Observe that the sub-DCG Gsdcg which is obtained in step 4 by applying slicing

criterion on the semantics-based abstract DCG Gs
dcg, is further refined in step 5 by

removing unrealizable data dependences, if present, from it. Let us illustrate the reason
behind it with an example. Consider the graph in Figure 8.13(a) showing a portion of
DCG with three φ-sequences φ1, φ2 and φ3 that describe the data dependences of the
nodes 3, 5 and 7 respectively on the node 1 for a data y.

• η1 = 1
y
−→ φ1

y
−→ 3

• η2 = 1
y
−→ φ1

y
−→ φ2

y
−→ 5

• η3 = 1
y
−→ φ1

y
−→ φ2

y
−→ φ3

y
−→ 7

Suppose, ∃ψ: ψ `ρ η1
∧
∀ψ: ψ 0ρ (η2

∧
η3). During refinement of a DCG in the

208

8.7 Illustration of the Proposal with an Example

algorithm REFINE-DCG, we can not remove the dependence edge 1
y
−→ φ1 because there

is one semantically realizable φ-sequence φ1 from node 1.
Given a slicing criterion C. In algorithm GEN-SLICE, suppose the sub-DCG gener-

ated after applying C does not include the node 3, as depicted in Figure 8.13(b). Now
if we apply step 5 on the sub-DCG, we see that all the φ-sequences emerging from
node 1 (φ2 and φ3) are not semantically realizable. Therefore, we can remove the edge
1

y
−→ φ1 from it as depicted in Figure 8.13(c). The further application of the slicing

criterion C (in step 6) on this refined sub-DCG generate a slice that does not include
the statement corresponding to the node 1 any more.

8.7 Illustration of the Proposal with an Example

In this section, we illustrate the proposed slicing technique with an example by show-
ing the combination of all the phases of computation (statement relevancy, semantic
data dependences, conditional dependences and slicing) step by step. We show that
our proposal results into a more precise slice (according to def. 21) than the one
proposed by Mastroeni and Zanardini (140).

Example 31 Consider the program P and the corresponding traditional Program Dependence
Graph (Gpdg) for its SSA correspondent code, as depicted in Figure 8.14.

Suppose, we are interested only in the sign of the program variables and the abstract domain
SIGN is represented by SIGN = {⊥,+, 0,−, 0+, 0−,>} where 0+ denotes {x ∈ Z : x ≥ 0}, 0−

denotes {x ∈ Z : x ≤ 0}, and Z is the set of integers. Consider the abstract slicing criterion
〈13, y,SIGN〉 where 13 is the program point and y is the variable used at 13.

Computation of Statement Relevancy. At program point 9, the variable x may have any
abstract value from the set {+, 0,−}. Since the abstract evaluation of the assignment
statement x3 = x2 × 2 at 9 does not change the sign property of x, the statement at 9 is
irrelevant w.r.t. SIGN. After disregarding the node corresponding to this statement from
the syntactic PDG Gpdg, we get a refined semantics-based abstract PDG Gr

pdg depicted
in Figure 8.15.

Computation of Semantic Data Dependences. The computation of semantic data de-
pendences (140) for all expressions in Pssa w.r.t. SIGN reveals the fact that there is no
semantic data dependence between y4 and w at statement 12, as “4w mod 2” always
yields to 0. Therefore, by disregarding the corresponding data dependence edge 5 w

−→ 12
from Gr

pdg obtained in previous phase, we get a more refined semantics-based abstract

PDG Gr,d
pdg depicted in Figure 8.16.

209

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

Figure 8.14: A program and its traditional Program Dependence Graph (PDG)

(a) Program P

1. start
2. i = −2;
3. x = input;
4. y = input;
5. w = input;
6. i f (x ≥ 0)
7. y = 4x3;
8. while(i ≤ 0){
9. x = x × 2;
10. i = i + 1; }
11. i f (x ≤ 0)
12. y = x2 + 4w mod 2;
13. print(x, y);
14. stop

(b) Pssa: SSA form of P

1. start
2. i1 = −2;
3. x1 = input;
4. y1 = input;
5. w = input;
6. i f (x1 ≥ 0)
7. y2 = 4 × (x1)3;
φ1 y3 = f (y1, y2);

while(
φ2 (x2, i2) = f ((x1, i1), (x3, i3));
8. i2 ≤ 0

){
9. x3 = x2 × 2;
10. i3 = i2 + 1; }
11. i f (x2 ≤ 0)
12. y4 = (x2)2 + 4w mod 2;
φ3 y5 = f (y3, y4);
13. print(x2, y5);
14. stop

(c) Gpdg: PDG of Pssa

1

8

3φ

11
12

10

2φ

2

13

14

3

6 7

1φ

4

5

x

T

x

y

y

T

i

i

F

T

y

y y

w

9

T

x

i

x

F

F F

x

x

x

Computation of Conditional Dependences. Given a semantics-based abstract PDG
Gr,d

pdg obtained so far, we can easily convert it into the corresponding DCG Gdcg depicted
in Figure 8.17(a). Let us consider the node 4 and its associated φ-sequence ηφ =

4
y
−→ φ1

y
−→ φ3

y
−→ 13 in Gdcg representing the flow of definition at 4 to 13. Since

210

8.7 Illustration of the Proposal with an Example

Figure 8.15: Gr
pdg: PDG after relevancy computation of Pssa w.r.t. SIGN

1

8

3

11
12

10

2

2

13

14

3

6 7

1

4

5

x

T

x

y

y

i

i

F

T

y

y y

T

i

F

F F

x x

x

w

the abstract values of x may have any value from the set {+, 0,−} at program point 3,
there is no such execution trace ψ over the abstract domain SIGN that can avoid both

(4
y
−→ φ1)A = {1 true

−−→ 6 true
−−→ 7} and (φ1

y
−→ φ3)A = {1 true

−−→ 8
f alse
−−−→ 11 true

−−→ 12}
simultaneously. For all execution traces over the abstract domain of sign, at least one of
the conditions among 6 true

−−→ 7 and 11 true
−−→ 12 must be satisfied. This means that the

definition at 4 is over-written either by 7 or by 12 or by both, and can never reach 13. In
short, ηφ is semantically unrealizable i.e. ∀ψ : ψ 0SIGN ηφ.

Therefore, if we execute the algorithm REFINE-DCG on Gdcg, since there exists no seman-
tically realizable φ-sequence from the node 4 to any target node t such that y defined
at 4 can reach t, we remove the edge 4

y
−→ φ1 from Gdcg, resulting into a more precise

semantics-based abstract DCG Gs
dcg as depicted in Figure 8.17(b).

Slicing w.r.t. 〈13, y, SIGN〉. Given the semantics-based abstract DCG Gs
dcg in Figure

8.17(b). We apply PDG-based backward slicing technique (156) on it w.r.t. 〈13, y〉 and
generate a sub-DCG Gsdcg as depicted in Figure 8.18(a). Observe that we can not refine
it anymore. Therefore, slicing of Gsdcg again w.r.t. 〈13, y〉 yields a slice shown in Figure
8.18(b).

Observe that if we apply only the slicing technique of Mastroeni and Zanadini (140) on the
program P, we get the slice depicted in Figure 8.19. According to the definition 21, the slice
obtained in Figure 8.18(b) is more precise than the Mastroeni and Zanadini’s one obtained in
Figure 8.19.

211

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

Figure 8.16: Gr,d
pdg: PDG after computing statements relevancy first, and then semantic data

dependences of Pssa w.r.t. SIGN

1

8

3

11
12

10

2

2

13

14

3

6 7

1

4

5

x

T

x

y

y

i

i

F

T

y

y y

T

i

F

F F

x x

x

8.8 Soundness and Complexity Analysis

In this section, we prove that the abstract semantic relevancy computation is sound,
and we perform the complexity analysis of the proposed slicing technique.

8.8.1 Semantic Relevancy: Soundness

When we lift the semantics-based program slicing from the concrete domain to an
abstract domain, we are loosing some information about the states occurring at dif-
ferent program points in P. Thus, some relevant statements at the concrete level may
be treated as irrelevant in an abstract domain as they do not have any impact on the
property observed through the abstract domains.

In order to prove the soundness of the abstract semantic relevancy of statements,
we need to show that if any statement s at program point p in the program P is irrelevant
w.r.t. an abstract property ρ, then the execution of s over all the concrete states possibly
reaching p does not change the property ρ of the variables in those concrete states.

Theorem 5 (Soundness) If a statement s at program point p in the program P is semantically
irrelevant w.r.t. an abstract property ρ, then s is semantically irrelevant with respect to the
concrete property ω defined by: ω , ∀σ ∈ Σp, ∀xi ∈ VAR : ρ(σ[xi]) = ρ((S[[s]]σ)[xi]).

Proof Given an abstract domain ρ on values, the set of abstract states is denoted by Σρ whose
elements are tuples ε = 〈ρ(v1), . . . , ρ(vk)〉 where vi = σ(xi) for xi ∈ VAR being the set of

212

8.8 Soundness and Complexity Analysis

Figure 8.17: Semantics-based abstract DCG

(a) Gdcg: DCG after computing annotations on Gr,d
pdg

1

8

3

11
12

10

2

2

13

14

3

6 7

1

4

5

x

T

x

y

y

i

i

F

T

y

y y

T

i

F

F F

x x

x

e eR eA

4
y
−→ φ1 ∅ 1 true

−−−→ 6 true
−−−→ 7

7
y
−→ φ1 ∅ ∅

3 x
−→ 6 ∅ ∅

3 x
−→ 7 1 true

−−−→ 6 true
−−−→ 7 ∅

3 x
−→ 11 1 true

−−−→ 8
f alse
−−−→ 11 ∅

3 x
−→ 12 1 true

−−−→ 8
f alse
−−−→ 11 true

−−−→ 12 ∅

3 x
−→ 13 1 true

−−−→ 8
f alse
−−−→ 13 ∅

12
y
−→ φ3 ∅ ∅

φ1
y
−→ φ3 1 true

−−−→ 8
f alse
−−−→ φ3 1 true

−−−→ 8
f alse
−−−→ 11 true

−−−→ 12

φ3
y
−→ 13 ∅ ∅

2 i
−→ φ2 ∅ ∅

φ2
i
−→ 8 ∅ ∅

10 i
−→ φ2 ∅ ∅

φ2
i
−→ 10 1 true

−−−→ 8 true
−−−→ 10 ∅

(b) Gs
dcg : DCG after removing e = 4

y
−→ φ1 from Gdcg

1

8

3

11
12

10

2

2

13

14

3

6
7

4

5

x

T

x

i

i

F

T

y

y y

T

i

F

F F

x x

x

program variables.

Let σ = 〈v1, . . . , vk〉 ∈ Σ and ε = 〈ρ(v1), . . . , ρ(vk)〉 ∈ Σρ. Observe that since ∀xi ∈ VAR :
σ(xi) is a singleton and ρ is partitioning, each variable xi will have the atomic property obtained
from the induced partition Π(ρ) (140). The concretization of the abstract state ε is represented

213

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

Figure 8.18: Slicing w.r.t. 〈13, y,SIGN〉

(a) Gsdcg: sub-DCG after performing backward slicing on Gs
dcg

w.r.t. 〈13, y〉

1

8

3

11
12

10

2

2

13

3

6
7

x

T

x

i

i

F

T

y

y y

T

i

F

F

x x

x

(b) Slice w.r.t. 〈13, y〉 computed
from Gsdcg

1. start
2. i = −2;
3. x = input;
6. i f (x ≥ 0)
7. y = 4x3;
8. while(i ≤ 0){
10. i = i + 1; }
11. i f (x ≤ 0)
12. y = x2 + 4w mod 2;

by γ(ε) = {〈u1, . . . ,uk〉 | ∀i. ui ∈ ρ(vi)}. We denote the jth concrete state in γ(ε) by the notation
〈u1, . . . ,uk〉

j and we denote by u j
i the elements of that tuple.

As S[[s]]ρ(ε) is defined as the best correct approximation of S[[s]] on the concrete states in
γ(ε), we get:

S[[s]]ρ(ε) = ρ(
⋃

j∈[1..|γ(ε)|]

{S[[s]]〈u1, . . . ,uk〉
j
})

= ρ(
⋃

j∈[1..|γ(ε)|]

{〈u′1, . . . ,u
′

k〉
j
| S[[s]]〈u1, . . . ,un〉

j = 〈u′1, . . . ,u
′

k〉
j
})

= 〈 ρ(
⋃

j∈[1..|γ(ε)|]

{u′ j1 }), . . . , ρ(
⋃

j∈[1..|γ(ε)|]

{u′ jk }) 〉

where u′ ji denotes the concrete value of the ith variable xi ∈ VAR in the state obtained after the

214

8.8 Soundness and Complexity Analysis

Figure 8.19: Slice w.r.t. 〈13, y,SIGN〉 by Mastroeni and Zanardini

1. start
2. i = −2;
3. x = input;
4. y = input;
6. i f (x ≥ 0)
7. y = 4x3;
8. while(i ≤ 0){
9. x = x × 2;
10. i = i + 1; }
11. i f (x ≤ 0)
12. y = x2 + 4w mod 2;

execution of the statement s over the jth concrete state in γ(ε). Observe that the later equality
relies on the distributivity of ρ, that comes from the assumption of the atomicity of abstract
domain obtained from induced partitioning.

From the definition of abstract irrelevancy of a statement s at program point p w.r.t. abstract
property ρ, we get

∀ε ∈ Σ
ρ
p : S[[s]]ρ(ε) = ε

Therefore,
S[[s]]ρ(ε) = 〈 ρ(

⋃
j∈[1..|γ(ε)|]

{u′ j1 }), . . . , ρ(
⋃

j∈[1..|γ(ε)|]

{u′ jk }) 〉 = ε

Then, by def. of ε,

〈 ρ(
⋃

j∈[1..|γ(ε)|]

{u′ j1 }), . . . , ρ(
⋃

j∈[1..|γ(ε)|]

{u′ jk }) 〉 = 〈 ρ(v1), . . . , ρ(vk) 〉 (8.1)

And so, by def. of γ(ε) we get:

〈 ρ(
⋃

j∈[1..|γ(ε)|]

{u′ j1 }), . . . , ρ(
⋃

j∈[1..|γ(ε)|]

{u′ jk }) 〉 = 〈 ρ(
⋃

j∈[1..|γ(ε)|]

{u j
1}), . . . , ρ(

⋃
j∈[1..|γ(ε)|]

{u j
k}) 〉 (8.2)

We already mentioned that given an abstract property ρ, since ∀xi ∈ VAR : σ(xi) is a
singleton and ρ is a partitioning, each variable xi will have the property obtained from the
induced partition Π(ρ) (140). Thus, ∀xi ∈ VAR : ρ(σ(xi)) = ρ(vi) is atomic.

Therefore, from the Equations 1 and 2, we get

∀xi ∈ VAR, ρ(
⋃

j∈[1..|γ(ε)|]

{u′ ji }) = ρ(vi) = ρ(
⋃

j∈[1..|γ(ε)|]

{u j
i }) is atomic.

This allows us to conclude that for each ith program variables xi ∈ VAR (where i ∈ [1...k]) in
all the jth concrete states (where j ∈ [1..|γ(ε)|]), the concrete value u′ ji which is obtained after

215

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

the execution of s over those concrete states have the same property as the concrete value u j
i

before the execution of s. This means that for any irrelevant statement s at program point p
in P w.r.t. abstract property ρ, the execution of s over the concrete states possibly reaching p
does not lead to any change of the property ρ of the concrete values of the program variables
xi ∈ VAR in those concrete states.

Thus, s is semantically irrelevant w.r.t. the concrete property w , ∀σ ∈ Σp, ∀xi ∈ VAR :
ρ(σ[xi]) = ρ((S[[s]]σ)[xi]).

8.8.2 Complexity Analysis

Given an abstract domain ρ, our proposal has the following four subsequence steps to
obtain abstract slice w.r.t. a slicing criterion C:

1. Compute semantic relevancy of program statements w.r.t. ρ.

2. Obtain semantic data dependences of each expression on the variables appearing
in it w.r.t. ρ.

3. Generation of semantics-based abstract DCG by removing all the unrealizable
dependences w.r.t. ρ.

4. Finally, slice the semantics-based abstract DCG w.r.t. C.

8.8.2.1 Complexity in computing semantic relevancy

To compute semantic relevancy of a statement s at program point p w.r.t. ρ, we compare
each abstract state ε ∈ Σ

ρ
p with the corresponding state ε′ = S[[s]]ρ(ε). If ∀ε ∈ Σ

ρ
p : ε = ε′,

we say that s is irrelevant w.r.t. ρ.

To obtain all possible abstract states reaching each program point in a program, we
compute its abstract collecting semantics.

Complexity to compute abstract collecting semantics. Given a set of abstract states
Σρ and a set of program points Label, the context vector is defined by Context-Vector] :
Label→ Context], where Context] = ℘(Σρ).

The context vector associated with a program P of size n is, thus, denoted by
Cv]P = 〈Cx]1,Cx]2, . . . ,Cx]n〉, where Cx]i is the context associated with program point i in
P.

216

8.8 Soundness and Complexity Analysis

Let F]i : Context-Vector] → Context] be a collection of abstract monotone functions.
For the program P, we therefore have

Cx]1 =F]1(Cx]1, . . . ,Cx]n)

Cx]2 =F]2(Cx]1, . . . ,Cx]n)

.

Cx]n =F]n(Cx]1, . . . ,Cx]n)

Combining the above abstract functions, we get

F] : Context-Vector] → Context-Vector]

That is,

F](Cx]1, . . . ,Cx]n) = (F]1(Cx]1, . . . ,Cx]n), . . . ,F]n(Cx]1, . . . ,Cx]n))

Each function F]i includes the transition function defined as follows:

Cx]i =
⋃

s j∈pred(si)

∪
ε j∈Cx]j

S[[s j]]ρ(ε j) (8.3)

where, pred(si) is the set of predecessors of the statement si.
Starting from the initial context vector Cv]P=〈⊥, . . . ,⊥〉which is the bottom element

of the lattice Ln where L = (℘(Σρ),v,u,t,>,⊥), the computation of least fix-point of
F] results into the collecting semantics for P. With this collecting semantics, we can
easily obtain the abstract states possibly reaching each program points in a program
that help in computing semantic relevancy of all statements w.r.t. ρ.

Equation 8.3 says that the time complexity of each F]i depends on the no. of pre-
decessors of si and the execution time of S[[.]]ρ, assuming the no. of possible abstract
states appearing at each program point as constant. For “skip” statement, S[[skip]]ρ

is constant, whereas for assignment/conditional/repetitive statements, it depends on
the execution time for arithmetic and boolean expressions occurred in those state-
ments. Theoretically, there is no limit of the length of expressions i.e. the no. of
variables/constants/operations present in the expressions. However, practically, we
assume that β is the maximum no. of operations (arithmetic or boolean) that can be
present in any expression. Assuming the time needed to perform each operation as
constant, we get the time complexity of S[[.]]ρ as O(β). Since in a control flow graph the
no. of predecessors of each si is constant, and F] involves n monotone functions, the
time complexity of F] is O(nβ), where n is the no. of statements in the program.

217

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

The least solution for F] depends on the number of iteration performed to reach
the fix-point. In case of finite height lattice, let h be the height of the context-lattice
L = (℘(Σρ),v,u,t,>,⊥). The height of Ln is, thus, nh which bounds the number
of iteration we perform to reach the fix-point. So the time complexity for Fix(F]) is
O(n2βh).

However, for the lattice with infinite height, a widening operation is mandatory
(45) and the overall complexity of Fix(F]) depends on it.

Complexity to compute statements semantic relevancy. Once we obtain the collect-
ing semantics for a program P in an abstract domain ρ, the time complexity to compute
semantic relevancy of each statement depends only on the comparison between the
abstract states in the contexts associated with it and in the corresponding contexts of
its successors. Any change in the abstract states determines its relevancy w.r.t. ρ. For
a program with n statements, the time complexity to compute semantic relevancy is,
thus, O(n).

8.8.2.2 Complexity in computing semantic data dependences

Mastroeni and Zanardini (140) introduced an algorithm to compute semantic data
dependences of an expression on the variables appearing in it. Before discussing the
complexity, we briefly mention the algorithm.

Given an expression e and an abstract state ε, the atomicity condition AU
e (ε) holds

iff execution of e over ε i.e. E[[e]]ρ(ε) results an atomic abstract value U, or there exists
a covering {ε1, . . . , εk} of ε such that AU

e (εi) holds for every i.
In order to compute semantic data dependences of an expression e on the variables

var(e) appearing in it, the algorithm calls a recursive function with X = var(e) as
parameter. The recursive function uses an assertion A′e(ε,X), where ε is an abstract
state possibly reaching the statement containing the expression e. The assertion A′e(ε,X)
holds iff∃U : AU

e (ε), or there exists an X-covering {ε1, . . . , εk} of ε such that∀i : A′e(εi,X).
Intuitively, X-covering is a set of restriction on a state, which do not involve X. If
A′e(ε,X) holds, it implies the non-relevance of X in the computation of e, otherwise for
each x ∈ X the same is repeated with X\x as parameter.

Thus, the time complexity to compute semantic data dependences at expression
level for the whole program depends on the following factors:

• The time complexity of E[[e]]ρ: Theoretically there is no limit of the length of
expression e i.e. the no. of variables/constants/operations present in e. However,

218

8.8 Soundness and Complexity Analysis

practically, we assume that β is the maximum no. of operations (arithmetic or
boolean) that can be present in e. Assuming the time needed to perform each
operation as constant, we get the time complexity of E[[e]]ρ as O(β).

• The time complexity of the atomicity condition AU
e (ε): In worst case, the time

complexity of AU
e (ε) depends on the time complexity of E[[e]]ρ and the no. of

elements in the covering of ε. Let m be the no. of atomic values in the abstract
domain ρ. Since the no. of elements in a covering depends on the no. of atomic
values in the abstract domain, the time complexity of AU

e (ε) is O(mβ).

• The time complexity of the assertion A′e(ε,X): In worst case, the time complexity
of A′e(ε,X) depends on the time complexity of atomicity condition AU

e (ε) and the
no. of elements in the X-covering of ε. Thus, the time complexity of A′e(ε,X) is
O(m2β).

In worst case, the recursive function that uses A′e(ε,X) executes for all subset of
variables appearing in e i.e. ∀X ∈ ℘(var(e)). So, it depends on the set of program
variables VAR. Therefore, the time-complexity of the recursive function is O(m2βVAR),
where VAR is the set of program variables. For a program P of size n, the no. of
expressions that can occur in worst case is n. Thus, finally we get the time complexity
to compute semantic data dependences for a program P of size n is O(m2βnVAR).

8.8.2.3 Complexity to generate semantics-based abstract DCG and its slicing

Given a program P (in IMP language) and its PDG, the time complexity to construct
DCG from a PDG is O(n) (182), where n is the no. of nodes in the PDG. However, to
obtain semantics-based abstract DCG Gs

dcg from a syntactic DCG Gdcg, our algorithm
removes all the unrealizable dependences present in Gdcg.

To do this, the algorithm checks the satisfiability of the annotations of all the
outgoing DDG edges, incoming CDG edge and outgoing φ-sequences associated with
each node in the DCG against all the abstract execution traces.

For a DCG with n nodes, the maximum no. of edges need to check is O(n2).
Thus, in case of lattice of finite height h, the worst case time complexity to verify all
dependences for their satisfiability against abstract execution traces is O(n3h).

As we know that the slicing which is performed by walking a DCG backwards or
forwards from the node of interest takes O(n) (156), the worst case time complexity to
obtain DCG-based slicing is, therefore, O(n3h).

219

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

8.8.2.4 Overall complexity of the proposal

We may assume that the number of atomic values (m) present in an abstract domain is
constants, and that O(β) = O(VAR) = O(n).

As an overall complexity evaluation of the techniques presented so far, we can
say that it has worst case time complexity, in case of finite height abstract lattices, is
O(n3h)), where n is the no. of statements in the program and h is the height of the
lattice of context.

8.9 Discussions

We acknowledge that there are other possible improvements that deserve to be consid-
ered in future. As for instance, the semantic relevancy at statement-level does not take
into account the semantic interaction between statements. For example, if consider a
block consisting of two statements {y = y + 3; y = y − 1; }, we observe that each of the
two statements is not semantically irrelevant w.r.t. PAR, while the block as a whole is
irrelevant w.r.t. PAR.

Therefore, to be more precise, we should start to compute the relevancy of a
program from block-level to statement-level. If any block is irrelevant, we disregard
all statements in that block; otherwise, we compute relevancy for all sub-blocks of that
block. In this way, we compute the relevancy by moving from block-level towards the
statement-level. Instead, we can also use the partial evaluation technique, although
costlier, to resolve this issue. For instance, the above two statements can be replaced
by a single statement y=y+2 which is irrelevant w.r.t. PAR.

In (140), the problem related to the control dependence is not addressed. For
example, consider the following example:

4.
5. i f ((y + 2x mod 2) == 0) then
6. w=5;
7. else w=5;
8.

Here the abstract semantic data dependence says that the condition in “i f ” state-
ment is only dependent on y. But it does not say anything about the dependence
between w and y.

Observe that although w is invariant w.r.t. the evaluation of the guard, this is not
captured by (140).

The block-level semantic relevancy, rather than statement-level, can resolve this
issue of independences. Let us denote the complete “i f -else” block by s. The semantics

220

8.10 Slicing of Database Applications

of s says that ∀σ1, σ2 ∈ Σ5, S[[s]](σ1) = σ′1 and S[[s]](σ2) = σ′2 implies σ′1 = σ′2, where
σ′1(w) = σ′2(w) = 5. It means that there is no control of the “i f -else” over the resultant
state which is invariant. So we can replace the whole conditional block s by the single
statement w = 5. Notice that this is also true if we replace the statement at line 6 by
w=y+5, as the line 6 is executed when y==0.

The combined result of semantic relevancy, semantic data dependences and condi-
tional dependences in the refinement of the PDGs can be applied to all forms of slicing:
static, dynamic, conditional, amorphous etc. Since the allowed initial states are differ-
ent for different forms of slicing, we compute statements relevancy and semantic data
dependences of expressions over all the possible states reaching the program points in
the program by starting only from the allowed initial states, according to the criterion.
Similarly, the satisfiability of the depenedence paths in the DCG are checked against
the traces generated from the allowed initial states only. For instance, in case of condi-
tional slicing, a condition is specified in the slicing criterion to disregard some initial
states that do not satisfy it. In case of dynamic slicing, inputs of interest are specified in
the slicing criterion. Therefore, the collecting semantics and execution traces are gen-
erated based on the allowed initial states specified or satisfying the conditions in the
criterion, and are used to compute statements relevancy, semantic data dependences
and satisfiability of the dependence paths.

Although program slicing is a program analysis technique and is not directly
related to the Information System scenario, but indirectly slicing can help in security
aspect, in particular information flow security analysis. The combination of results on
the refinement of dependence graphs with static analysis techniques discussed in this
paper may give rise to further interesting applications to enhance the accuracy of the
static analysis and for accelerating the convergence of the fixed-point computation.
This is the topic of our ongoing research.

8.10 Slicing of Database Applications

The presence of SQL data manipulation language operations such as SELECT, IN-
SERT, UPDATE or DELETE in data-intensive applications that access or manipu-
late databases, requires the extension of traditional Program Dependence Graphs
(PDGs) into Database-Oriented Program Dependence Graphs (DOPDGs), where two
additional types of dependences, called Program-Database (PD) Dependences and
Database-Database (DD) Dependences need to be considered (194). A PD-Dependence
arises between a SQL statement and an imperative statement where either the database

221

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

state defined by SQL statement is used by the imperative statement or the database
state defined by imperative statement is used by the SQL statement. A DD-Dependence
arises between two SQL statements where the database state defined by one SQL state-
ment is used by the other SQL statement. The data dependences between imperative
statements are similar as in the case of traditional PDGs.

In this section, we extend the three notions (statement relevancy, semantic data
dependeces and conditional dependences) to the context of programs embedding SQL
statements, and we propose a refinement of DOPDG-based slicing algorithms thereof.

In particular, we provide the following two contributions:

• We define syntax-based DOPDG by expressing the conditions of DD- and PD-
Dependences in denotational form, as an alternative to the rules introduced by
Baralis and Widom (9).

• We propose a refinement of syntax-based DOPDGs into semantics-based abstract
DOPDGs by combining the notions of (i) semantic relevancy of statements, (ii)
semantic data dependences, and (iii) conditional dependences.

These two contributions lead to an abstract program slicing algorithm for programs
embedding SQL statements that strictly improves with respect to the literature.

8.10.1 A Motivating Example

All the proposed slicing techniques for programs embedding SQL statements (33, 183,
194) are syntax-based, and are computed over concrete domains of data. Slicing of
programs embedding SQL statements in an abstract domain helps in finding a subset
of statements that affect some particular properties of the data in the database or in the
applications. Moreover, the computation of semantics-based dependences removes
some false dependences, yielding to more precise slices. The following example illus-
trates an abstract slicing of a program embedding SQL statements, and we see how
semantics-based dependence computations make the slice more precise.

Example 32 Consider the database dB in Table 8.2 and a portion of code P depicted in Figure
8.20. It is clear from the code that the employees are promoted from lower rank to higher rank
belonging to same job category. Finally, the code computes the average salary of employees
under each of the groups with same job category.

222

8.10 Slicing of Database Applications

Although we follow the syntax of java programs embedding SQL statements, for the sake
of simplicity we simplify the syntax for some statements, for instance, statements 3, 4, 5 that
accept run-time input, and statement 12 that prints all values in the application variable rs.

Table 8.2: Database dB

(a) Table “citizen”

ID name age locID jobname
1 Alberto 28 2 Programmer
2 Matteo 30 1 HR
3 Francesco 35 3 Analyst

(b) Table “loca-
tion”

locID locname
1 Venice
2 Marghera
3 Mestre

(c) Table “job”

jobname category rank sal
Programmer A 1 1500
Analyst A 2 1800
Project Manager A 3 2100
Receptionist B 1 1000
Secretary B 2 1100
HR B 3 2000

Suppose an auditing officer observes that the average salary of employees under the group
of job category “A” (displaying at program point 12) is out of the expected range. For instance,
suppose, according to the company policy, that the average salary for job category “A” should
belong to the interval [1500, 2100], while the computed result is 800. Abstract program slicing,
in such case, can help to identify the program statements that are responsible for this error.
To do so, we consider an abstract slicing criterion 〈12, rs, Ival〉, where “rs” is the variable of
interest at program point 12 and “Ival” is the domain of intervals representing the property of
“rs”.

In order to compute an abstract slice of P w.r.t. 〈12, rs, Ival〉 we need to consider the
abstract computation of the code over an abstract version of the database in an abstract domain
of interest. The abstract database dB] corresponding to the concrete database dB is depicted in
Table 8.3, where some of the numeric values are abstracted by the elements from the domain of
intervals and jobs are represented by the abstract domain ABSJOB={⊥, TechStaff, AdminStaff,
>} and γ is a concretization function such that

223

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

Figure 8.20: Program P

1. start;

2. Statement myStmt = DriverManager.getConnection(”jdbc:mysql://200.210.220.1:1114/demo”,
”scott”, ”tiger”).createStatement();

3. $empID=read();

4. $oldJob=read();

5. $newJob=read();

6. ResultSet rs1=myStmt.executeQuery(”SELECT category, rank FROM job WHERE job-
name=$oldJob”);

7. ResultSet rs2=myStmt.executeQuery(”SELECT category, rank FROM job WHERE job-
name=$newJob”);

8. if(rs1.next() && rs2.next()){

9. if(rs1.getString(”category”).equals(rs2.getString(”category”)) &&
rs2.getInt(”rank”) > rs1.getInt(”rank”)){

10. myStmt.executeQuery(”UPDATE citizen SET jobname=$newjob WHERE
ID=$empID”);}}

11. ResultSet rs = myStmt.executeQuery(”SELECT avg(J.sal) FROM citizen C, job J WHERE
C.jobname=J.jobname GROUP BY J.category”);

12. display(rs);

13. stop;

γ(X) ,



∅ if X = ⊥

{Programmer, Analyst, Project Manager} if X = TechStaff

{Receptionist, Secretary, HR} if X = AdminStaff

{Programmer, Analyst, Project Manager, Receptionist, Secretary, HR} if X = >

The abstract computation of P on dB] says that statement 10 is semantically irrelevant w.r.t.
ABSJOB, since the update operation on jobs by the statement 10 is performed within the same
job category from lower to higher rank and it does not affect the property of jobs (represented by
ABSJOB) at all. Therefore, although the statement 11 syntactically depends on the statement
10 due to the presence of “jobname” attribute in it, semantically there is no such dependence.
The removal of irrelevant statement 10 also allows to disregard the statements 3 to 9 on which
statement 10 depends. Therefore, the semantics-based abstract slice of P w.r.t. 〈12, rs, Ival〉

224

8.10 Slicing of Database Applications

Table 8.3: Abstract Database dB]

(a) Table “citizen]”

ID name age locID jobname
1 Alberto 28 2 TechStaff

2 Matteo 30 1 AdminStaff

3 Francesco 35 3 TechStaff

(b) Table
“location]”

locID locname
1 Venice
2 Marghera
3 Mestre

(c) Table “job]”

jobname category rank sal
TechStaff A [1, 3] [1500, 2100]
AdminStaff B [1, 3] [1000, 2000]

and the relevant part of the database on which the slice performs its necessary computation
are shown in Figures 8.21(a) and 8.21(b) respectively. This way the computation of statement
relevancy removes some false dependences between program statements, resulting into more
precise abstract slices.

In this example, we just emphasized the impact of abstract program slicing for programs
embedding SQL statements by combining with it the notion of semantic relevancy of state-
ments w.r.t. a property of interest. The impact of semantic data dependences and conditional
dependences will be further described in the subsequent sections.

Let e, t and f be an expression, a database table and a function respectively. As in
chapter 3, we use the following functions that will be used in the rest of this chapter:

- const(e) returns the constants appearing in e.
- var(e) returns the variables appearing in e.
- attr(t) returns the attributes associated with t.
- dom(f) returns the domain of f.
- target(f) returns a subset of dom(f) on which the application of f is restricted.

8.10.2 Database-Oriented Program Dependence Graph (DOPDG)

In this section, we express the conditions for DD-Depenedences based on the denota-
tional semantics of the programs embedding SQL statements. This formulation can be
seen as an alternative to the rules introduced by Baralis and Widom (9).

225

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

Figure 8.21: Slice and its relevant database part

(a) abstract slice w.r.t. 〈12, rs, Ival〉 of Psql

1. start;

2. Statement myStmt = DriverManager.getConnection(”jdbc:mysql://200.210.220.1:1114/demo”,
”scott”, ”tiger”).createStatement();

11. ResultSet rs = myStmt.executeQuery(”SELECT avg(J.sal) FROM citizen C, job J WHERE
C.jobname=J.jobname GROUP BY J.category”);

12. display(rs);

(b) Part of the database dB relevant to the slice

Table “citizen”
jobname
Programmer
HR
Analyst

Table “job”
jobname category sal
Programmer A 1500
Analyst A 1800
Project Manager A 2100
Receptionist B 1000
Secretary B 1100
HR B 2000

8.10.2.1 Identifying DD-Dependences

The data dependence between two imperative statements I1 and I2 for a data x is de-
noted by I1

x
−→ I2. Similarly, we denote a DD-Dependence between two SQL statements

Q1 and Q2 by Q1
Υ
−→ Q2, where Υ is the part of the database information that is defined

by Q1 and subsequently used by Q2. Below we describe how to determine Υ.
Any SQL statement involves variables from two distinct sets: application variables

Va and database variables (or attributes) Vd. We define the following functions that
extract from statements I the sets of database and application variables involved in
those statements:

USEd
v : I→ Vd USEa

v : I→ Va USEv : I→ Vd ∪Va

DEFd
v : I→ Vd DEFa

v : I→ Va DEFv : I→ Vd ∪Va

Therefore, given a SQL statement Q = 〈A, φ〉 ∈ I, the sets of used and defined variables
in it are as follows:

USEv(Q) = USEd
v(Q) ∪ USEa

v(Q) DEFv(Q) = DEFd
v(Q) ∪ DEFa

v(Q)

The imperative statements I ∈ I do not involve database variables, and therefore,
USEd

v(I) = ∅ = DEFd
v(I). Table 8.4 depicts the sets of defined and used variables for

226

8.10 Slicing of Database Applications

various SQL statements based on the syntactic presence of variables in the statements.

Table 8.4: Sets of defined and used variables involved in SQL Statements

SQL Statements Sets of defined and used variables
Qselect = 〈Asel, φ〉 DEFv(Qselect) = va

= 〈select(va, f (~e′), r(~h(~x)), φ1, g(~e)), φ〉 USEv(Qselect) = var(φ) ∪ var(e) ∪ var(φ1) ∪ var(~x) ∪ var(e′)
Qinsert = 〈Ains, φ〉 DEFv(Qinsert) = var(~vd)

= 〈insert(~vd, ~e), true〉 USEv(Qinsert) = var(~e)
Qupdate = 〈Aupdate, φ〉 DEFv(Cupdate) = var(~vd)

= 〈update(~vd, ~e), φ〉 USEv(Cupdate) = var(~e) ∪ var(φ)
Qdelete = 〈Adel, φ〉 DEFv(Qdelete) = var(~vd)

= 〈delete(~vd), φ〉 USEv(Qdelete) = var(φ)

Consider a SQL statement Q = 〈A, φ〉 where target(Q) = t, USEd
v(Q) = ~ause ⊆ attr(t)

and DEFd
v(Q) = ~ade f ⊆ attr(t). Suppose, according to the denotational semantics of Q,

that S[[Q]](ρt, ρa) = (ρt′ , ρa′) where S is a semantic function (see, chapter 3). We define
two functions Ause and Ade f as follows:

Ause(Q, t) = ρt↓φ(~ause) (8.4)

Ade f (Q, t) = ∆(ρt′(~ade f), ρt(~ade f)) (8.5)

Given a SQL statement Q and its target table t, the function Ause maps to the part of
the database information accessed or used by Q depicted in Figure 8.22. We denote by
the notation (t ↓ φ) the set of tuples in t for which φ holds “true”. The function Ade f

defines the changes occurred in the database states when data is updated or deleted or
inserted by SQL statements. ∆ computes the differences between the original database
states on which SQL statements operate and the new database states obtained after
performing the SQL actions.

By following equations 8.4 and 8.5, we can compute the part of the database
information Υ that is updated or deleted or inserted by Q1 = 〈A1, φ1〉 and subsequently
used by Q2 = 〈A2, φ2〉 as follows:

Υ = Ause(Q2, t′) ∩ Ade f (Q1, t) (8.6)

where target(Q1) = t and S[[Q1]](ρt, ρa) = (ρt′ , ρa) and target(Q2) = t′. Observe that
Q1 can only be UPDATE or INSERT or DELETE statements and it does not change
the application environment at all. In case of SELECT statement, Υ = ∅ because
Ade f (Qselect, t) = ∅where Qselect is a SELECT statement with target(Qselect) = t. Therefore,
there exist no DD-Dependence on SELECT statements.

227

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

Figure 8.22: Part of database state used by Q = 〈A, φ〉

usea

φ

tuples

attributes

Table t

ρt↓φ(usea)

Definition 39 (DD-Dependences)
Consider a SQL statement Q1 = 〈A1, φ1〉 with target(Q1) = t such that S[[Q1]](ρt, ρa) =

(ρt′ , ρa). The SQL statement Q2 = 〈A2, φ2〉 with target(Q2) = t′ is DD-Dependent on Q1 for

Υ (denoted Q1
Υ
−→ Q2) if Q1 ∈ {Qupdate,Qinsert,Qdelete} and Υ = Ause(Q2, t′)∩Ade f (Q1, t) , ∅.

Below, we define Ade f , Ause and Υ by expressing the conditions for dependences in
denotational form for different SQL statements.

UPDATE Statement. Consider a table t and an update statement

Qupdate = 〈update(~vd,~e), φ〉

where target(Qupdate) = t. According to the denotational semantics of Qupdate, we get

S[[Qupdate]](ρt, ρa) = S[[〈update(~vd,~e), φ〉]](ρt, ρa) = (ρt′ , ρa)

where,

ρt′(x) =



ρt↓φ(x) ∪ ρt↓¬φ(x) if x < ~vd

E[[ei]](ρt↓φ, ρa) ∪ ρt↓¬φ(x) if x is the ith component of ~vd and ei is

the ith component of ~e

Given an ordered set of database variables ~x, we get

ρt′(~x) =
⊎
∀xi∈~x

ρt′(xi) (8.7)

The operator
⊎

is defined as follows: Given two lists of elements M and N where
|M| = |N| = k, then

M
⊎

N = 〈mi × ni | mi ∈M, ni ∈ N, i ∈ [1 . . . k]〉 (8.8)

228

8.10 Slicing of Database Applications

where × is the cartesian product.

Area updated by Qupdate: By following equation 8.5, we get the part of the database
information updated by Qupdate as

Ade f (Qupdate, t) = ∆(ρt′(~vd), ρt(~vd)) = E[[~e]](ρt↓φ, ρa)

This fact is depicted in Figure 8.23.

Area used by other SQL statements: Consider a SQL statement Q = 〈A, φ1〉 where

Figure 8.23: Ade f (Qupdate, t) when updated by Qupdate = 〈update(~vd,~e), φ〉

tuples

attributes

t t’

Qupd=<update(dv , e), φ>

E[[e]](ρt↓φ, ρa)

dv

φ

tuples

attributes

ρt↓φ(dv)

target(Q) = t′ and USEd
v(Q) = ~x ⊆ attr(t′). From equations 8.4 and 8.7, we get the part of

the data in table t′ that Q is using as

Ause(Q, t′) = ρt′↓φ1(~x)

When computing Υ we consider following three situations: (i) Ause(Q, t′) is not
covered by Ade f (Qupdate, t), (ii) Ause(Q, t′) is completely covered by Ade f (Qupdate, t), and
(iii) Ause(Q, t′) is partially covered by Ade f (Qupdate, t). All these three cases are depicted
in Figure 8.24(a), 8.24(b) and 8.24(c) respectively, and are formalized as follows:

229

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

Υ = Ause(Q, t′) ∩ Ade f (Qupdate, t) =



Case 1 :Non −Dependence

if ρt′↓φ1(~x) * E[[~e]](ρt↓φ, ρa)

Case 2 :Full −Dependence

if ρt′↓φ1(~x) , ∅ and ρt′↓φ1(~x) ⊆ E[[~e]](ρt↓φ, ρa)

Case 3 :Partial −Dependence

Otherwise

Figure 8.24: Various scenarios of DD-Dependences on Qupdate when updates table t

(a) Case 1

tuples

attributes

(,)def updQ tA

(, ')use Q tA

(b) Case 2

tuples

attributes

(,)def updQ tA

(, ')use Q tA

(c) Case 3

tuples

attributes

(,)def updQ tA

(, ')use Q tA

INSERT Statement. Given a table t, according to the denotational semantics of IN-
SERT statement Qinsert = 〈insert(~vd,~e), φ〉where target(Qinsert) = t, we get

S[[Qinsert]](ρt, ρa) = S[[〈insert(~vd,~e), φ〉]](ρt, ρa) = (ρt′ , ρa)

230

8.10 Slicing of Database Applications

where,

let ~vd = 〈a1, a2, . . . , an〉 = attr(t), and E[[~e]](ρa) = ~r = 〈r1, r2, . . . , rn〉,

and lnew = 〈r1/a1, r2/a2, . . . , rn/an〉, and ρt′(~x) = ρt∪lnew(~x) (8.9)

Area inserted by Qinsert: The part of the data inserted by Qinsert into table t, by following
equation 8.5, is

Ade f (Qinsert, t) = ∆(ρt′(~vd), ρt(~vd)) = ρlnew(~vd)

Area used by other SQL statements: Consider a SQL statement Q = 〈A, φ1〉 where
target(Q) = t′ and USEd

v(Q) = ~x ⊆ attr(t′). From equations 8.4 and 8.9, we get the part of
the data in table t′ that Q is using as

Ause(Q, t′) = ρt′↓φ1(~x)

The three situations of DD-Dependences on Qinsert are formalized as follows:

Υ = Ause(Q, t′) ∩ Ade f (Qinsert, t) =



Case 1 :Non −Dependence

if ρt′↓φ1(~x) ∩ ρlnew(~x) = ∅

Case 2 :Full −Dependence

if ρt′↓φ1(~x) ∩ ρlnew(~x) = ρt′↓φ1(~x)

Case 3 :Partial −Dependence

Otherwise

DELETE Statement Given a table t, according to the denotational semantics of
DELETE statement Qdelete = 〈delete(~vd), φ〉where target(Qdelete) = t, we get

S[[Qdelete]](ρt, ρa) = S[[〈delete(~vd), φ〉]](ρt, ρa) = (ρt′ , ρa)

where,

ρt′(~x) = ρt↓¬φ(~x) (8.10)

Area deleted by Qdelete: The part of the data deleted by Qdelete from table t, by following
equation 8.5, is

Ade f (Qdelete, t) = ∆(ρt′(~vd), ρt(~vd)) = ρt↓φ(~vd)

231

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

Area used by other SQL statements: Consider a SQL statement Q = 〈A, φ1〉 where
target(Q) = t′ and USEd

v(Q) = ~x ⊆ attr(t′). From equations 8.4 and 8.10, we get the part
of the data in table t′ that Q is using as

Ause(Q, t′) = ρt′↓φ1(~x)

The three situations of DD-Dependences on Qdelete are formalized as follows:

Υ = Ause(Q, t′) ∩ Ade f (Qdelete, t) =



Case 1 :Non −Dependence

if ρt↓(φ∧φ1)(~x) = ∅

Case 2 :Full −Dependence

if ρt↓(φ∧φ1)(~x) = ρt↓φ1(~x)

Case 3 :Partial −Dependence

Otherwise

We already mentioned that Ade f (Qselect, t) = ∅, yielding Υ = Ause(Q, t′)∩Ade f (Qselect, t) =

∅, as no changes occurs when Qselect executes on t.

8.10.2.2 Identifying PD-Dependences

An imperative statement I is called PD-Dependent on a SQL statement Q for some
variable x (denoted Q x

−→ I) if I uses x whose value is obtained from the database by Q
and there is an x-definition-free path from Q to I. For instance, consider the following
java code interacting with database dB (Table 8.2) where the statements 6 and 7 are
PD-Dependence on the SELECT statement at 5 for the variable x:

4.
5. ResultSet x = myStmt.executeQuery(”SELECT name, age FROM citizen WHERE sal≥2000”);
6. while (x.next()) {
7. System.out.println(x.getString(”name”)+x.getString(”age”));}
8.

Observe that the only SQL statements that can involve in PD-Dependences are SELECT
statements, because only the SELECT statements are able to define the values of x
by retrieving information from the databases which is then used by the imperative
statement I.

Consider a SELECT statement Qselect = 〈select(va, f (~e′), r(~h(~x)), φ1, g(~e)), φ〉 with
target(Qselect) = t. From table 8.4, we get DEFv(Qselect) = va where va is a resultset type of

232

8.10 Slicing of Database Applications

application variable.

According to the semantics of Qselect, we get

S[[Qselect]](ρt, ρa) = (ρt, ρa′)

Therefore, the data for which an imperative statement is PD-Dependent on Qselect is
ρa′(va).

On the other hand, a SQL statement Q is called PD-Dependent on an imperative
statement I for some variable x (denoted I x

−→ Q) if Q uses x whose value is defined by I
and there is an x-definition-free path from I to Q. In this case, Q can be either SELECT
or UPDATE or INSERT or DELETE.

8.10.2.3 Constructing Concrete DOPDG

In previous sections, we discussed the extension of traditional Program Dependence
Graphs (PDGs) into Database-Oriented Program Dependence Graphs (DOPDGs) by
considering two additional types of data dependences: PD- and DD-Dependences that
arise between SQL-SQL statements and SQL-imperative statements respectively. The
computation of data dependences between two imperative statements and the com-
putation of control dependences in DOPDGs are the same as in case of the traditional
PDGs.

For instance, the syntactic DOPDG for the program P (Figure 8.20) is shown in Fig-
ure 8.25, where by the dotted and solid lines we denote the PD- and DD-Dependences
respectively. Observe that when a SQL statement defines (i.e. updates or inserts or
deletes) the database partially (i.e. a subset of database information corresponding
to a subset of attributes or subset of tuples), we insert a DD-Dependence edge from
the node corresponding to the defining statement to the node corresponding to the
statement acting as a database source in the program. For instance, in Figure 8.25
we insert a DD-Dependence edge from node 10 to node 2, where the node 10 is an
UPDATE statement (that defines the database partially) and the node 2 is treated as
the source of the database as it makes a connection to the database. In contrast, when
a SQL statement defines the whole database information, the defining statement will
then be treated as the new source of the database information for the subsequent SQL
statements.

233

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

Figure 8.25: DOPDG of the code P

1

11

9

10

12

6

7

3

5

2

4

8

T

$oldJob

citizen.ID

job.jobname

job.category

job.rank

$empID

13

rs

rs2

rs1

T

$newJob

$newJob

citizen.jobname

citizen.jobname

job.jobname

job.category

job.sal

8.10.3 Constructing Abstract DOPDG

In syntax-based DOPDGs, the PD-Dependences and the data dependences between
imperative statements depend only on the syntactic presence of one variable in the
definition of another variable or in a conditional expression. However, this is not true
in case of DD-Dependences: DD-Dependences occur not only due to the syntactic
presence of database attributes in SQL statements, but also when a part of the database
information corresponding to these attributes defined by one SQL statement overlaps
with the part of database information subsequently used by other SQL statement. We
denoted this overlapping part by the notation Υ.

In order to compute abstract DD- and PD-Dependences in an abstract domain,
we consider the notion of abstract databases, and we compute the part of the ab-
stract database (denoted Υ]) that is defined by one abstract SQL statement and subse-
quently used by other abstract SQL/imperative statement. This way we define abstract
DOPDGs in an abstract domain of interest.

234

8.10 Slicing of Database Applications

8.10.3.1 Abstract DD-Dependences

Let Q] = 〈A], φ]〉 be an abstract SQL statement with target(Q]) = t] where t] is an
abstract table in an abstract domain. Suppose, according to the abstract semantics,
S][[Q]]](ρt] , ρa]) = (ρ

t]1
, ρ

a]1
) where S] is an abstract semantic function. We define the

abstract functions A]de f and A]use corresponding to Ade f and Ause as follows:

A
]
use(Q

], t]) = ρ
t]↓]Tφ

](
~a]use) ∪ ρ

t]↓]Uφ
](
~a]use) (8.11)

A
]
de f (Q

], t]) = ∆](ρ
t]1

(~a]de f), ρt](
~a]de f)) (8.12)

Observe that the notations t] ↓]T φ
] and t] ↓]U φ] denote the set of abstract tuples in t]

for which φ] yields to “true” and “unknown” respectively in order to provide sound
approximation in an abstract domain.

We now define the abstract version of the difference operation ∆] so as to provide
a sound approximation of A]de f .

Abstract UPDATE Statement. Consider an abstract update statement

Q]
update = 〈update](

~
v]d,
~e]), φ]〉

Suppose, target(Q]
update) = t] where t] is an abstract table. According to the abstract

semantics of Q]
update, we get

S][[Q]
update]](ρt] , ρa]) = S][[〈update](

~
v]d,
~e]), φ]〉]](ρt] , ρa]) = (ρ

t]1
, ρa])

where,

ρ
t]1

(x]) =



ρ
t]↓]Tφ

](x]) ∪ ρ
t]↓]Uφ

](x]) ∪ ρ
t]↓]Fφ

](x]) if x] <
~
v]d

E][[e]i]](ρ
t]↓]Tφ

] , ρa]) ∪ (t(E][[e]i]](ρ
t]↓]Uφ

] , ρa]),E
][[x]]](ρ

t]↓]Uφ
]))) ∪ ρt]↓]Fφ

](x])

if x] is the ith component of
~
v]d and e]i is the ith component of ~e]

By the notations t] ↓]T φ
], t] ↓]U φ

] and t] ↓]F φ
] we denote the set of abstract tuples in t]

for which φ] evaluates to true, unknown and f alse respectively. The operator t stands
for computing least upper bound component-wise, i.e. t(X],Y]) = {lub(x]i , y

]
i) | x]i ∈

235

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

X]
∧ y]i ∈ Y]}. Given an ordered set of abstract database variables ~x], we get

ρ
t]1

(~x]) =
⊎
∀x]i ∈

~x]

ρ
t]1

(x]i)

where, the operator
⊎

is defined in Equation 8.8.

The abstract difference operation ∆] in case of Q]
update is defined as follows:

A
]
de f (Q

]
update, t

]) =∆](ρ
t]1

(
~
v]d), ρt](

~
v]d))

=E][[~e]]](ρ
t]↓]Tφ

] , ρa]) ∪ (t(E][[~e]]](ρ
t]↓]Uφ

] , ρa]),E
][[
~
v]d]](ρ

t]↓]Uφ
])))

Abstract INSERT Statement. Given an abstract insert statement

Q]
insert = 〈insert](

~
v]d,
~e]), φ]〉

According to the abstract semantics of Q]
insert, we get

S][[Q]
insert]](ρt] , ρa]) = S][[〈insert](

~
v]d,
~e]), φ]〉]](ρt] , ρa]) = (ρ

t]1
, ρa])

where,

let
~
v]d = 〈a]1, a

]
2, . . . , a

]
n〉 = attr(t]), and E][[~e]]](ρa]) = ~r] = 〈r]1, r

]
2, . . . , r

]
n〉,

and l]new = 〈r]1/a
]
1, r

]
2/a

]
2, . . . , r

]
n/a

]
n〉, and ρ

t]1
(~x]) = ρ

t]∪l]new
(~x])

The abstract difference operation ∆] in case of Q]
insert is defined as follows:

A
]
de f (Q

]
insert, t

]) = ∆](ρ
t]1

(
~
v]d), ρt](

~
v]d)) = ρ

l]new
(
~
v]d)

Abstract DELETE Statement. Given an abstract delete statement

Q]
delete = 〈delete](

~
v]d), φ]〉

According to the abstract semantics of Q]
delete, we get

S][[Q]
delete]](ρt] , ρa]) = S][[〈delete](

~
v]d), φ]〉]](ρt] , ρa]) = (ρ

t]1
, ρa])

236

8.10 Slicing of Database Applications

where, ρ
t]1

(~x]) = ρ
t]↓]Uφ

](
~x]) ∪ ρ

t]↓]Fφ
](
~x])

The abstract difference operation ∆] in case of Q]
delete is defined as follows:

A
]
de f (Q

]
delete, t

]) = ∆](ρ
t]1

(
~
v]d), ρt](

~
v]d)) = ρ

t]↓]Tφ
](
~
v]d) ∪ ρ

t]↓]Uφ
](
~
v]d)

Observe that we have A]de f (Q
]
select, t

]) = ∅, as there is no change in the abstract table

t] when Q]
select executes on it. Lemma 9 depicts the soundness condition for SQL

operations in abstract domains, according to definition 40.

Definition 40 Let o̧ be an operation on a database table t. Let (α, γ) be a Galois Connection.
Let t] be an abstract table corresponding to t. An abstract operation o̧] on t] is sound w.r.t. o̧ if

o̧(t) ∈ γ(o̧](t]))

Lemma 9 Given a database table t and a concrete SQL statement Q = 〈A, φ〉with target(Q) =

t. Let (α, γ) be a Galois Connection. Let Q] = 〈A], φ]〉 be an abstract SQL statement
corresponding to Q and t] be an abstract table corresponding to t. The abstract SQL statement
Q] is sound w.r.t. Q if

Ause(Q, t) ∈ γ(A]use(Q
], t])) and Ade f (Q, t) ∈ γ(A]de f (Q

], t]))

From the abstract definition ofA]use andA]de f , we can express the result into two distinct
parts: yes-part and may-part, as follows:

A
]
use(Q

], t]) = ξuse = 〈ξuse
yes, ξ

use
may〉

A
]
de f (Q

], t]) = ξde f = 〈ξ
de f
yes , ξ

de f
may〉

where ξuse
yes∩ξ

use
may = ∅ and ξde f

yes ∩ξ
de f
may = ∅. The yes-part defines the portion for which φ]

evaluates to “true”, whereas the may-part defines the portions for which φ] evaluates
to “unknown”. Observe that in case of Q]

insert, the may-part ξde f
may = ∅.

Given two abstract SQL statements Q]
1 and Q]

2 where target(Q]
1) = t] and S][[Q]

1]](ρt] , ρa]) =

(ρ
t]1
, ρa]) such that target(Q]

2) = t]1. The part of the abstract database information Υ]

defined by Q]
1 and subsequently used by Q]

2 is computed as follows:

Υ] =A]use(Q
]
2, t

]
1) ∩] A]de f (Q

]
1, t

])

=ξuse
∩
] ξde f

=〈ξuse
yes, ξ

use
may〉 ∩

]
〈ξ

de f
yes , ξ

de f
may〉

=〈(ξuse
yes ∩ ξ

de f
yes), ((ξuse

may ∩ ξ
de f) ∪ (ξde f

may ∩ ξ
use))〉

237

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

Lemma 10 Given two abstract SQL statements Q]
1 and Q]

2 that are sound w.r.t. their concrete
counterpart Q1 and Q2 respectively. Suppose, target(Q]

1) = t] where t] is an abstract table and
S][[Q]

1]](ρt] , ρa]) = (ρ
t]1
, ρa]) such that target(Q]

2) = t]1. The combination Q]
2(Q]

1(t])) is sound
w.r.t. Q2(Q1(t)) if

Ause(Q2, t1) ∩ Ade f (Q1, t) ∈ γ(A]use(Q
]
2, t

]
1) ∩] A]de f (Q

]
1, t

]))

where γ is the concretization function and S[[Q1]](ρt, ρa) = (ρt1 , ρa).

The soundness of Q]
2(Q]

1(t])) (Lemma 10) guarantees the soundness of abstract DD-
Dependences in an abstract domain of interest. The three conditions for full, partial and
non DD-dependences for Q]

1 ∈ {Q
]
update,Q

]
insert,Q

]
delete}and Q]

2 ∈ {Q
]
select,Q

]
update,Q

]
insert,Q

]
delete}

can be expressed similarly as defined in the concrete domain.

8.10.3.2 Abstract PD-Dependences

An abstract PD-Dependence is denoted by either I] x]
−→ Q] or Q]

select
x]
−→ I], where I],

Q] and Q]
select represent abstract imperative statement, abstract SQL statement and

abstract SELECT statement respectively.
Given an abstract domain, the abstract select statements Q]

select is always sound w.r.t.

its concrete counter-part Qselect (see, chapter 3). The soundness of Q]
select guarantees the

soundness of abstract PD-Dependences.

8.10.3.3 Semantics-based Dependences Computation

We already introduced the notion of semantic relevancy of imperative statements w.r.t.
a property of interest, and we combined with it the notion of semantic data depen-
dences and conditional dependences in order to provide a semantics-based compu-
tation to data and control dependences. In this subsection, we extend and integrate
these notions to the context of programs embedding SQL statements.

Semantic Relevancy of SQL statements. When the execution of a statement does
not change a property of the states possibly occurring at that statement, the statement
is referred to as semantically irrelevant w.r.t. that property. The semantic relevancy of
SQL statements can be defined with respect to concrete as well as abstract property,
depicted in Definition 41 and 42 respectively.

Definition 41 (Concrete Semantic Relevancy of SQL statements)
Consider a concrete property ω = 〈ωdb, ωap〉, where ωdb and ωap are the concrete properties on

238

8.10 Slicing of Database Applications

the database variables and application variables respectively. A SQL statement Q = 〈A, φ〉 at
program point p is called semantically irrelevant w.r.t. ω, if for all states ν = (ρd, ρa) possibly
appearing at p the execution of Q on ν results into a state ν′ = (ρd′ , ρa′) such that ν and ν′ are
are equivalent w.r.t. ω, i.e.

ω(ν) ≡ ω(ν′) or,

ω(ρd, ρa) ≡ ω(ρd′ , ρa′) or,

ωdb(ρd) ≡ ωdb(ρd′) ∧ ωap(ρa) ≡ ωap(ρa′)

Example 33 Given a database containing salary information of the employees. Consider a
concrete database property ωdb that expresses a constraint of gross salary on basic salary,
defined as

gross salary =
(165 × basic salary)

100
+ 200

Let the initial database state satisfies ωdb. Let Q1 and Q2 be two SQL statements in a program.
Suppose Q1 updates basic salary, whereas Q2 follows the above equation and updates the gross
salary of employees. We say that Q1 is semantically relevant w.r.t. ωdb as it changes the initial
database state into a new state that does not satisfy ωdb. On the other hand, the entire block
{Q1; Q2} is semantically irrelevant w.r.t. ωdb, because its execution results into a state that
preserves ωdb.

Definition 42 (Abstract Semantic Relevancy of SQL statements)
Given an abstract domain ϑ1. A SQL statement Q̃ = 〈Ã, φ̃〉 with target(Q̃) = t̃ at program
point p is called semantically irrelevant w.r.t. ϑ, if for all abstract states ε = (ρt̃, ρã) possibly
appearing at p the execution of Q̃ on ε results into an abstract state ε′ = (ρt̃′ , ρã′) such that
they are equivalent i.e. ε ≡ ε′ w.r.t. ϑ.

Example 34 Figure 8.3 depicts an abstract database where some of the numeric values are
represented by the domain of intervals and jobs are represented by the abstract domain
ABSJOB = {⊥,TechStaff ,AdminStaff ,>}. Since the execution of the statement 10 in P
(Figure 8.20) does not change the property of job information, we say that statement 10 is
semantically irrelevant w.r.t. ABSJOB.

The notion of semantic relevancy of statements allows us to refine syntactic DOPDGs
into more precise semantics-based DOPDGs by removing the nodes corresponding to
the irrelevant statements. For instance, removal of node 10 from the DOPDG of Figure
8.25 produces a refined semantics-based abstract DOPDG.

1For the sake of simplicity, we assume here that the attributes are of the same type, and that the
property ϑ is the same for all attributes. The definition can easily be generalized to the case of lists of
properties related to corresponding attributes.

239

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

Semantic Data Dependences. We can apply the notion of semantic data dependences
to the case of programs embedding SQL statements to determine whether the pres-
ence of variables in an expression semantically affect the evaluation of the expression.
Observe that expressions in SQL statements contain application variables as well as
database attributes. The semantic data dependence computation for application vari-
ables appearing in the expressions has already been described in (140). However, we
can extend this to the case of database attributes appearing in the expressions, resulting
into the removal of corresponding PD- or DD-Dependences as well as the database
information corresponding to these irrelevant attributes from the sliced database.

Example 35 Consider the following code fragment, where statement 5 adds a new column to a
table t and sets its default value to 0. Observe that the expression “oldcol+newcol” in the select
statement at program point 6 does not semantically depend on the database variable “newcol”,
as the variable “newcol” does not affect the result of the expression for any states possibly
reaching program point 6. Therefore, we can remove the corresponding DD-Dependence edge

5 newcol
−−−−→ 6 from the syntactic DOPDG. Also the database information corresponding to the

attribute “newcol” does not appear in the resultant sliced database.

4.
5. ALTER TABLE t ADD COLUMN newcol int(10) NOT NULL DEFAULT 0;
6. ResultSet rs = myStmt.executeQuery(”SELECT oldcol+newcol FROM t”);
7. while (rs.next()) {
8. System.out.println(rs.getString(1));}
9.

Conditional Dependences. Given an abstract Database-Oriented Program Depen-
dence Graph (DOPDG), we can convert it into an abstract Database-Oriented Depen-
dence Condition Graph (DODCG) by computing annotations eb over all dependence
edges e, by following similar steps as in the case of PDG-to-DCG conversion.

The semantically unrealizable dependence paths (see Definition 43) in an abstract
DODCG under the abstract trace semantics of the program removes some false depen-
dences from the abstract DODCG, resulting into more precise semantics-based abstract
DODCG.

Definition 43 (Semantically Unrealizable Dependence Path)
Given a DODCG Gdodcg and an abstract domain ϑ. A dependence path η ∈ Gdodcg is called
semantically unrealizable in the abstract domain ϑ if ∀ψ: ψ 0ϑ η, where ψ is an abstract
execution trace.

240

8.10 Slicing of Database Applications

As in the case of imperative programs, the combination of these three notions
adopted for programs embedding SQL code can also lead to a slicing refinement
algorithm where we use DOPDGs instead of PDGs. The cost of our proposal in case
of programs embedding SQL code is O(n3hγ), where γ is the number of tuples in the
database, n is the number of statements in the program, h is the height of the context
lattice. Observe that the worst complexity is comparable with the complexity of usual
dataflow analysis (like, liveness etc.), and that also in this case, in the practice we can
get a quadratic complexity which is acceptable for its actual usability.

241

8. REFINEMENT OF ABSTRACT PROGRAM SLICING TECHNIQUES

242

Chapter 9

Tukra: A Semantics-based Abstract
Program Slicing Tool

In this section, we describe a program slicing tool, called Tukra1, based on our pro-
posal discussed in chapter 8. Tukra is implemented in Java language and can perform
syntactic as well as semantics-based abstract slicing of programs in imperative lan-
guages w.r.t. a given criterion in an abstract domain of interest, by combining the
notions of statements relevancy, semantic data dependences and conditional depen-
dences. We execute it on a PC running with 2.27GHz Processor, Windows 7 Profes-
sional 64-bit Operating System and 4 GB RAM.

Tukra accepts the following inputs from the users:

1. Program P to be sliced: Tukra is able to perform slicing of programs in imperative
languages. However, we have some assumptions on the syntax of the input
programs as below:

• All control blocks should be enclosed with “{}” irrespective of the number
of statements in it.

• Empty control block must have “skip;” statement in it.

• Run-time Input for any statement is denoted by “?”.

2. Abstract Domain of Interest: We provided two abstract domains in Tukra at
this preliminary stage of implementation. The first one is “SIGN”=〈 >, +, -, 0, ⊥
〉 that represents the sign property of variables and the second one is “PAR”=〈 >,

1“Tukra” is a hindi word which means “Slice”

243

9. TUKRA: A SEMANTICS-BASED ABSTRACT PROGRAM SLICING TOOL

odd, even, ⊥ 〉 that represents the parity property of the variables. However, we,
the programmer, can easily integrate additional abstract domains as required, by
implementing the corresponding interfaces depicted in Figures 9.2, 9.3 and 9.4.

3. Types of Semantic Computations: Tukra can perform three types of semantic
computations - statements relevancy, semantic data dependences and conditional
dependences in the abstract domain chosen before. Users are provided options to
choose either single or combination of multiple types of semantic computations.
Moreover, the user can also perform syntax-driven slicing of the input programs.

4. Slicing Criterion C: A slicing criterion is composed of two components - a
program variable v and a program point p where v is used or defined.

The main modules of Tukra are:

1. ExtractInfo: The module “ExtractInfo” extracts detail information about the
input programs, i.e. the type of program statements, the controlling statements,
the defined variables, the used variables etc for all statements in the program
and store them in a file as an intermediate representation.

2. FormMatrix: The module “FormMatrix” generates incidence matrix for Control
Flow Graphs (CFGs) and Program Dependence Graphs (PDGs) of the input
programs based on the information extracted by the module “ExtractInfo”.

3. GenCollectingSemantics and GenTraceSemantics: Given an abstract domain,
these modules compute the abstract collecting Semantics and abstract trace se-
mantics of the input programs based on the information extracted by “Extract-
Info” and the CFG generated by “FormMatrix”.

4. ComputeDCGannotations: This module computes the DCG annotations (Reach
Sequences and Avoid Sequences) for all CDG and DDG edges of the PDG based
on the information extracted by “ExtractInfo” and the PDG generated by “For-
mMatrix”.

5. ComputeSemanticDep: It computes statements relevancy, semantic data depen-
dences and conditional dependences of the programs under all possible states
reaching each program points of the program (collecting semantics) and by com-
puting the satisfiability of DCG annotations under its abstract trace semantics.

The interaction between different modules above is depicted in Figure 9.1. Observe
that “FormMatrix” generates a syntactic PDG based on which we can perform syntax-
driven slicing w.r.t. a criterion, whereas “ComputeSemanticDep” refines the syntactic

244

PDG into a semantics based abstract PDG by computing statements relevancy and
semantic data dependences under its abstract collecting semantics and conditional
dependences based on the satisfiability of DCG annotations under its abstract trace
semantics.

Figure 9.1: Interaction between various modules

Program

ExtractInfo

FormMatrix

ComputeSemanticDep

GenTraceSemantics

GenCollectingSemantics

ComputeDCG
annotations

AbstractDomain

Refined Semantics-

based PDG

Syntactic PDG

The design of the abstract domains is depicted in Figure 9.2, 9.3 and 9.4 respectively.
Any abstract value such as sign value, parity value, boolean value, and any abstract
operator such as arithmetic, relational, boolean operator implement the specifications
represented by the interfaces “AbstractElement”, “AbstractValue” and “AbstractOp-
erator”. The abstract domain such as sign domain or parity domain implements the
specifications represented by the interface “AbstractDomain”. The abstract states at
each program point in the program is defined by the abstract environment associated
with the corresponding program point. The abstract environment is defined by the
class “AbstractEnvironment”.

We now show how Tukra actually works by providing some snapshots of it.

1. Graphical Interface 1 (Accepting inputs from users): This is the main and
starting interface window depicted in Figure 9.5. With this interface, we can
browse the input program file, or we can write the source code in the text area
provided on the right side of the screen, or we can open nodepad software by
clicking on “Open NotePad” button to write and save the program code if does

245

9. TUKRA: A SEMANTICS-BASED ABSTRACT PROGRAM SLICING TOOL

Figure 9.2: Designing Abstract Values and Abstract Operators

interface AbstractElement

boolean isOperator();
boolean isValue();

Class AbstractComponent

 interface AbstractOperator

String getOperator();

boolean isArithBinaryOperator();

boolean isArithUnaryOperator();

boolean isRelOperator();

boolean isBoolBinaryOperator();

boolean isBoolUnaryOperator();

boolean equals(AbstractOperator op);

void display(); interface AbstractValue

String[] getProperty();
boolean isBottom();
boolean isAtomicValue();
boolean equals(AbstractValue val);
void display();

extends

extends

BoolValue

String val

SignValue

String Val

ParValue

String val

implements

AbstractArithOperator

String op

AbstractBoolOperator

String op

AbstractRelOperator

String op

implements

not exist. On clicking the “Next” button we can go to the next window.

2. Graphical Interface 2 (Syntactic slicing and semantic computations): With this
interface, depicted in Figure 9.6, users can perform the followings: (i) generating
CDG and PDG of the input programs, (ii) performing syntax-based slicing, (iii)
the options to choose the type of abstract semantic computations users want to
perform on the input programs. A window showing the PDG of the program
is obtained by clicking on the button “Show PDG”, depicted in Figure 9.7 .
Similarly, the “Show CDG” button is used to display the CDG of the input
program. When users click on “Slice” button, it asks for slicing criterion: a
program point and a list of variables (separated by comma) used/defined at that
program point. It then computes and shows the syntactic slice of the input
program w.r.t. the given criterion, depicted in Figure 9.8 and 9.9 respectively. On
the right side of the screen, the tool displays the options for two types of abstract
computation: abstract semantic relevancy of statements and abstract semantic
data dependence computation, as check-boxes. Users can choose any one or both
of them. However, in doing so, users must choose an abstract domain of interest
shown as radio buttons (we provided here only two: SIGN and PAR domain, but
we can easily add more). The “Go” button moves the tool to the next window.

246

Figure 9.3: Designing Abstract Domains

interface AbstractDomain

AbstractValue getTop();
AbstractValue getBottom();
AbstractValue getLUB(AbstractValue[] list);
AbstractValue getGLB(AbstractValue[] list);
AbstractValue[] getAtoms(AbstractValue val);
AbstractValue[] getSubValues(AbstractValue val);
AbstractValue evaluate(AbstractArithOperator ArithUnaryOp, AbstractValue val);
AbstractValue evaluate(AbstractArithOperator ArithBinaryOp, AbstractValue val1, AbstractValue val2);
String evaluate(AbstractRelOperator RelOp, AbstractValue val1, AbstractValue val2);

AbstractValue evaluate(AbstractBoolOperator BoolUnaryOp, AbstractValue val);

AbstractValue evaluate(AbstractBoolOperator BoolBinaryOp, AbstractValue val1, AbstractValue val2);

void getAbstractExpressionList(String PostfixExpr, AbstractEnvironment absEnv, LinkedList ExprList);

implements

SignDomain BoolDomain ParDomain

3. Graphical Interface 3 (Semantics-based abstract program slicing): This is a
child window displaying over the main window depicted in Figure 9.10. Users
can see in the preview area of this interface the refined program where irrelevant
statements and/or irrelevant variables in the expressions are disregarded (marked
in red color), depending on the options they choose on the previous interface.
This interface provides two options: (i) generate CDG or PDG of this refined
program and perform slicing on it (upper right part of the screen), and (ii)
generate its DCG, refine it into more precise one by computing unrealizable
paths based on the satisfiability of DCG annotations against their trace semantics
and perform slicing on it (lower right part of the screen). The button “Show
DCG” displays the SSA form of the program and the DCG annotations over all
the edges of the dependence graph of the program in SSA form (depicted in
Figure 9.11). The “Refinement” button shows a message with a list of refinement
happens based on the DCG annotations (depicted in Figure 9.12). Observe that
the checking for unrealizable paths is performed against the traces containing
only atomic abstract values for the variables. Since Tukra is in a preliminary
stage now, we are facing a memory limitation in generating the number of such
traces containing atomic states only. Therefore, at this stage, we are not able to
find all possible DCG-based refinement for the programs with large number of
variables or in an abstract domain with large number of atomic abstract values.

247

9. TUKRA: A SEMANTICS-BASED ABSTRACT PROGRAM SLICING TOOL

Figure 9.4: Designing Abstract Environments

class AbstractEnvironment

void setEnvironment(String[] ProgVars, AbstractValue[] val);
void setEnvironment(AbstractValue[] val);
String[] getVariables();
AbstractValue[] getEnvironment();
AbstractEnvironment getModifiedEnvironment(String Variable, AbstractValue newVal);
AbstractValue getVariableValue(String Variable);
AbstractEnvironment getRestrictedEnvironment(String[] ProgVars);
boolean equals(AbstractEnvironment obj);
void display();
AbstractEnvironment getLUB(AbstractEnvironment obj, AbstractDomain ADobj);
boolean isAtomicEnvironment();
LinkedList getAtomicCovering(AbstractDomain ADobj);
LinkedList getXAtomicCovering(String[] X_Vars, AbstractDomain ADobj);
LinkedList getXSubCovering(String[] X_Vars, AbstractDomain ADobj);

String[] vars;
AbstractValue[] env;

The slicing based on this refined semantics-based abstract DCG can be performed
by supplying slicing criterion in the text areas provided on the lower right area
of the screen, as depicted in Figure 9.13.

We test Tukra with some example programs, one of which is provided here: Figure
9.1(a) depicts a test program. Figures 9.1(b), 9.1(c) and 9.1(d) depict three types of
slicing of the program w.r.t. 〈L11, y〉: syntax-based, semantic data dependence-based
(Mastroeni and Zanadini’s approach) and the proposed approach. It shows clearly
that our approach generates more precise slice w.r.t. the existing ones.

The sound, efficient and effective theoretical support behind ”Tukra” may make it
more attractive to the practical field, as it is able to generate more precise slice w.r.t. the
literature. Tukra is now in a preliminary stage of implementation, but there are a lot
of scopes to improve it in terms of algorithmic efficiency and to generalize it in order
to accept more programming language constructs on which slicing is performed.

248

Figure 9.5: Graphical Interface 1 (accepting inputs from users)

Figure 9.6: Graphical Interface 2a (syntactic slicing and semantic computation)

249

9. TUKRA: A SEMANTICS-BASED ABSTRACT PROGRAM SLICING TOOL

Figure 9.7: Graphical Interface 2b (showing PDG)

Figure 9.8: Graphical Interface 2c (accepting slicing criterion)

250

Figure 9.9: Graphical Interface 2d (showing slice w.r.t. criterion)

Figure 9.10: Graphical Interface 3a (semantics-based abstract program slicing)

251

9. TUKRA: A SEMANTICS-BASED ABSTRACT PROGRAM SLICING TOOL

Figure 9.11: Graphical Interface 3b (showing program’s SSA form and DCG annotations)

Figure 9.12: Graphical Interface 3c (showing list of DCG-based refinement)

252

Figure 9.13: Graphical Interface 3d (DCG-based slicing)

253

9. TUKRA: A SEMANTICS-BASED ABSTRACT PROGRAM SLICING TOOL

Table 9.1: A test program and its various slicing

(a) A test program

L1 i = −2;
L2 x =?;
L3 y =?;
L4 w =?;
L5 i f (x ≥ 0){
L6 x = x + w;
L7 y = 4 ∗ w ∗ 0; }
L8 while(i ≤ 0){
L9 y = y ∗ 2;
L10 i = i + 1; }
L11 print(x, y);

(b) Syntax-based slic-
ing w.r.t. 〈L11, y〉

L1 i = −2;
L2 x =?;
L3 y =?;
L4 w =?;
L5 i f (x ≥ 0){
L7 y = 4 ∗ w ∗ 0; }
L8 while(i ≤ 0){
L9 y = y ∗ 2;
L10 i = i + 1; }
L11 print(x, y);

(c) Semantic data
dependence-based
slicing w.r.t. 〈L11, y〉

L1 i = −2;
L2 x =?;
L3 y =?;
L5 i f (x ≥ 0){
L7 y = 4 ∗ w ∗ 0; }
L8 while(i ≤ 0){
L9 y = y ∗ 2;
L10 i = i + 1; }
L11 print(x, y);

(d) Proposed slicing
w.r.t. 〈L11, y〉

L1 i = −2;
L2 x =?;
L3 y =?;
L5 i f (x ≥ 0){
L7 y = 4 ∗ w ∗ 0; }
L8 while(i ≤ 0){
L10 i = i + 1; }
L11 print(x, y);

254

Chapter 10

Conclusions

In this thesis, we addressed the issue of extending the Abstract Interpretation frame-
work to new scenarios, that may be particularly interesting from an application per-
spective. At the end of each chapter, we already drew some conclusive remarks on
each of the subjects.

As an overall conclusions, it seems just important to notice that the field of in-
formation systems may really deserve to be further studied using semantics-based
formal methods based on the data/operation abstractions, as this approach combines
the soundness requirement with the efficiency and effectiveness requirements that
are very demanding in any applicative scenarios, and there is still a big amount of
challenging research work to be done in this area.

255

10. CONCLUSIONS

256

References

[1] Amr T. Abdel-Hamid, Sofiéne Tahar, and El Mostapha Aboul-
hamid. A Survey on IP Watermarking Techniques. Design
Automation for Embedded Systems, 9(3):211–227, 2004. 77

[2] Hiralal Agrawal and Joseph R. Horgan. Dynamic program
slicing. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’90),
pages 246–256, White Plains, New York, June 20–22 1990. ACM
Press. 6, 176, 179, 184

[3] Rakesh Agrawal, Paul Bird, Tyrone Grandison, Jerry Kiernan,
Scott Logan, and Walid Rjaibi. Extending Relational Database
Systems to Automatically Enforce Privacy Policies. In Proceedings
of the 21st International Conference on Data Engineering (ICDE ’05),
pages 1013–1022, Tokyo, Japan, April 5–8 2005. IEEE Computer So-
ciety. 125

[4] Rakesh Agrawal, Peter J. Haas, and Jerry Kiernan. A system
for watermarking relational databases. In Proceedings of the 2003
ACM SIGMOD international conference on Management of data
(SIGMOD ’03), pages 674–674, San Diego, California, June 9–12 2003.
ACM Press. 86, 87, 101

[5] Rakesh Agrawal, Peter J. Haas, and Jerry Kiernan. Watermarking
relational data: framework, algorithms and analysis. The VLDB
Journal, 12(2):157–169, 2003. 79, 86, 87, 101, 103, 109, 119

[6] Rakesh Agrawal and Jerry Kiernan. Watermarking Relational
Databases. In Proceedings of the 28th international conference on
Very Large Data Bases (VLDB ’02), pages 155–166, Hong Kong,
China, August 20–23 2002. VLDB Endowment. 78, 86, 87, 88, 99,
101, 103

[7] Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving
data mining. ACM SIGMOD Record, 29(2):439–450, 2000. 78

[8] Ali Al-Haj and Ashraf Odeh. Robust and Blind Watermarking
of Relational Database Systems. Journal of Computer Science,
4(12):1024–1029, 2008. 94, 101

[9] Elena Baralis and Jennifer Widom. An Algebraic Approach to
Rule Analysis in Expert Database Systems. In Proceedings of the
20th International Conference on Very Large Data Bases (VLDB’
94), pages 475–486, Santiago de Chile, Chile, September 12–15 1994.
Morgan Kaufmann. 180, 222, 225

[10] Véronique Benzaken and Xavier Schaefer. Ensuring Efficiently
the Integrity of Persistent Object Systems via Abstract Interpre-
tation. In Proceedings of the 7th Workshop on Persistent Object
Systems (POS ’96), pages 72–87, Cape May, New Jersey, USA, May
29–31 1996. Morgan Kaufmann Publishers Inc. 21

[11] Véronique Benzaken and Xavier Schaefer. Static Integrity
Constraint Management in Object-Oriented Database Program-
ming Languages via Predicate Transformers. In Proceedings of
the 11th European Conference on Object-Oriented Programming
(ECOOP’97), pages 60–84, Finland, June 9–13 1997. Springer-Verlag
LNCS, Volume 1241. 21

[12] Véronique Benzaken and Xavier Schaefer. Static Management
of Integrity in Object-Oriented Databases: Design and Imple-
mentation. In Proceedings of the 6th International Conference on
Extending Database Technology (EDBT ’98), pages 311–325, Valen-
cia, Spain, March 23–27 1998. Springer LNCS, Volume 1377. 21

[13] Jean-Francois Bergeretti and Bernard A. Carré. Information-
flow and data-flow analysis of while-programs. ACM Transactions
on Programming Languages and Systems, 7(1):37–61, 1985. 183

[14] Elisa Bertino and Elena Ferrari. Secure and selective dissemi-
nation of XML documents. ACM Transactions on Information and
System Security, 5(3):290–331, 2002. 126

[15] Elisa Bertino, Sushil Jajodia, and Pierangela Samarati. A flexi-
ble authorization mechanism for relational data management sys-
tems. ACM Transactions on Information Systems, 17(2):101–140,
1999. 121

[16] Elisa Bertino, Ashish Kamra, and James P. Early. Profiling
Database Applications to Detect SQL Injection Attacks. In
Proceedings of the 26th IEEE International Performance Computing
and Communications Conference (IPCCC ’07), pages 449 – 458, New
Orleans, Louisiana, USA, April 11–13 2007. IEEE Computer Society.
150

[17] Elisa Bertino, Beng Chin Ooi, Yanjiang Yang, and Robert H.
Deng. Privacy and Ownership Preserving of Outsourced Medi-
cal Data. In Proceedings of the 21st International Conference on
Data Engineering (ICDE ’05), pages 521–532, Tokyo, Japan, April
05–08 2005. IEEE Computer Society. 94

[18] Sukriti Bhattacharya. Property Driven Program Slicing and
Watermarking in the Abstract Interpretation Framework. PhD the-
sis, Università Ca’ Foscari Venezia, 2011. 177, 179

[19] Sukriti Bhattacharya and Agostino Cortesi. A Distortion
Free Watermark Framework For Relational Databases. In
Proceedings of the 4th International Conference on Software and
Data Technologies (ICSOFT ’09), pages 229–234, Sofia, Bulgaria, July
26–29 2009. INSTICC Press. 96, 102

[20] Sukriti Bhattacharya and Agostino Cortesi. A Generic Distor-
tion Free Watermarking Technique for Relational Databases. In
Proceedings of the 5th International Conference on Information
Systems Security (ICISS ’09), pages 252–264, Kolkata, India, De-
cember 14–18 2009. Springer LNCS, Volume 5905. 79, 98, 102, 109,
119

[21] Sukriti Bhattacharya and Agostino Cortesi. Database Authen-
tication by Distortion-Free Watermarking. In Proceedings of the
5th International Conference on Software and Data Technologies
(ICSOFT ’10), pages 219–226, Athens, Greece, July 22–24 2010. IN-
STICC Press. 98, 102

[22] D. Binkley, S. Danicic, T. Gyimóthy, M. Harman, Á. Kiss, and B. Ko-
rel. A formalisation of the relationship between forms of program
slicing. Science of Computer Programming, 62(3):228–252, 2006.
177, 179

[23] Stefan Bottcher, Rita Hartel, and Matthias Kirschner. Detect-
ing Suspicious Relational Database Queries. In Proceedings of the
3rd International Conference on Availability, Reliability and Security
(ARES ’08), pages 771–778, Barcelona, Spain, March 4–7 2008. IEEE
Computer Society. 125

257

REFERENCES

[24] Luc Bouganim, François Dang Ngoc, and Philippe Pucheral.
Client-based access control management for XML documents. In
Proceedings of the 13th International Conference on Very Large
Data Bases (VLDB ’04), pages 84–95, Toronto, Canada, August 31–
September 3 2004. Morgan Kaufmann Publishers Inc. 126, 127

[25] Stephen W. Boyd and Angelos D. Keromytis. SQLrand: Pre-
venting SQL Injection Attacks. In Proceedings of the 2nd
International Conference on Applied Cryptography and Network
Security Conference (ACNS ’04), pages 292–302, Yellow Mountain,
China, June 8–11 2004. Springer LNCS, Volume 3089. 149, 162

[26] José Luı́s Braga, Alberto H. F. Laender, and Claudiney Vander

Ramos. Cooperative Relational Database Querying Using Mul-
tiple Knowledge Bases. In Proceedings of the 12th International
Florida Artificial Intelligence Research Society Conference (FLAIRS
’99), pages 95–99, Orlando, Florida, USA, May 1–5 1999. AAAI Press.
166

[27] Gregory Buehrer, Bruce W. Weide, and Paolo A. G. Sivilotti. Us-
ing Parse Tree Validation to Prevent SQL Injection Attacks. In
International Workshop on Software Engineering and Middleware
(SEM ’05), pages 106–113, Lisbon, Portugal, September 5–6 2005.
ACM Press. 148, 161, 162

[28] Gunter V. Bultzingwloewen. Translating and optimizing SQL
queries having aggregates. In Proceedings of the 13th International
Conference on Very Large Data Bases (VLDB ’87), pages 235–243,
Brighton, England, September 1–4 1987. Morgan Kaufmann Pub-
lishers Inc. 2, 18, 20

[29] Robert Cartwright and Mattias Felleisen. The semantics of pro-
gram dependence. ACM SIGPLAN Notices, 24(7):13–27, 1989. 176,
179

[30] Stefano Ceri and Georg Gottlob. Translating SQL into rela-
tional algebra: Optimization, Semantics, and Equivalence of SQL
Queries. IEEE Transactions on Software Engineering, 11(4):324–345,
1985. 2, 18, 20

[31] Liqian Chen, Antoine Miné, and Patrick Cousot. A Sound
Floating-Point Polyhedra Abstract Domain. In Proceedings of the
6th Asian Symposium on Programming Languages and Systems
(APLAS ’08), pages 3–18, Bangalore, India, December 9–11 2008.
Springer LNCS, Volume 5356. 106, 117, 173

[32] Liqian Chen, Antoine Miné, Ji Wang, and Patrick Cousot. Inter-
val Polyhedra: An Abstract Domain to Infer Interval Linear Rela-
tionships. In Proceedings of the 16th International Static Analysis
Symposium (SAS ’09), pages 309–325, Los Angeles, CA, USA, Au-
gust 9–11 2009. Springer LNCS, Volume 5673. 106, 173

[33] James Cheney. Program Slicing and Data Provenance. IEEE Data
Engineering Bulletin, 30:22–28, 2007. 222

[34] Wesley W. Chu and Qiming Chen. Neighborhood and associa-
tive query answering. Journal of Intelligent Information Systems,
1(3–4):355–382, 1992. 165, 167

[35] Wesley W. Chu and Qiming Chen. A Structured Approach for Co-
operative Query Answering. IEEE Transactions on Knowledge and
Data Engineering, 6(5):738–749, 1994. 167

[36] Wesley W. Chu, H. Yang, K. Chiang, M. Minock, G. Chow, and

C. Larson. CoBase: a scalable and extensible cooperative infor-
mation system. Journal of Intelligent Information Systems, 6(2–
3):223–259, 1996. 165, 167

[37] Aniello Cimitile, Andrea De Lucia, and Malcolm Munro. Iden-
tifying reusable functions using specification driven program-
slicing: a case study. In Proceedings of the 11th International
Conference on Software Maintenance (ICSM ’95), pages 124–133,
Opio (Nice), France, October 17–20 1995. IEEE Computer Society.
175

[38] Anthony Cleve. Program analysis and transformation for data-
intensive system evolution. In Proceedings of the 26th IEEE
International Conference on Software Maintenance (ICSM ’10),
pages 1–6, Timisoara, Romania, September 12–18 2010. IEEE Com-
puter Society. 181

[39] E. F. Codd. A DataBase Sublanguage Founded on the Relational
Calculus. In Proceedings of 1971 ACM-SIGFIDET Workshop on
Data Description, Access and Control, pages 35–68, San Diego
Caifornia, November 11–12 1971. ACM Press. 20

[40] E. F. Codd. Relational Completeness of DataBase Subanguages. In
Database Systems, pages 65–98, San Jose, California, March 6 1972.
Prentice Hall and IBM Research Report RJ 987. 19, 20

[41] E. F. Codd. A Relational Model of Data for Large Shared Data
Banks. Communications of the ACM 25th Anniversary Issue,
26(1):64–69, 1983. 19

[42] Agostino Cortesi, Agostino Dovier, Elisa Quintarelli, and

Letizia Tanca. Operational and abstract semantics of the query
language G-Log. Theoretical Computer Science, 275(1–2):521–560,
2002. 18

[43] Agostino Cortesi and Raju Halder. An Abstract Interpretation
Framework for Structured Query Languages. In Proceedings of the
21st Nordic Workshop on Programming Theory (NWPT ’09), pages
41–43, Lyngby, Denmark, 14–16 October 2009. DTU Informatics. 3,
17

[44] Agostino Cortesi and Raju Halder. Dependence Condi-
tion Graph for Semantics-based Abstract Program Slicing. In
Proceedings of the 10th International Workshop on Language
Descriptions Tools and Applications (LDTA ’10), pages 4:1–4:6, Pa-
phos, Cyprus, March 27–28 2010. ACM Press. 6, 175

[45] Agostino Cortesi and Matteo Zanioli. Widening and narrow-
ing operators for abstract interpretation. Computer Languages,
Systems & Structures, 37(1):24–42, 2011. 218

[46] Patrik Cousot. Abstract Interpretation Based Formal Methods and
Future Challenges. In Informatics - 10 Years Back. 10 Years Ahead.,
pages 138–156. Springer LNCS, Volume 2000, 2001. 1

[47] Patrik Cousot and Radhia Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In Proceedings of the
4th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’77), pages 238–252, Los Angeles,
CA, USA, January 17–19 1977. ACM Press. 1, 9, 14, 18, 137, 138, 187

[48] Patrik Cousot and Radhia Cousot. Systematic Design of Pro-
gram analysis Frameworks. In Proceedings of the 6th Annual
ACM SIGACT-SIGPLAN symposium on Principles of programming
languages (POPL ’79), pages 269–282, San Antonio, Texas, January
29–31 1979. ACM Press. 9, 14, 18

[49] Patrik Cousot and Radhia Cousot. Systematic Design of Pro-
gram Transformation Frameworks by Abstract Interpretation.
In Proceedings of the 29th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’02),
pages 178–190, Portland, OR USA, January 16–18 2002. ACM Press.
9, 14, 18

258

REFERENCES

[50] Xinchun CUI, Xiaolin QIN, and GANG Sheng. A Weighted Algo-
rithm for Watermarking Relational Databases. Wuhan University
Journal of Natural Science, 12(1):79–82, 2007. 93

[51] Xinchun Cui, Xiaolin Qin, Gang Sheng, and Jiping Zheng. A
Robust Algorithm for Watermark Numeric Relational Databases.
In Proceedings of the 2010 International conference on Intelligent
computing (ICIC ’06), pages 810–815, Kunming, China, August 16–
19 2006. Springer Lecture Notes in Control and Information Sciences.
93

[52] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman,
and F. Kenneth Zadeck. Efficiently computing static single assign-
ment form and the control dependence graph. ACM Transactions
on Programming Languages and Systems, 13(4):451–490, 1991. 181

[53] Ernesto Damiani, Sabrina de Capitani di Vimercati, Stefano Para-
boschi, and Pierangela Samarati. Design and implementation
of an access control processor for XML documents. Journal of
computer and telecommunications netowrking, 33(1–6):59–75, 2000.
126

[54] Ernesto Damiani, Sabrina de Capitani di Vimercati, Stefano Para-
boschi, and Pierangela Samarati. A fine-grained access control
system for XML documents. ACM Transactions on Information
and System Security, 5(2):169–202, 2002. 4, 121, 126, 139, 143

[55] C. J. Date. An introduction to DataBase Systems. Addison-Wesley
Longman Publishing Co., Inc., 8th edition, 2003. 9, 11

[56] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of
DATABASE SYSTEMS. Addison-Wesley Longman Publishing Co.,
Inc., 4th edition, 2003. ix, 9, 11, 12

[57] Chuhong Fei, Deepa Kundurb, and Raymond Kwonga. Analy-
sis and Design of Authentication Watermarking. In Proceedings
of the Security, Steganography, and Watermarking of Multimedia
Contents IV (SSWMC ’04), pages 760–771, San Jose, California, USA,
January 18–22 2004. SPIE, Volume 5306. 79

[58] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The
program dependence graph and its use in optimization. ACM
Transactions on Programming Languages and Systems, 9(3):319–
349, 1987. 175, 182

[59] Logozzo Francesco. Practical Verification for the Working Pro-
grammer with CodeContracts and Abstract Interpretation (In-
vited Talk). In Proceedings of the 12th International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCAI
’11), pages 19–22, Austin, TX, USA, January 23–25 2011. Springer
LNCS, Volume 6538. 1

[60] Piero Fraternali and Letizia Tanca. A structured approach for the
definition of the semantics of active databases. ACM Transactions
on Database Systems, 20(4):414–471, 1995. 21

[61] Terry Gaasterland. Cooperative Answering through Controlled
Query Relaxation. IEEE Expert: Intelligent Systems and Their
Applications, 12(5):48–59, 1997. 165, 166

[62] Keith Brian Gallagher and James R. Lyle. Using Program Slic-
ing in Software Maintenance. IEEE Transactions on Software
Engineering, 17(8):751–761, 1991. 175

[63] Richard Gerber and Seongsoo Hong. Slicing real-time programs
for enhanced schedulability. ACM Transactions on Programming
Languages and Systems, 19(3):525–555, 1997. 175

[64] Roberto Giacobazzi, Francesco Ranzato, and Francesca Scoz-
zari. Making abstract interpretations complete. Journal of the
ACM, 47(2):361–416, 2000. 9, 14, 15, 18, 169

[65] Dina Goldin, Srinath Srinivasa, and Vijaya Srikanti. Active
Databases as Information Systems. In Proceedings of the 8th
International Database Engineering and Applications Symposium
(IDEAS ’04), pages 123–130, Coimbra, Portugal, July 7–9 2004. IEEE
Computer Society. 9, 10

[66] Dina Goldin, Srinath Srinivasa, and Bernhard Thalheim.
IS=DBS+Interaction: Towards Principles of Information System
Design. In Proceedings of the 19th International Conference on
Conceptual Modeling (ER ’00), pages 140–153, Salt Lake City, Utah,
USA, October 9–12 2000. Springer LNCS, volume 1920. ix, 9, 10

[67] Derek Goldrei. Propositional and Predicate Calculus: A Model of
Argument. Springer, 1st edition, 2005. 21

[68] Diganta Goswami and Rajib Mall. An efficient method for com-
puting dynamic program slices. Information Processing Letters,
81(2):111–117, 2002. 6, 176, 179, 184

[69] Carl Gould, Zhendong Su, and Premkumar T. Devanbu. Static
Checking of Dynamically Generated Queries in Database Appli-
cations. In Proceedings of the 26th International Conference on
Software Engineering (ICSE ’04), pages 645–654, Edinburgh, United
Kingdom, May 23–28 2004. IEEE Computer Society. 150

[70] Patricia P. Griffiths and Bradford W. Wade. An authorization
mechanism for a relational database system. ACM Transactions on
Database Systems, 1(3):242–255, 1976. 121

[71] Fei Guo, Jianmin Wang, and Deyi Li. Fingerprinting relational
databases. In Proceedings of the 2006 ACM symposium on Applied
computing (SAC ’06), pages 487–492, Dijon, France, April 23–27
2006. ACM Press. 99, 101

[72] Fei Guo, Jianmin Wang, Zhihao Zhang, Xiaojun Ye, and Deyi Li.
An Improved Algorithm to Watermark Numeric Relational Data.
In Proceedings of the 6th International Workshop on Information
Security applications (WISA ’05), pages 138–149, Jeju Island, Korea,
August 22–24 2005. Springer LNCS, Volume 3786. 93, 101

[73] Huiping Guo, Yingjiu Li, Anyi Liu, and Sushil Jajodia. A frag-
ile watermarking scheme for detecting malicious modifications of
database relations. Information Sciences, 176(10):1350–1378, 2006.
79, 91, 101, 119

[74] Gupta Gupta and Josef Pieprzyk. Database Relation Water-
marking Resilient against Secondary Watermarking Attacks. In
Proceedings of the 5th International Conference on Information
Systems Security (ICISS ’09), pages 222–236, Kolkata, India, De-
cember 14–18 2009. Springer LNCS, Volume 5905. 88, 101

[75] Rajiv Gupta, Mary Jean Harrold, and Mary Lou Soffa. An
approach to regression testing using slicing. In Proceedings
of International Conference on Software Maintenance (ICSM ’92),
pages 299–308, Orlando, FL, USA, November 9–12 1992. IEEE Com-
puter Society. 175

[76] Narjes Hachani and Habib Ounelli. A Knowledge-Based Ap-
proach For Database Flexible Querying. In Proceedings of the
17th International Workshop on Database and Expert Systems
Applications (DEXA ’06), pages 420–424, Krakow, Poland, Septem-
ber 4–8 2006. IEEE Computer Society. 167

[77] Hakan Hacigumus, Bala Iyer, and Sharad Mehrotra. Providing
Database as a Service. In Proceedings of the 18th International
Conference on Data Engineering (ICDE’02), pages 29–38, San Jose,
CA, USA, 26 February–1 March 2002. IEEE Computer Society. 78

259

REFERENCES

[78] Vivek Haldar, Deepak Chandra, and Michael Franz. Dynamic
Taint Propagation for Java. In Proceedings of the 21st Annual
Computer Security Applications Conference (ACSAC ’05), pages
303–311, Tucson, AZ, USA, December 5–9 2005. IEEE Computer
Society. 150

[79] Raju Halder and Agostino Cortesi. Abstract Interpretation
for Sound Approximation of Database Query Languages. In
Proceedings of the IEEE 7th International Conference on Informatics
and Systems (INFOS ’10), Advances in Data Engineering and
Management Track, pages 53–59, Cairo, Egypt, 28–30 March 2010.
IEEE Press. IEEE Catalog Number: IEEE CFP1006J-CDR. 3, 17

[80] Raju Halder and Agostino Cortesi. Obfuscation-based Anal-
ysis of SQL Injection Attacks. In Proceedings of the 15th IEEE
Symposium on Computers and Communications (ISCC ’10), pages
931–938, Riccione, Italy, 22–25 June 2010. IEEE Press. 5, 147

[81] Raju Halder and Agostino Cortesi. Observation-based Fine
Grained Access Control for Relational Databases. In Proceedings
of the 5th International Conference on Software and Data
Technologies (ICSOFT ’10), pages 254–265, Athens, Greece, July 22–
24 2010. INSTICC Press. 4, 121

[82] Raju Halder and Agostino Cortesi. A Persistent Public Water-
marking of Relational Databases. In Somesh Jha and Anish Math-
uria, editors, Proceedings of the 6th International Conference on
Information Systems Security (ICISS ’10), pages 216–230, Gujrat,
India, December 15–19 2010. Springer LNCS, Volume 6503. 3, 77

[83] Raju Halder and Agostino Cortesi. Persistent Watermarking of
Relational Databases. In Proceedings of the 1st IEEE International
Conference on Advances in Communication, Network, and
Computing (CNC ’10), pages 46–52, Kerala, India, October 4–5 2010.
IEEE Computer Society. 3, 77

[84] Raju Halder and Agostino Cortesi. Cooperative Query An-
swering by Abstract Interpretation. In Proceedings of the
37th International Conference on Current Trends in Theory and
Practice of Computer Science (SOFSEM ’11), pages 284–296,, Novỳ
Smokovec, Slovakia, January 22–28 2011. Springer LNCS, Volume
6543. 5, 165

[85] Raju Halder and Agostino Cortesi. Observation-based Fine
Grained Access Control for XML Documents. In Proceedings of the
10th International Conference on Computer Information Systems
and Industrial Management Applications (CISIM ’11), pages 267–
276, Kolkata, India, December 14–16 2011. Springer CCIS, Volume
245. 4, 121

[86] Raju Halder and Agostino Cortesi. Fine Grained Access Con-
trol for Relational Databases by Abstract Interpretation. In Josè

Cordeiro, Maria Virvou, and Boris Shishkov, editors, Software
and Data Technologies, pages 235–249. Springer CCIS, Volume 170,
2012. (Selected Revised Papers). 4, 121

[87] Raju Halder and Agostino Cortesi. Abstract Interpretation of
Database Query Languages. Computer Languages, Systems and
Structures, 38(2), 2012. (To apear). 3, 17

[88] Raju Halder and Agostino Cortesi. Abstract Program Slicing on
Dependence Condition Graph. Science of Computer Programming,
(Accepted, under final revision). 6, 175

[89] Raju Halder, Partha Sarathi Dasgupta, Saptarshi Naskar, and

Samar Sen Sarma. An Internet-based IP Protection Scheme for
Circuit Designs using Linear Feedback Shift Register (LFSR)-
based Locking. In Proceedings of the 22nd Annual Symposium
on Integrated Circuits and System Design(SBCCI ’09), pages 15:1–
15:6, Natal, Brazil, August 31st–September 3rd 2009. ACM Press. 87,
97

[90] Raju Halder, Partha Sarathi Dasgupta, Saptarshi Naskar, and

Samar Sen Sarma. An Internet-based IP Protection Scheme for Cir-
cuit Designs using Linear Feedback Shift Register-based Locking.
Engineering Letters, 19(2):84–94, 2011. 87, 97

[91] Raju Halder, Shantanu Pal, and Agostino Cortesi. Watermarking
Techniques for Relational Databases: Survey, Classification and
Comparison. Journal of Universal Computer Science, 16(21):3164–
3190, 2010. 3, 77

[92] William G. J. Halfond and Alessandro Orso. AMNESIA: Anal-
ysis and Monitoring for NEutralizing SQL-Injection Attacks.
In Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering (ASE ’05), pages 174–183, Long
Beach, California, USA, November 7–11 2005. ACM Press. 148, 161,
162

[93] William G.J. Halfond, Jeremy Viegas, and Alessandro Orso.
A Classication of SQL-Injection Attacks and Countermeasures.
In Proceedings of the IEEE International Symposium on Secure
Software Engineering (ISSSE ’06), Arlington, VA, USA, March 13–15
2006. IEEE. 148, 162

[94] Rebecca Hasti and Susan Horwitz. Using static single assignment
form to improve flow-insensitive pointer analysis. ACM SIGPLAN
Notices, 33(5):97–105, 1998. 182

[95] Susan Horwitz, Jan Prins, and Thomas Reps. On the adequacy
of program dependence graphs for representing programs. In
Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (POPL ’88), pages 146–157,
San Diego, California, United States, January 1988. ACM Press. 176,
179

[96] Susan Horwitz, Thomas Reps, and David Binkley. Interproce-
dural slicing using dependence graphs. ACM Transactions on
Programming Languages and Systems, 12(1):26–60, 1990. 6, 176,
179

[97] Tsan-sheng Hsu, Churn-Jung Liau, Da-Wei Wang, and Jeremy K.-P.
Chen. Quantifying Privacy Leakage through Answering Database
Queries. In Proceedings of the 5th International Conference on
Information Security (ISC ’02), pages 162–176, London, UK, Septem-
ber 30–October 2 2002. Springer LNCS, Volume 2433. 126

[98] Jinmin Hu and Paul Grefen. Component Based System Frame-
work for Dynamic B2B Interaction. In Proceedings of the 26th
International Computer Software and Applications Conference
on Prolonging Software Life: Development and Redevelopment
(COMPSAC ’02), pages 557–562, Oxford, England, August 26–29
2002. IEEE Computer Society. 78

[99] Tianlei Hu, Gang Chen, Ke Chen, and Jinxiang Dong. GARWM:
Towards a Generalized and Adaptive Watermark Scheme for Re-
lational Data. In Proceedings of the 6th International Conference in
Advances in Web-Age Information Management (WAIM ’05), pages
380–391, Hangzhou, China, October 11–13 2005. Springer LNCS,
Volume 3739. 92, 101

[100] Zhongyan Hu, Zaihui Cao, and Jianhua Sun. An Image Based Al-
gorithm for Watermarking Relational Databases. In Proceedings
of the 2009 International Conference on Measuring Technology and
Mechatronics Automation (ICMTMA ’09), pages 425–428, Zhangji-
ajie, Hunan, China, April 11–12 2009. IEEE Computer Society. 89,
90, 91, 93

[101] Kaiyin Huang, Min Yue, Pengfei Chen, Yanshan He, and Xiaoyun

Chen. A Cluster-Based Watermarking Technique for Relational
Database. In Proceedings of the 1st International Workshop on
Database Technology and Applications (DBTA ’09), pages 107–110,
Wuhan, China, April 25–26 2009. IEEE Press. 92

260

REFERENCES

[102] Min Huang, Jiaheng Cao, Zhiyong Peng, and Ying Fang. A New
Watermark Mechanism for Relational Data. In Proceedings of
the 4th International Conference on Computer and Information
Technology (CIT ’04), pages 946–950, Wuhan, China, September
14–16 2004. IEEE Computer Society. 92, 101

[103] Yao-Wen Huang, Shih-Kun Huang, Tsung-Po Lin, and Chung-
Hung Tsai. Web Application Security Assessment by Fault In-
jection and Behavior Monitoring. In Proceedings of the 11th
International World Wide Web Conference (WWW ’03), pages 148–
159, Budapest, Hungary, May 20–24 2003. ACM Press. 150

[104] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai,
Der-Tsai Lee, and Sy-Yen Kuo. Securing Web Application Code
by Static Analysis and Runtime Protection. In Proceedings of the
13th International World Wide Web Conference (WWW ’04), pages
40–52, New York, USA, May 17–20 2004. ACM Press. 150

[105] Soon-Young Huh and Kae-Hyun Moon. Approximate query an-
swering approach based on data abstraction and fuzzy relation. In
Proceedings of INFORMS-KORMS, pages 2057–2065, Seoul, Korea,
June 18–21 2000. The Korean Operations Research and Management
Science Society. 167

[106] Tadao Ichikawa and Masahito Hirakawa. ARES: a relational
database with the capability of performing flexible interpretation
of queries. IEEE Transactions on Software Engineering, 12(5):624–
634, 1986. 167

[107] AMERICAN NATIONAL STANDARD INSTITUTE. In-
formation technology-Database languages-SQL-Part 2:
Foundation (SQL/Foundation). In ISO/IEC 9075-2:2008.
http://www.iso.org/iso/iso catalogue/catalogue tc/ cata-
logue detail.htm? csnumber = 38640. 41

[108] Yannis E. Ioannidis and Viswanath Poosala. Histogram-Based
Approximation of Set-Valued Query Answers. In Proceedings of
the 25th International Conference on Very Large Data Bases (VLDB
’99), pages 174–185, Edinburgh, Scotland, UK, September 7–10 1999.
Morgan Kaufmann Publishers Inc. 17

[109] Daniel Jackson and Eugene J. Rollins. A new model of program
dependences for reverse engineering. ACM SIGSOFT Software
Engineering Notes, 19(5):2–10, 1994. 175, 183, 184

[110] Sushil Jajodia, Pierangela Samarati, V. S. Subrahmanian, and

Eliza Bertino. A unified framework for enforcing multiple ac-
cess control policies. SIGMOD Record, 26(2):474–485, 1997. 121

[111] Matthias Jarke and Jurgen Koch. Query Optimization in
Database Systems. ACM Computing Surveys, 16(2):111–152, 1984.
20, 21

[112] Govind Kabra, Ravishankar Ramamurthy, and S. Sudarshan. Re-
dundancy and information leakage in fine-grained access control.
In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD ’06), pages 133–144, Chicago, IL,
USA, June 27–29 2006. ACM Press. 121, 125, 126

[113] Ibrahim Kamel. A schema for protecting the integrity of databases.
Computers & Security, 28(7):698–709, 2009. 98, 102

[114] Auguste Kerckhoffs. La cryptographie militaire. Journal des
Sciences Militaires, 9:5–38, 1983. 85

[115] Myung Keun Shin, Soon-Young Huh, and Wookey Lee. Providing
ranked cooperative query answers using the metricized knowl-
edge abstraction hierarchy. Expert Systems with Applications,
32(2):469–484, 2007. 165, 167

[116] Sanjeev Khanna and Francis Zane. Watermarking maps: hiding
information in structured data. In Proceedings of the 11th annual
ACM-SIAM symposium on Discrete algorithms (SODA ’00), pages
596–605, San Francisco, California, United States, January 9–11 2000.
Society for Industrial and Applied Mathematics. 78

[117] Anthony Klug. Equivalence of Relational Algebra and Relational
Calculus Query Languages Having Aggregate Functions. Journal
of the ACM, 29(3):699–717, 1982. 18, 20

[118] Sastry Konduri, Brajendra Panda, and Wing-Ning Li. Monitoring
Information Leakage During Query Aggregation. In Proceedings
of the 4th International Conference in Distributed Computing and
Internet Technology (ICDCIT’07), pages 89–96, Bangalore, India,
December 17–20 2007. Springer LNCS, Volume 4882. 126

[119] Bogdan Korel and Janusz Laski. Dynamic program slicing.
Information Processing Letters, 29(3):155–163, 1988. 175, 179

[120] Bogdan Korel and Jurgen Rilling. Dynamic Program Slicing in
Understanding of Program Execution. In Proceedings of the 5th
International Workshop on Program Comprehension (WPC ’97),
pages 80–89, Dearborn, MI, USA, May 28–30 1997. IEEE Computer
Society. 175

[121] Lazaros Koromilas, George Chinis, Irini Fundulaki, and Sotiris

Ioannidis. Controlling Access to XML Documents over XML Na-
tive and Relational Databases. In Proceedings of the 6th VLDB
Workshop on Secure Data Management (SDM ’09), pages 122–141,
Lyon, France, August 28 2009. Springer LNCS, Volume 5776. 121,
126, 127, 143

[122] Yuji Kosuga, Kono Kenji, Miyuki Hanaoka, Miho Hishiyama, and

Yu Takahama. Sania: Syntactic and Semantic Analysis for Auto-
mated Testing against SQL Injection. In Proceedings of the 23rd
Annual Computer Security Applications Conference (ACSAC ’07),
pages 107–117, Miami Beach, Florida, USA, December 10–14 2007.
IEEE Computer Society. 150

[123] Jens Krinke. Static slicing of threaded programs. ACM SIGPLAN
Notices, 33(7):35–42, 1998. 175

[124] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe.
Dependence graphs and compiler optimizations. In Proceedings
of the 8th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages (POPL ’81), pages 207–218, Williamsburg,
Virginia, January 1981. ACM Press. 175, 182

[125] J. L. Kuhns. Answering Questions by Computer: A Logical Study.
In Report RM-5428-PR, page 137, Santa Monica, California, Decem-
ber 1967. The Rand Corporation. 19

[126] Julien Lafaye. An Analysis of Database Watermarking Security.
In Proceedings of the 3rd International Symposium on Information
Assurance and Security (IAS ’07), pages 462–467, Manchester,
United Kingdom, August 29–31 2007. IEEE Computer Society. 87

[127] Filippo Lanubile and Giuseppe Visaggio. Extracting Reusable
Functions by Flow Graph-Based Program Slicing. IEEE
Transactions on Software Engineering, 23(4):246–259, 1997. 175

[128] Dongwon Lee, Wang-Chien Lee, and Peng Liu. Supporting XML
Security Models Using Relational Databases: A Vision. In
Proceedings of the 1st International XML Database Symposium
(Xsym ’03), pages 267–281, Berlin, Germany, September 8 2003.
Springer LNCS, Volume 2824. 126, 127

[129] Sin-Joo Lee and Sung-Hwan Jung. A survey of watermarking
techniques applied to multimedia. In Proceedings of the IEEE
International Symposium on Industrial Electronics (ISIE ’01), pages
272–277, Pusan, South Korea, June 12–18 2001. IEEE Press. 77

261

REFERENCES

[130] Kristen LeFevre, Rakesh Agrawal, Vuk Ercegovac, Raghu Ra-
makrishnan, Yirong Xu, and David DeWitt. Limiting disclosure
in hippocratic databases. In Proceedings of the 30th international
conference on Very Large Data Bases (VLDB ’04), pages 108–119,
Toronto, Canada, August 31–September 3 2004. Morgan Kaufmann
Publishers Inc. 125, 128, 131

[131] Yingjiu Li. Database Watermarking: A Systematic View. Springer
Verlag, 2007. 96

[132] Yingjiu Li and Robert Huijie Deng. Publicly verifiable owner-
ship protection for relational databases. In Proceedings of the 2006
ACM Symposium on Information, computer and communications
security (ASIACCS ’06), pages 78–89, Taipei, Taiwan, March 21–24
2006. ACM Press. 79, 97, 98, 102, 109, 117, 119

[133] Yingjiu Li, Huiping Guo, and Sushil Jajodia. Tamper detec-
tion and localization for categorical data using fragile water-
marks. In Proceedings of the 4th ACM workshop on Digital rights
management (DRM ’04), pages 73–82, Washington, DC, USA, Oct
25 2004. ACM Press. 79, 96, 102, 103, 119

[134] Yingjiu Li, Vipin Swarup, and Sushil Jajodia. Constructing a vir-
tual primary key for fingerprinting relational data. In Proceedings
of the 3rd ACM workshop on Digital rights management (DRM ’03),
pages 133–141, Washington, DC, USA, October 27 2003. ACM Press.
87, 99, 101, 111

[135] Yingjiu Li, Vipin Swarup, and Sushil Jajodia. Fingerprinting rela-
tional databases: schemes and specialties. IEEE Transactions on
Dependable and Secure Computing, 2(1):34–45, 2005. 99, 101

[136] Jin-Cherng Lin, Jan-Min Chen, and Cheng-Hsiung Liu. An
Automatic Mechanism for Adjusting Validation Function. In
Proceedings of the 22nd International Conference on Advanced
Information Networking and Applications (AINA ’08), pages 602–
607, Okinawa, Japan, March 25–28 2008. IEEE Computer Society.
150

[137] Siyuan Liu, Shuhong Wang, Robert H. Deng, and Weizhong Shao.
A Block Oriented Fingerprinting Scheme in Relational Database.
In Proceedings of the 7th International Conference in Information
Security and Cryptology (ICISC ’04), pages 455–466, Springer LNCS,
Volume 3506, December 2–3 2004. Seoul, Korea. 99, 101

[138] Bo Luo, Dongwon Lee, Wang-Chien Lee, and Peng Liu. QFilter:
fine-grained run-time XML access control via NFA-based query
rewriting. In Proceedings of the 13th ACM International Conference
on Information and knowledge management (CIKM ’04), pages 543–
552, Washington D.C., USA, November 8–13 2004. ACM Press. 121,
126, 127

[139] Isabella Mastroeni and Durica Nikolic. Abstract Program Slic-
ing: From Theory towards an Implementation. In Proceedings of
the 12th International Conference on Formal Engineering Methods
(ICFEM ’10), pages 452–467, Shanghai, China, November 17–19
2010. Springer LNCS, Volume 6447. 177, 179

[140] Isabella Mastroeni and Damiano Zanardini. Data dependen-
cies and program slicing: from syntax to abstract semantics.
In Proceedings of the ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation (PEPM ’08),
pages 125–134, San Francisco, California, USA, January 7–8, 2008.
ACM Press. 6, 177, 178, 179, 180, 184, 193, 209, 211, 213, 215, 218,
220, 240

[141] Mirjana Mazuran, Elisa Quintarelli, and Letizia Tanca. Data
Mining for XML Query-Answering Support. IEEE Transactions on
Knowledge and Data Engineering, 99(PrePrints):1041–4347, 2011.
174

[142] Russell A. McClure and Ingolf H. Kruger. SQL DOM: Compile
Time Checking of Dynamic SQL Statements. In Proceedings of the
27th International Conference on Software Engineering (ICSE ’05),
pages 88–96, St. Louis, Missouri, USA, May 15–21 2005. ACM Press.
149

[143] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot. Handbook of
Applied Cryptography. CRC Press, Inc., 1996. 110

[144] Mailing Meng, Xinchun Cui, and Haiting Cui. The Approach for
Optimization in Watermark Signal of Relational Databases by us-
ing Genetic Algorithms. In Proceedings of the 2008 International
Conference on Computer Science and Information Technology
(ICCSIT ’08), pages 448–452, Singapore, August 29–September 2
2008. IEEE Computer Society. 90

[145] Antoine Miné. A New Numerical Abstract Domain Based on
Difference-Bound Matrices. In Proceedings of the 2nd Symposium
on Programs as Data Objects (PADO ’01), pages 155–172, Aarhus,
Denmark, May 21–23 2001. Springer LNCS, Volume 2053. 106, 174

[146] Antoine Miné. The octagon abstract domain. Higher-Order and
Symbolic Computation, 19(1):31–100, 2006. 106

[147] Mod-Security. In http://www.modsecurity.org. 162

[148] Amihai Motro. Intensional Answers to Database Queries. IEEE
Transactions on Knowledge and Data Engineering, 6(3):444–454,
1994. 174

[149] Markus Muller-Olm and Helmut Seidl. On optimal slicing of par-
allel programs. In Proceedings of the 33rd annual ACM symposium
on Theory of computing (STOC ’01), pages 647–656, Hersonissos,
Greece, July 6–8 2001. ACM press. 175

[150] G. B. Mund and Rajib Mall. An efficient interprocedural dynamic
slicing method. The Journal of Systems and Software, 79(6):791–806,
2006. 176, 179, 184

[151] Makoto Murata, Akihiko Tozawa, Michiharu Kudo, and Satoshi

Hada. XML access control using static analysis. ACM Transactions
on Information and System Security, 9(3):292–324, 2006. 126, 127

[152] M. Muthuprasanna, Ke Wei, and Suraj Kothari. Eliminating
SQL Injection Attacks - A Transparent Defence Mechanism. In
Proceedings of the 8th IEEE International Symposium on Web
Site Evolution (WSE ’06), pages 22–32, Philadelphia, Pennsylvania,
September 23–24 2006. IEEE Computer Society. 148, 149, 161, 162

[153] Ryohei Nakano. Translation with Optimization from Relational
Calculus to Relational Algebra Having Aggregate Functions. ACM
Transactions on Database Systems, 15(4):518–557, 1990. 18, 20

[154] M. Negri, G. Pelagatti, and L. Sbattella. Formal Semantics of
SQL Queries. ACM Transactions on DataBase System, 17(3):513–
534, 1991. 2, 18, 20

[155] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff

Shirley, and David Evans. Automatically Hardening Web Appli-
cations Using Precise Tainting Information. In Proceedings of the
20th IFIP International Information Security Conference (SEC ’05),
pages 295–308, Chiba, Japan, May 30–June 1 2005. Springer. 150

[156] Karl J. Ottenstein and Linda M. Ottenstein. The program de-
pendence graph in a software development environment. ACM
SIGPLAN Notices, 19(5):177–184, 1984. 175, 182, 183, 207, 211, 219

262

REFERENCES

[157] Themistoklis Palpanas and Nick Koudas. Entropy Based Approxi-
mate Querying and Exploration of Datacubes. In Proceedings of the
13th International Conference on Scientific and Statistical Database
Management (SSDBM ’01), pages 81–90, Fairfax, VA, USA, July 18–
20 2001. IEEE Computer Society. 167

[158] Tadeusz Pietraszek and Chris Vanden Berghe. Defending Against
Injection Attacks through Context-Sensitive String Evaluation.
In Proceedings of Recent Advances in Intrusion Detection (RAID
’05), pages 124–145, Seattle, Washington, USA, September 7–9 2005.
Springer LNCS, Volume 3858. 150, 153

[159] Alain Pirotte, Dominique Roelants, and Esteban Zimányi. Con-
trolled Generation of Intensional Answers. IEEE Transactions on
Knowledge and Data Engineering, 3(2):221–236, 1991. 174

[160] Andy Podgurski and Lori A. Clarke. A Formal Model of Pro-
gram Dependences and its Implications for Software Testing,
Debugging, and Maintenance. IEEE Transactions on Software
Engineering, 16(9):965–979, 1990. 6, 175, 176, 179

[161] Vidyasagar Potdar, Song Han, and Elizabeth Chang. A survey
of digital image watermarking techniques. In Proceedings of the
3rd IEEE International Conference on Industrial Informatics (INDIN
’05), pages 709–716, Peth, Australia, August 10–12 2005. IEEE Press.
77

[162] Vahab Pournaghshband. A new watermarking approach for rela-
tional data. In Proceedings of the 46th Annual Southeast Regional
Conference on XX (ACM-SE ’08), pages 127–131, Auburn, Alabama,
March 28–29 2008. ACM Press. 95, 101

[163] Vahab Prasannakumari. A Robust Tamperproof Watermarking
for Data Integrity in Relational Databases. Research Journal of
Information Technology, 1(3):115–121, 2009. 95, 101

[164] ZHU Qin, YANG Ying, LE Jia-jin, and LUO Yi-shu. Water-
mark Based Copyright Protection of Outsourced Database. In
Proceedings of the 10th International Database Engineering and
Applications Symposium (IDEAS’06), pages 301–308, Delhi, India,
December 11–14 2006. IEEE Computer Society. 87

[165] Thomas Reps and Genevieve Rosay. Precise interprocedural chop-
ping. In Proceedings of the 3rd ACM SIGSOFT Symposium on
Foundations of Software Engineering (SIGSOFT ’95), pages 41–52,
Washington, DC, USA, October 10–13 1995. ACM Press. 183, 184

[166] Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. On
Data Banks and Privacy Homomorphisms. In Foundations of
Secure Computation, pages 169–180., New York, 1978. Academic
Press. 116, 118

[167] Shariq Rizvi, Alberto Mendelzon, S. Sudarshan, and Prasan

Roy. Extending query rewriting techniques for fine-grained ac-
cess control. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD ’04), pages 551–562,
Paris, France, June 13–18 2004. ACM Press. 121, 125, 126

[168] Andrei Sabelfeld and Andrew C. Myers. Language-Based
Information-Flow Security. IEEE Journal on selected areas in
Communications, 21(1):5–19, 2003. 122

[169] Diptikalyan Saha, Mangala Gowri Nanda, Pankaj Dhoolia, V. Kr-
ishna Nandivada, Vibha Sinha, and Satish Chandra. Fault lo-
calization for data-centric programs. In Proceedings of the 19th
ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering (ESEC/FSE ’11), pages 157–167,
Szeged, Hungary, September 5–9 2011. ACM Press. 181

[170] Vivek Sarkar. Automatic partitioning of a program depen-
dence graph into parallel tasks. IBM Journal of Research and
Development, 35(5–6):779–804, 1991. 176, 179

[171] David Scott and Richard Sharp. Abstracting Application-level
Web Security. In Proceedings of the 11th International Conference
on the World Wide Web (WWW ’02), pages 396–407, Honolulu,
Hawaii, USA, May 7–11 2002. ACM Press. 150

[172] Hyoung Seok Hong, Insup Lee, and Oleg Sokolsky. Abstract Slic-
ing: A New Approach to Program Slicing Based on Abstract In-
terpretation and Model Checking. In Proceedings of the 5th IEEE
International Workshop on Source Code Analysis and Manipulation
(SCAM ’05), pages 25–34, Budapest, Hungary, 30 September–1 Oc-
tober 2005. IEEE Computer Society. 177, 179

[173] Hossain Shahriar and Mohammad Zulkernine. MUSIC:
Mutation-based SQL Injection Vulnerability Checking. In
Proceedings of the 8th International Conference on Quality Software
(QSIC ’08), pages 77–86, Oxford, UK, August 12–13 2008. IEEE Com-
puter Society. 150

[174] Jie Shi and Hong Zhu. A fine-grained access control model for
relational databases. Journal of Zhejiang University - Science C,
11(8):575–586, 2010. Zhejiang University Press, co-published with
Springer. 121

[175] Jie Shi, Hong Zhu, Ge Fu, and Tao Jiang. On the Soundness Prop-
erty for SQL Queries of Fine-grained Access Control in DBMSs.
In Proceedings of the 8th IEEE/ACIS International Conference on
Computer and Information Science (ICIS ’09), pages 469–474, Shang-
hai, China, June 1–3 2009. IEEE Compueter Society. 125

[176] David P. Silberberg and Glenn E. Mitzel. Information Systems
Engineering. Johns Hopkins APL Technical Digest, 26(4):343–349,
2005. 9, 10

[177] Saurabh Sinha, Mary Jean Harrold, and Gregg Rothermel.
System-dependence-graph-based slicing of programs with arbi-
trary interprocedural control flow. In Proceedings of the 21st
International Conference on Software Engineering (ICSE ’99), pages
432–441, Los Angeles, CA, USA, May 16–22 1999. ACM Press. 176,
179

[178] Radu Sion. Proving Ownership over Categorical Data. In
Proceedings of the 20th International Conference on Data
Engineering (ICDE 04), pages 584–595, Boston, MA, USA, March
30–April 2 2004. IEEE Computer Society. 93, 101

[179] Radu Sion, Mikhail Atallah, and Sunil Prabhakar. Rights Pro-
tection for Categorical Data. IEEE Transactions on Knowledge and
Data Engineering, 17(7):912–926, 2005. 93, 101, 103

[180] Yoga Sivagurunathan, Mark Harman, and Sebastian Danicic.
Slicing, I/O and the Implicit State. In Proceedings of the Third
International Workshop on Automatic Debugging (AADEBUG ’97),
pages 59–68, Linkoping, Sweden, May 26–27 1997. Linkoping Elec-
tronic Articles in Computer and Information Science. 180

[181] Zhendong Su and Gary Wassermann. The Essence of Command
Injection Attacks in Web Applications. In Proceedings of the
33rd Annual Symposium on Principles of Programming Languages
(POPL ’06), pages 372–382, Charleston, South California, USA, Jan-
uary 11–13 2006. ACM Press. 148

[182] Srihari Sukumaran, Ashok Sreenivas, and Ravindra Metta. The
dependence condition graph: Precise conditions for depen-
dence between program points. Computer Languages, Systems
& Structures, 36(1):96–121, 2010. 6, 178, 179, 180, 184, 193, 195, 198,
219

263

REFERENCES

[183] Hee Beng Kuan Tan and Tok Wang Ling. Correct Program Slicing
of Database Operations. IEEE Software, 15:105–112, 1998. 180, 222

[184] Kian-Lee Tan, Mong Li Lee, and Wang Wang. Access Control of
XML Documents in Relational Database Systems. In Proceedings
of the International Conference on Internet Computing (IC ’01),
pages 185–191, Las Vegas, Nevada, USA, June 25–28 2001. CSREA
Press. 126, 127

[185] Reps Thomas and Yang Wuu. The semantics of program slicing.
Technical report, University of Wisconsin, 1988. 182

[186] Meng-Hsiun Tsai, Fang-Yu Hsu, Jun-Dong Chang, and Hsien-Chu

Wu. Fragile Database Watermarking for Malicious Tamper De-
tection Using Support Vector Regression. In Proceedings of the
3rd International Conference on International Information Hiding
and Multimedia Signal Processing (IIH-MSP ’07), pages 493–496,
Splendor Kaohsiung, Taiwan, November 26–28 2007. IEEE Com-
puter Society. 90, 101

[187] Meng-Hsiun Tsai, Hsiao-Yun Tseng, and Chen-Ying Lai. A
Database Watermarking Technique for Temper Detection. In
Proceedings of the 2006 Joint Conference on Information Sciences
(JCIS ’06), Kaohsiung, Taiwan, October 8–11 2006. Atlantis Press. 79,
96, 102, 119

[188] Fredrik Valeur, Darren Mutz, and Giovanni Vigna. A Learning-
Based Approach to the Detection of SQL Attacks. In Proceedings
of the Conference on Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA ’05), pages 123–140, Vienna, Aus-
tria, July 7–8 2005. Springer LNCS, Volume 3548. 149

[189] G. A. Venkatesh. The semantic approach to program slicing. ACM
SIGPLAN Notices, 26(6):107–119, 1991. 179

[190] Chaokun Wang, Jianmin Wang, Ming Zhou, Guisheng Chen, and

Deyi Li. ATBaM: An Arnold Transform Based Method on Water-
marking Relational Data. In Proceedings of the 2008 International
Conference on Multimedia and Ubiquitous Engineering (MUE ’08),
pages 263–270, Beijing, China, May 07 2008. IEEE Computer Society.
89, 101

[191] Haiqing Wang, Xinchun Cui, and Zaihui Cao. A Speech Based Al-
gorithm for Watermarking Relational Databases. In Proceedings
of the 2008 International Symposiums on Information Processing
(ISIP ’08), pages 603–606, Moscow, Russia, May 23–25 2008. IEEE
Computer Society. 90, 101

[192] Qihua Wang, Ting Yu, Ninghui Li, Jorge Lobo, Elisa Bertino, Keith

Irwin, and Ji-Won Byun. On the correctness criteria of fine-grained
access control in relational databases. In Proceedings of the 33rd
international conference on Very large data bases (VLDB ’07), pages
555–566, Vienna, Austria, September 23–27 2007. VLDB Endow-
ment. 4, 121, 125, 128, 131, 135

[193] Mark Weiser. Program slicing. IEEE Transactions on Software
Engineering, SE-10(4):352–357, 1984. 175, 179, 183

[194] David Willmor, Suzanne M. Embury, and Jianhua Shao. Program
Slicing in the Presence of a Database State. In Proceedings of the
20th IEEE International Conference on Software Maintenance (ICSM
’04), pages 448–452, Chicago, IL, USA, September 11–17 2004. IEEE
Computer Society. 176, 180, 182, 221, 222

[195] Glynn Winskel. The Formal Semantics of Programming Languages:
An Introduction. The MIT Press, 1993. 185

[196] Jing Wu, Jennifer Seberry, Yi Mu, and Chun Ruan. Delegat-
able Access Control for Fine-Grained XML. In Proceedings of the
11th International Conference on Parallel and Distributed Systems
(ICPADS ’05), pages 270–274, Fuduoka, Japan, July 20–22 2005. IEEE
Computer Society. 127

[197] Xiangrong Xiao, Xingming Sun, and Minggang Chen. Second-
LSB-Dependent Robust Watermarking for Relational Database.
In Proceedings of the 3rd International Symposium on Information
Assurance and Security (IAS ’07), pages 292–300, Manchester,
United Kingdom, August 29–31 2007. IEEE Computer Society. 88

[198] Suk-Chung Yoon and E. K. Park. An Approach to Intensional
Query Answering at Multiple Abstraction Levels Using Data
Mining Approaches. In Proceedings of the 32 Annual Hawaii
International Conference on System Sciences (HICSS ’99), pages 1–9,
Maui, Hawaii, USA, January 5–8 1999. IEEE Computer Society. 174

[199] Ting Yu, Divesh Srivastava, Laks V. S. Lakshmanan, and H. V. Ja-
gadish. Compressed accessibility map: efficient access control for
XML. In Proceedings of the 28th international conference on Very
Large Data Bases (VLDB ’02), pages 478–489, Hong Kong, China,
August 20–23 2002. VLDB Endowment. 127

[200] Damiano Zanardini. The Semantics of Abstract Program Slicing.
In Proceedings of the IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM ’08), pages 89–100,
Beijing, China, September 2008. IEEE Press. 177, 179

[201] Yong ZHANG, Xiamu NIU, and Dongning ZHAO. A Method
of Protecting Relational Databases Copyright with Cloud Water-
mark. International Journal of Information and Communication
Engineering, 1(7):337–341, 2005. 91, 101

[202] Yong Zhang, Xiamu Niu, Dongning Zhao, Juncao Li, and Siming

Liu. Relational Databases Watermark Technique Based on Content
Characteristic. In Proceedings of the 1st International Conference
on Innovative Computing, Information and Control (ICICIC ’06),
pages 677–680, Beijing, China, August 30–September 1 2006. IEEE
Computer Society. 79, 91, 101, 109, 119

[203] Xiang Zhou, Min Huang, and Zhiyong Peng. An additive-attack-
proof watermarking mechanism for databases’ copyrights protec-
tion using image. In Proceedings of the 2007 ACM symposium on
Applied computing (SAC ’07), pages 254–258, Seoul, Korea, March
11–15 2007. ACM Press. 89, 101

[204] Hong Zhu and Kevin Lu. Fine-Grained Access Control for
Database Management Systems. In Proceedings of the 24th British
National Conference on Databases, pages 215–223, Glasgow, UK,
July 3–5 2007. Springer LNCS, Volume 4587. 121, 125

[205] Hong Zhu, Jie Shi, Yuanzhen Wang, and Yucai Feng. Controlling
Information Leakage of Fine-Grained Access Model in DBMSs.
In Proceedings of the 9th International Conference on Web-Age
Information Management (WAIM ’08), pages 583–590, Zhangjiajie,
China, July 20–22 2008. IEEE Computer Society. 121, 125

264

	List of Figures
	List of Tables
	1 Introduction
	2 Background: Information Systems, Databases, Abstract Interpretation
	3 Abstract Interpretation of Database Query Languages
	3.1 Related Works
	3.2 Preliminaries
	3.3 Abstract Syntax
	3.4 Environment and State
	3.5 Formal Semantics of Expressions
	3.6 Formal Semantics of Statements
	3.6.1 SELECT statement
	3.6.2 UPDATE statement
	3.6.3 INSERT statement
	3.6.4 DELETE statement
	3.6.5 Non-SQL statements

	3.7 Inference Rules for Composite Statements
	3.8 Soundness with respect to the Standard Semantics
	3.9 Abstract Semantics of Programs embedding SQL Statements
	3.10 Formal Semantics of SQL with Co-related and Non Co-related Subquery
	3.10.1 SELECT with co-related subquery
	3.10.2 SELECT with non co-related subquery
	3.10.3 Others with co-related subquery
	3.10.4 Others with non co-related subquery

	4 Persistent Watermarking of Relational Databases
	4.1 Literature Survey
	4.1.1 Applications
	4.1.2 Attacks
	4.1.3 Issues
	4.1.4 Classification
	4.1.5 Watermarking Techniques
	4.1.6 Fingerprinting Techniques
	4.1.7 Comparison
	4.1.8 Probabilistic Issues

	4.2 Proposed Scheme
	4.2.1 Public Watermarking
	4.2.2 Private Watermarking
	4.2.3 Time Complexity
	4.2.4 Discussions

	5 Observation-based Fine Grained Access Control (OFGAC)
	5.1 Related Works
	5.2 OFGAC for RDBMS
	5.2.1 Policy Specification
	5.2.2 Referential Integrity
	5.2.3 Query Evaluation
	5.2.4 Collusion Attacks

	5.3 OFGAC for XML
	5.3.1 Policy Specification
	5.3.2 Approaches

	6 SQL Injection Attacks
	6.1 Related Works
	6.2 Secure and Vulnerable Terms and Formulas
	6.3 Proposed Technique
	6.3.1 Obfuscation
	6.3.2 Deobfuscation
	6.3.3 Example
	6.3.4 Static Vs. Dynamic Issues

	7 Cooperative Query Answering
	7.1 Related Work and Motivation
	7.2 Key Issues
	7.3 Proposed Scheme
	7.3.1 Transforming from Concrete to Abstract Domain
	7.3.2 Cooperative Query Evaluation
	7.3.3 Concretization of the cooperative abstract result
	7.3.4 Correctness of the Result

	7.4 Intensional Query Answering

	8 Refinement of Abstract Program Slicing techniques
	8.1 Related Work
	8.2 Preliminaries
	8.3 Semantic Relevancy of Statements
	8.3.1 Semantic Relevancy of Blocks
	8.3.2 Treating Relevancy of Control Statements

	8.4 Algorithm for Semantics-based Abstract PDG
	8.5 Dependence Condition Graph (DCG)
	8.5.1 Refinement into Semantics-based Abstract DCG

	8.6 Slicing Algorithm
	8.7 Illustration of the Proposal with an Example
	8.8 Soundness and Complexity Analysis
	8.8.1 Semantic Relevancy: Soundness
	8.8.2 Complexity Analysis
	8.8.2.1 Complexity in computing semantic relevancy
	8.8.2.2 Complexity in computing semantic data dependences
	8.8.2.3 Complexity to generate semantics-based abstract DCG and its slicing
	8.8.2.4 Overall complexity of the proposal

	8.9 Discussions
	8.10 Slicing of Database Applications
	8.10.1 A Motivating Example
	8.10.2 Database-Oriented Program Dependence Graph (DOPDG)
	8.10.2.1 Identifying DD-Dependences
	8.10.2.2 Identifying PD-Dependences
	8.10.2.3 Constructing Concrete DOPDG

	8.10.3 Constructing Abstract DOPDG
	8.10.3.1 Abstract DD-Dependences
	8.10.3.2 Abstract PD-Dependences
	8.10.3.3 Semantics-based Dependences Computation

	9 Tukra: A Semantics-based Abstract Program Slicing Tool
	10 Conclusions
	References

